

Negotiating Agreements Using Policies in Ubiquitous Computing Scenarios

V. Ramakrishna Kevin Eustice Peter Reiher
Computer Science Department,

UCLA
Computer Science Department,

UCLA
Computer Science Department,

UCLA
vrama@cs.ucla.edu

kfe@cs.ucla.edu

reiher.cs.ucla.edu

Abstract
The emerging ubiquitous computing vision is
characterized by decentralized and ad hoc interoperation
among devices and networks for access to services.
Interacting devices or groups have highly heterogeneous
resources and security and privacy concerns, and
invariably belong to different security or administrative
domains. Flexible and automated mechanisms are needed
to achieve effective cross-domain interoperation that
leads to a service or resource sharing agreement. We
describe how policies representing system state,
requirements and intent can be used to negotiate
agreements between mutually unknown and untrusted
systems that differ widely in their characteristics. Our
negotiation protocol uses a small number of message
types, which we have found to be sufficient for supporting
a wide variety of application scenarios that occur on the
Web, and that will likely be important in the ubiquitous
computing environments of the future.

1. Introduction

The ubiquitous computing (ubicomp) vision of access
to computing and network services everywhere and at any
time is gradually being realized. De facto standards such
as TCP/IP and 802.11 based MAC protocols enable
mobile devices to connect and obtain services for their
users. However, spontaneous ad hoc interoperation
among systems (typically mobile devices and host
networks) within different administrative and security
domