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Abstract 
The emerging ubiquitous computing vision is 
characterized by decentralized and ad hoc interoperation 
among devices and networks for access to services. 
Interacting devices or groups have highly heterogeneous 
resources and security and privacy concerns, and 
invariably belong to different security or administrative 
domains. Flexible and automated mechanisms are needed 
to achieve effective cross-domain interoperation that 
leads to a service or resource sharing agreement. We 
describe how policies representing system state, 
requirements and intent can be used to negotiate 
agreements between mutually unknown and untrusted 
systems that differ widely in their characteristics. Our 
negotiation protocol uses a small number of message 
types, which we have found to be sufficient for supporting 
a wide variety of application scenarios that occur on the 
Web, and that will likely be important in the ubiquitous 
computing environments of the future. 
 
 

1. Introduction 
 

The ubiquitous computing (ubicomp) vision of access 
to computing and network services everywhere and at any 
time is gradually being realized. De facto standards such 
as TCP/IP and 802.11 based MAC protocols enable 
mobile devices to connect and obtain services for their 
users. However, spontaneous ad hoc interoperation 
among systems (typically mobile devices and host 
networks) within different administrative and security 
domains is far from a reality. Interoperation here refers to 
the ability to communicate information about objects, 
offer services, discover external services, and access 
external resources. Ensuring suitable configuration and 
compatibility is hard, given the heterogeneity of resource 
capabilities, services offered, and credentials possessed 
by the interacting devices and networks. Interacting 
domains have different security, privacy and resource 
constraints, which vary with changing context. Ensuring 
proper static configuration for seamless service access in 
all possible contexts is impractical [22], and a centralized 
solution is neither scalable nor desirable. Ubicomp 
interoperation should also be highly automated, requiring 
minimal decision-making by its users. 

Existing solutions for cross-domain interoperation fall 
into two extremes: i) freely discoverable and accessible 
services, which are vulnerable to abuse, or ii) tight and 
inflexible security models that require prearranged trust 
relationships. A more flexible solution would balance the 
needs of service access and security. Interactions also 
involve give-and-take by both parties, each acting as a 
service producer and a consumer. To maintain privacy 
and prevent resource abuse, it is undesirable to expose 
local rules and constraints to external parties without 
having some level of trust. 

Consider a motivating scenario, where interoperation 
fails without prior configuration due to stringent security 
policies and a lack of preestablished trust. An ACM-
conducted conference is being held in a room containing 
a wireless network, a display device, a projector and a 
printer. To access conference room services, an attendee 
would have to manually configure his device. Many 
attendees have ACM credentials (e.g., certificates), which 
should ideally permit automated configuration. All that is 
needed is an effective procedure for the network to ask 
for proof of satisfactory accreditation, verify it and grant 
access; the user’s device is then ready to provide private 
information in return for needed services. The network 
could impose policy constraints on the requesting device, 
such as an audio-silent request during the conference, and 
grant service access only upon compliance. The 
conference system might choose to offer further 
privileges (such as copies of presentations or papers) to 
users who subscribe to a journal related to the conference. 
These tasks can be achieved through a step-by-step 
progression of trading information and making agreement 
decisions. 

The dynamics of this scenario are similar to how web 
services are accessed today. Clients and servers interact 
through rigid protocols, often with user input, because of 
the lack of a viable procedure for dynamic agreement, 
projects like P3P [17] notwithstanding. 

We propose a solution for interoperation between two 
computers through a simple, generic, and automated 
negotiation protocol, applicable to a wide range of 
ubiquitous computing scenarios and services. The 
common basis or abstraction of negotiation is the set of 
policies (description of system state, constraints and 



desired behavior) that every interacting entity must 
possess. Given that the negotiation parties possess 
policies specified in a common logic-based semantic 
language, we show how they can come to a mutually 
satisfactory resource-sharing and service-access 
agreement. No common prior configuration or trust 
relationship is required. The minimum requirement is a 
shared high level ontology and language that allows a 
common understanding of resource types and properties. 
Negotiation is a multi-step exchange of requests, counter-
requests, and offers, guided by policy at every step. Since 
the system policy is the only variable, the protocol is 
flexible and responds dynamically to context changes. 
Using policies to control system behavior, enforce 
security constraints, and attain goals is not a new idea. 
Enabling dynamic enforcement of such policies for 
interoperation is our contribution; we treat expressivity as 
a secondary concern. 

In Section 2 we describe how policies are specified at 
the negotiating end points. We describe the process and 
semantics of the negotiation framework in Section 3. Our 
implementation of this framework using the Panoply 
ubiquitous computing middleware [8] and the ensuing 
experiments are described in Section 4. We conclude with 
discussions of applications and extensions. 

 

2. Policy Language Features and Semantics 
 

Our negotiation framework depends on the interacting 
entities (single computing devices, networks, or clusters of 
devices) possessing policies that describe their state and 
constraints. Policies are sets of rules that describe the 
behavioral constraints and ideals of a computing system. 
Examples include policies for resource management, 
security and access control, and context adaptation. 
Developing a policy language was an important part of our 
research, though not its focus. We had to identify a small 
set of requirements for a policy language that would be 
independent of the domain or applications it was used in, 
and still be usable by the negotiation framework in diverse 
scenarios. The constructs or syntactic features provided by 
the language were important only to the extent that 
scenarios could be constructed. To minimize our initial 
effort, we chose to adapt a policy language from an 
existing language that would provide a syntactic base and 
basic reasoning semantics, retaining the option of 
modifying or augmenting it later. Though a number of 
desirable features of a policy language can be found in 
existing languages (see Section 5), the combination of 
features needed for a negotiation framework was not 
available in any existing policy language. 

We determined that our policy language had to be a 
based on a formal logic and have well-defined reasoning 
semantics, as: i) this makes the policy language usable in 
domains with diverse resource capabilities and 
constraints, without being tied closely to any one in 

particular [12]; and ii) decision-making on the basis of 
policies described in a logic-based language ensures 
correct and consistent behavior. The language should 
allow easy specification of intent and goals, leaving the 
enforcement procedure to the runtime system. Thus, 
while the vocabulary describing objects could be specific 
to a domain, the semantics of dealing with the 
specifications will be common across domains. Most 
system information must be understood only within a 
limited domain, and need not be part of a global 
specification language. Interoperating devices still must 
understand and interpret the objects that they trade. Such 
specification issues have been researched in the context of 
the Semantic Web and other open frameworks, examples 
being RDF/XML (which have been widely adopted), 
DAML+OIL [5] and OWL [16]. Our policy ontology is 
inspired by SOUPA [1], which defines a set of core 
components and optional extensions that can be used to 
model ubiquitous computing applications. Our ontology 
is fairly informal at this stage, but it includes the 
following: entities and agents, resources and content, 
properties and metadata, mechanisms (e.g., sensory, 
networking, cryptography), context, relationships 
between entities and resources, quantitative limits, 
precedence rules, deontic constraints (e.g., permission, 
obligation), actions and events. 

Our policy language is built on Prolog, which is based 
on first-order logic. Recent implementations [18] have 
significantly advanced its computational efficiency, 
making Prolog satisfactory for use in a real-world 
framework, especially as mobile users are unlikely to 
perceive appreciable response time lag (see Section 4.4). 
The structure of predicates, variables and other terms in 
Prolog allows us to specify categories and instances of 
entities, objects and contextual parameters in policy rules. 
The semantic nature of a logic-based policy language also 
enables specification of high and low level policies, and 
the specification of relations between these. We use the 
SWI-Prolog code base and API [21], which offer 
important features that will be discussed later. System 
state and policy rules are defined in the form of Prolog 
facts and rules (clauses). Examples are given below. 
Clauses 4 and 5 illustrate if-then policies. 

 

1) fileType(‘song.mp3’,audio).    [‘song.mp3’ is an audio file] 
2) relation(alice,bob).    [‘alice’ and ‘bob’ are relations] 
3) certificate(‘UCLA’).possess(john,’UCLA’).    [‘UCLA’ is a 

certificate, and is possessed by ‘john’] 
4) member(X) :- candidate(X), teamMember(X), 

numChildren(N), maxChildren(M), N<M.  [X is a member 
if it is a candidate, and a team member, and if the 
number of current children is less than the maximum] 

5) access(S,V) :- candidate(S), teamMember(S), 
voucher(location,V).    [entity S can be granted access to 
voucher V if S is a ‘candidate’ and a team member, and 
if V is a ‘location’ voucher] 



Since Prolog does not completely obey first-order 
logic semantics, we restricted the syntactic features of our 
language to make the reasoning algorithms sound. The 
syntax consists of standard conjunction, disjunction, and 
implication operators. Function definitions are not 
allowed; they are specified as relations, or predicates with 
true/false values, thereby avoiding the occur-check [14] 
problem. Cyclic predicate definitions are not allowed, 
guaranteeing that query processing through the backward 
chaining algorithm terminates. We use Prolog’s negation 
by failure feature to prove negatives. 

Policies are managed in a single database of Prolog 
facts and rules, which can be accessed and manipulated 
through meta-predicates defined by SWI-Prolog. We use 
higher-level predicates, e.g., assert, retract, clause, and 
functor, to manipulate and examine the database and 
individual rules. Rule indexing and retrieval impact 
system performance, and the core mechanisms provided 
by SWI-Prolog proved reasonably efficient. SWI-Prolog 
also provides a bidirectional Java to Prolog API, which is 
valuable since the negotiation framework is implemented 
in Java. The following examples illustrate low level rules: 
in (6), a low-level JPL query (jpl_call) is required to call 
a Java method to translate a group member name to a 
player name; and in (7), the action of closing a port  ‘Po’ 
requires the execution of the ‘iptables’ shell command. 

 

6) teamMember(X) :- groupMember(X), playerName(Y), 
jpl_call('panoply.policy.Helper','sphereName',[X],Y). 

7) action(closePort,Po) :- atom_concat('iptables -A INPUT -j 
DROP -p tcp --dport ',Po,C1), atom_concat(C1,' -i lo',C), 
shell(C,0). 

We have added mechanisms for the addition, removal 
and modification of state information and policy rules in a 
database. Methods for examination of policy rules, used 
for negotiation message generation, are described in 
Section 3. We define a special category of event-action-
trigger rules that respond to events. An example of such 
update rules is given below: 

 

8) update :- (((numRelatives(X,N), door(X), closeD(X)), 
doorOpen(X), N>0)                         
(retract(doorOpen(X)), retract(closeD(X)))). 

When a Prolog query to ‘update’ is made, all such update 
rules are evaluated; if all conditions on the antecedent of 
the body of the clause are proved true, the consequents 
are also evaluated. In (8), ‘update’ results in a change to 
the state of a ubiquitous door service. Such policies are 
examined whenever an addition or removal is made to the 
database, the result being that appropriate state changes 
are made in response to policy-specified events. 
 

3. Negotiation Framework 
 

In this section we describe our framework for 
automated negotiation among ubiquitous computing 
entities. We focus on two-party negotiation, but our 
model can potentially be extended to multi-party 
negotiation. 

We have discussed how policies can be used to 
describe state information and system constraints. In our 
ubiquitous computing model, interacting entities possess 
services, resources and policy rules, all of which may be 
unknown to the other. Each entity also has goals that can 
be achieved only through interoperation; in a large class 
of scenarios, only one party (e.g., a mobile device 
discovering and joining a network) starts off with goals. 

 

3.1. Negotiation Model 
 

Negotiation is a policy-guided operation by which 
devices request and grant services from each other. Each 
participant’s local policies are private and unknown to the 
other, and they might conflict. Keeping policies private is 
practical, since exposure of certain policies could open a 
system to abuse. For example, the knowledge that 
resource R can be accessed only between 8 pm and 9 pm, 
and only by X, could invite denial-of-service attacks 
targeted both at the resource host and at X. Each entity 
starts with certain requirements, or targets, or goals; 
negotiation guides entities to agreement or compromise 
through the use of meta-policies, heuristics and logical 
reasoning. It is, in effect, a decentralized process of policy 
resolution and conflict management, except that each 
entity has partial knowledge of the other’s policy, state 
and goals. Negotiation is bi-directional, neither party 
being a client or a server, since both entities may possess 
objects that the other desires. For example, a patron’s 
PDA and a coffee shop network could derive mutual 
benefit from interaction; the former obtains network 
access, while the latter could expand its customer base 
through incentives that include network access. 

In our negotiation model, we assume that each party 
already knows about the other’s presence and has a low-
level data communication channel with it. Negotiation 
starts with both entities attempting to attain their goals, 
i.e., obtaining services from the other through queries and 
responses. At every negotiation step, each party discovers 
more characteristics, services and policy constraints 
possessed by the other party, and this discovery triggers a 
reevaluation of their policies and their original goals. 

We describe negotiation here in semi-formal terms. 
Negotiators C1 and C2 possess sets of resources and 
services S1 and S2, policy sets P1 and P2, and goal or 
requirement sets G1 and G2, respectively. Neither party 
has any knowledge of the other’s sets. At the end of 
negotiation, C1 will have access to a set of services Q1 ⊆  
S2, and C2 access to a set of services Q2 ⊆  S1. This 
assignment will be consistent with both entities’ policy 
sets and will satisfy part of the requirements of the 
respective goal sets. An ideal negotiation would result in 
the maximal possible sets for Q1 and Q2, but this may not 
possible without an oracle that has complete knowledge 
of both parties. The negotiation protocol that we have 
designed and implemented is a best-effort solution, and 



does not provide theoretical guarantees of optimality in 
terms of the agreement reached. 

 

3.2 Protocol Units and Semantics 
 

Our negotiation protocol is a lightweight message-
exchanging procedure with a small number of message 
types that we determined were necessary and sufficient 
for most negotiation scenarios, the contents of which can 
be interpreted in a domain-independent manner. This is 
necessary for both flexibility and extensibility. Therefore, 
the negotiation messages in our protocol design are based 
on illocutionary speech acts [19], which are simple 
generic utterances of intent to perform  particular actions 
or to make wishes known; for example, assertion, 
suggestion, promise, command, etc. Our negotiation 
protocol has a few high-level message types: 
• requests: access rights, permission to perform actions, 

information queries. 
• offers: replies to request(s), with supporting objects, 

proofs, information; e.g., data files, certificates, etc. 
• policies: rules or obligation statements that  the 

opposite entity must comply with. 

Both negotiators run the state machine in Figure 1 and 
send messages based on these high-level speech acts. 
Other kinds of illocutionary speech acts, such as 
commands, affirmations, declinations and promises, are 
subsumed within the above set and do not require special 
handling at the state machine level. 

A negotiation is triggered by one of the entities but 
then proceeds in a peer-to-peer fashion. Negotiation starts 
with one entity making request(s) of the other; these 
requests are derived from the initiator’s goals and 
requirements encoded in policy. Offers or counter-
requests could be made in response. Every negotiation 
message is identified by its high-level type, and consists 
of a set of policy-derived statements. A request message 

contains a set of predicates drawn from the common 
vocabulary and indicates certain wishes on the sender’s 
part. Request message entries are drawn from a small set, 
including possessions (e.g., a wish to obtain possession of 
an object, or access to a service owned by the opposite 
party), actions (e.g., permission to perform certain 
actions, such as running an application, or commanding 
the other to run a piece of code), state changes (e.g., 
permission to join the host network), or a simple query 
(e.g., asking about the resolution of a color display 
possessed by the other). Correspondingly, offers would 
contain either an acceptance or a rejection of the request. 
For acceptances, the object of the request is appended to 
the message (for example, proof of possession of a 
credential in the form of a certificate, or an answer to a 
query as a string). Every negotiation protocol message 
contains multiple entries for efficient communication. 

Counter-requests can be generated in response to a 
received request, resulting in a request queue on either 
side. A request is dequeued when an offer is accepted or 
rejected. The protocol terminates when either side has 
both its sent request and received request queues empty. 

The state machine is non-deterministic and presents 
various choices at every state. Local policy and message 
contents determine the choices made. We kept the state 
machine simple to make it generic and capable of 
supporting a wide variety of applications. 

 

3.3. Policy-Guided Reasoning Mechanisms 
 

The negotiation framework parses request and 
response messages, determining appropriate actions by 
examining and manipulating the policy database.  

Request Processing: When a negotiator receives a 
request, every entry is extracted and queued. A query is 
run on every entry to test whether that request can be 
granted based on the current policy set. If it can, an 
affirmative offer is noted; eventually, offers are sent in a 
batch for optimized communication. If the request cannot 
be granted, counter-requests are generated through the 
following procedure. First, the sets of policies that govern 
the request are selected. For example, if a request for 
access to a service is made, policies of the form 

access(ServiceName) :- pred1 & pred2 &…… 
are selected and parsed. Our policies are conjunctions of 
conditions. The overall policy governing access to the 
service is a disjunction of the sets of conjunctions that 
make up the bodies of these policy statements. Conjuncts 
in each such policy statement are evaluated; if the result is 
true, and the predicates represent objects or actions that 
can be requested, they are added to a queue. If an 
unsatisfied predicate in the body is not part of the shared 
global vocabulary, the algorithm recursively examines all 
policies having that predicate as the head until leaves (or 
facts) are reached. For example, a policy of the following 
structure would lead to recursion: 
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Figure 1. Negotiation Protocol State Machine 



pred2 :- pred21 & pred22 &…… 
At the end of this procedure, multiple sets of request 
predicates are generated. Each set is a collection of 
counter-requests to be returned to the other party; if the 
opposite party satisfies this set of requests, its original 
request will be granted. If multiple sets are generated, one 
is immediately sent, and the rest saved as alternatives in 
case the opposite party is unable to satisfy the ones sent 
earlier. If no counter-requests can be generated, or no 
alternatives remain, a rejection offer is sent. 

Offer Processing: If an acceptance offer is received, 
the request that was satisfied is popped from the queue. If 
requests A, B, and C were sent as counter-requests in 
response to a request R received, and if acceptance offers 
were received for all three, A, B, and  C are popped from 
the sent requests queue, and R is removed from the 
received requests queue. On the other hand, if a rejection 
is sent, an alternative set of counter-requests (computed 
during request processing) is sent back. In some cases, an 
acceptance offer is received that does not contain valid 
supporting objects; e.g., a certificate does not validate, or 
a request for closing port 25 was not met. In this case, an 
offer rejection message is sent. The other party could re-
send a correct offer, an alternative offer, or a rejection. 

Negotiation messages containing policy statements 
demand compliance with particular policy rules, so they 
are handled like requests. We separate policies and 
requests for flexibility:  instead of specific requests, an 
entity can send its policy and let the opposite party 
determine a means of compliance.  Also, different 
“secrets” are revealed by a request and a policy, and we 
want to control what information is released when. 
Though our current applications of negotiation mainly 
involve requests and offers, research in enhancing the 
negotiation protocol with rich strategic control is 
ongoing. 

 

4. System Implementation 
 

To demonstrate how our negotiation system would 
interface with a full-featured ubicomp platform, we 
describe how negotiation and policy management works 
in Panoply [8]. Panoply provides functions for 
applications to manage individual devices and groups. 
The policy management and negotiation mechanisms are 
independent of the Panoply design, and could work for 
other ubicomp platforms with minor adjustments. 

 

4.1. Spheres of Influence and Panoply 
 

The core representational unit of Panoply is the Sphere 
of Influence, which can represent an individual device or 
a group of devices united by a common interest or 
attribute such as physical location, application, or social 
relationship. Spheres unify disparate notions of “groups”, 
such as device clusters and social networks, by providing 
a common interface and a standard set of discovery and 

management primitives. Spheres map onto the domains 
discussed in Section 1. 

Panoply provides group management primitives that 
allow the creation and maintenance of spheres of 
influence, including discovery, joining, and cluster 
management. Intra- and inter-sphere communication is 
via a publish/subscribe event model that propagates 
events between devices and applications, subject to 
scoping constraints embedded in events and interest. 
There is a symbiotic relationship between the Sphere of 
Influence framework and the policy-guided negotiation 
framework. The latter ensures the integrity of sphere 
joining and communication, and provides a security 
blanket. Panoply ensures that appropriate events are sent 
to the policy manager, enabling it to keep its database 
updated and make suitable decisions about when and how 
to negotiate. 

 

4.2.   Policy Management within Panoply 
 

The policy manager is a module of the Panoply 
middleware that serves as a container for system (or 
sphere) policies which are enforced through both passive 
and proactive means. The architecture can be functionally 
decomposed into three layers (see Figure 2). 

 
The front end is the policy manager shell that 

interfaces with other local sphere components, as well as 
interacting with remote spheres through Panoply events. 
It receives state change events from the sphere and 
applications, and communicates them to the policy 
engine, which updates the policy database and triggers 
suitable actions. It mediates information flow to Panoply 
applications by monitoring events. The negotiation 
protocol state machine runs here. Multiple simultaneous 
negotiation threads, and the flow of negotiation messages, 
are managed at this layer. Concurrent independent 
negotiations with multiple peers are supported, though all 
threads share a common policy database. The front end 

Figure 2. Policy Manager Functional Diagram 
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allows users to observe and modify policies with a 
graphical interface.  

The policy engine manages the database containing 
state information and policy rules. It interfaces with the 
SWI-Prolog database and exports methods for 
manipulating the database and extracting information. 
These methods include the simple querying operations, 
addition and removal operations, and the policy 
examination and the request-generation mechanisms.  

The controller guides and controls the rate and the 
strategy of negotiation. Every negotiation thread has its 
own controller. It examines negotiation message contents, 
the request queues, and sets of alternative requests and 
offers. Individual message entries are extracted and 
analyzed based on protocol semantics. Such analysis 
includes inferring why those entries were sent, how to 
process them, and what messages to send in response. As 
described in section 3.2, negotiation messages contain 
queries, responses, and supporting objects ranging from 
string tokens to credentials, data files and mobile code. 
Part of the controller’s task is to extract or attach suitable 
objects. For example, in the case of a message containing 
a request to run a virus-scanner, the controller would find 
the scanning code and attach it to the message. In a 
message containing an offer of a certificate, the controller 
would look for, extract, and validate the certificate object; 
different decisions are made depending on whether the 
correct offer was sent. How a message is processed 
depends on the message type and the objects it carries. 
We cannot handle all possible objects of interest in every 
ubicomp scenario, so the controller allows pluggable 
helper functions and mechanisms for different objects as 
the need may arise. The controller interfaces directly with 
the policy engine and uses the methods exported by it to 
drive the negotiation strategy. Our controller framework, 
though powerful, is fairly basic in its design. We are 
investigating a more dynamic negotiation control that 
sends messages based on game-theoretic strategies. 
Heuristics will be based on incentives and risks, backed 
by trust and utility models [7]. 

 

4.3. Example Negotiation Scenarios 
 

We experimented with multiple negotiation scenarios 
within the Panoply framework. Since the unit of 
interaction in the Panoply model is a sphere, the examples 
involved two spheres negotiating to gain certain 
privileges, chiefly the ability to become a member of 
another sphere. For example, a host sphere has the 
following policy for granting membership to a supplicant: 

member(X) :- candidateSphere(X), action(X,order,run,'uname 
-a | cut -f 3 -d \' \'',JVerInfo), JVerInfo='2.6.17.1', 
closedPort(X,25), 
possess(X,U),socialVoucher(U,G,G),localSphereID(G). 

This indicates that membership can be granted only if the 
supplicant is a candidate sphere, runs a Linux kernel 
version 2.6.17.1, has network port 25 closed, and proves 

possession of a voucher credential granted by the host. 
The negotiation starts by the supplicant requesting 
membership in the sphere. The host generates a request 
message containing a query for the OS kernel version, a 
request to shut port 25, and proof of possession of a 
“social” voucher. The supplicant’s policies allow the 
release of kernel version information and the shutting of 
certain network ports, but it will not release its private 
credential without the host providing a valid UCLA 
voucher. (We do not list the policies here due to limited 
space). It sends a counter-request for proof of a UCLA 
credential, which the host releases. The supplicant then 
satisfies all the original requests. Finally the host returns a 
positive response to the membership request, and makes 
appropriate configuration changes. The supplicant, having 
been satisfied, terminates the negotiation session. 

This is a simple example. The negotiation takes only a 
few steps, and few policy rules are involved. But our 
model can handle arbitrarily complex policies and 
requests for a wide variety of services. We use negotiation 
for membership in various real sphere applications and for 
access control in Panoply through event flow mediation. 

For example, we built a smart party application for 
dynamically choosing songs to play, and a GUI for 
manually changing their order. Party host spheres are 
assigned credentials in the form of vouchers. The sphere 
running the song-playing application will only allow 
designated party hosts to control the GUI through the 
following policy: “A control event destined for the song-
playing application is allowed to pass only if the event 
sender is a valid party host.” Every control event is 
redirected to the policy manager upon arrival. If it cannot 
establish that the sender was a valid host, it triggers a 
negotiation requesting proof of possession of a party host 
voucher.  If a satisfactory offer is received, negotiation 
terminates and the event is passed to the application; 
otherwise the event is dropped. 

 

4.4. Evaluation 
 

Automated negotiation is a fresh approach for dynamic 
service discovery and access in ubicomp environments. 
As our experience with building and testing a policy 
manager in Panoply shows, we created a negotiation 
framework independent of particular devices, domains 
and applications. Our negotiation procedure ensures 
consistency with local policy, since no decisions are made 
during negotiation that would conflict with a policy rule. 
The protocol is guaranteed to terminate in a finite number 
of steps, because the policy database is of finite size, and 
every policy statement is of finite length. Though not 
completely tolerant to network failures, our framework 
could directly make use of existing research. 

A detailed performance analysis is beyond the scope 
of this paper, but we show sample timings for certain 
characteristic negotiations in Table 1. The negotiation 



was conducted between two spheres, N1 running on an 
IBM Thinkpad T42 (1.7 GHz, 512 MB) laptop and N2 
running on an Intel P4 (2.53 GHz, 512MB) desktop; both 
machines ran Linux. Messages were exchanged through a 
TLS connection running over an 802.11b wireless 
channel. The table indicates the times taken to complete 
negotiation, from the first message sent or received until 
termination. P indicates the local processing time, W the 
wait time when expecting a reply from the negotiator, and 
‘Total’ is the total time (Total=P+W). In each case, 
Negotiator 1 initiates the protocol by sending a request 
message. R(k) indicates that k is sending a request to its 
negotiator, AO(k) indicates an affirmative offer sent by k, 
NO(k) a negative offer, and T(k) indicates termination. ‘3 
C-R(k)’ indicates three counter-requests sent by k. 

 

Table 1. Sample Negotiation Performance 
Measurements (in milliseconds) 

 

Case I:     R(N1)  AO(N2)  T(N1) 
Case II:    R(N1)  NO(N2)  T(N1) 
Case III:   R(N1)  3 C-R(N2)  3 AO(N1)  AO(N2)  T(N1) 
Case IV:  R(N1)  C-R(N2)  NO(N1)  3 C-R(N2) (alternative) 

 3 AO(N1)  1 AO(N2)  T(N1) 
 

Negotiator 1 (N1) Timing Negotiator 2 (N2) Timing  P W Total P W Total 
I 180.5 1081.2 1261.7 97.5 1958.8 2056.3 
II 8.7 1124.6 1133.3 112 1897.8 2009.8 
III 387.8 4251.2 4639 2231.1 3167.8 5398.9 
IV 504 6871.5 7375.5 3178.7 4886.5 8065.2 

 

All numbers are reported with 99% confidence 
intervals whose widths are typically ~5% of their mean. 
‘Tot’ includes the message processing overhead 
introduced by the Panoply middleware, which explains 
the discrepancy between the processing and total times. 
Entries in boldface indicate which negotiator’s time 
dominates the other. As we can see, simple negotiations 
take a few seconds (~8) to terminate, and additional steps 
introduce a small linear overhead. Our counter-request 
generation algorithm introduced reasonable overheads, at 
N2, of 1710.5 msec in Case III and 2573.8 msec in Case 
IV. Using external methods to verify vouchers took ~15 
msec, which is small, but running shell commands and 
executing code may introduce larger overhead. In 
practice, a few seconds overhead for negotiation will not 
be noticed by users in a majority of ubicomp scenarios. 
Ongoing research will reduce the costs of negotiation. 

 

5. Related Work 
 

The problem of interoperation for resource access is 
widely recognized as important, and existing technologies 
are inadequate for dealing with strangers and dynamic 
context changes [22]. Many research efforts have 
investigated the use of policies to specify goals, and 
control systems and security, because of their flexibility 
and adaptability [20]. Such research has primarily 
focused on policy specification and expressivity as 

compared to the interoperation mechanism, but we have 
borrowed concepts from several policy languages. The 
most relevant policy language is Rei [12], which is 
targeted towards both ubicomp and the Semantic Web. 
Rei is based on domain-independent logical semantics, 
and adds support for specification of actions, speech acts, 
and modality to other standard features. Other languages 
either have restrictive semantics, like Ponder [4], or have 
restricted application models, like IBM’s Trust Policy 
Language [11]. Semantic Web technologies like 
RDF/XML, DAML+OIL [5], OWL [16], and SOUPA [1] 
have contributed towards cross-domain communication, 
and are largely complementary to our work. 

Our work advances research in universal spontaneous 
interoperation for services by enabling dynamic 
agreements based on variable policy, going beyond 
frameworks like Jini [24] and UPnP [23], which are 
inflexible in some aspects, especially security. 

Our negotiation framework can also be viewed as a 
process of gradually building up trust and controlling 
access to services. Advanced role-based access control 
systems, such as GRBAC [2] and dRBAC [9], and law-
governed interaction [15], provide more expressive and 
flexible policy-based access control than traditional ACLs 
and capabilities, but do not handle conflicts and 
disagreements, where negotiation would be required. 

The most related work is automated trust negotiation 
[25], through which web entities (typically client-server, 
but also peer communications) can establish trust to 
obtain access to a guarded resource, resulting in a grant or 
denial of access. The negotiation protocol involves 
progressive request and exposure of sensitive credentials 
evaluated using per-credential access control policy rules. 
The TrustBuilder system [25], based on TLS, implements 
trust negotiation as a more flexible policy-guided access 
control mechanism. It suffers some drawbacks for 
ubicomp interoperation. The policy language is not based 
on logical semantics, and requests can be made 
exclusively for credentials. Conflicts cannot be resolved 
through compromises or alternatives. PeerTrust [10] uses 
a distributed logic programming language based on 
Prolog to advance TrustBuilder concepts and applies a 
more powerful model for trust negotiation in the 
Semantic Web. Both PeerTrust and TrustBuilder lack 
support for context-awareness; their fixed goals cannot be 
reevaluated during negotiation, and they rely excessively 
on credential-based trust. Our protocol supports a wider 
range of speech acts. 

Negotiation protocols have been proposed for access 
to grid services to match resource owner and consumer 
preferences [13]. SNAP [3] is a service-level agreement 
protocol for grid resource allocation. These protocols, 
though effective in their targeted environments, are 
inflexible and lack support for security and context-
awareness. Dang and Huhns [6] propose a protocol to 



manage multiple concurrent negotiations for services 
among service providers and consumers.  Their 
negotiation agreements are based on utility functions that 
must be reconciled, whereas our framework is based on 
security and resource usage policies.  
 

6. Conclusion and Future Work 
 

Ubiquitous computing is characterized by computing 
and communication services available almost everywhere. 
The heterogeneity in the nature of devices and networks 
that interact, and the diversity of security constraints and 
resource capabilities that they possess, pose obstacles for 
spontaneous service discovery and access, especially 
when there is no prior trust basis among the interacting 
entities. We have designed and implemented a flexible 
automated negotiation protocol that allows entities to 
come to agreement through the use of local policies. 

We plan several improvements to our negotiation 
framework, such as more flexible heuristics and strategies 
to control the flow of the protocol, and using 
compromises and security risks, based on perceived 
benefits and costs. We are also building new applications 
for negotiation, primarily geared towards ubicomp 
security.  We will also consider integrating technologies 
like RDF/XML into our policy framework. 
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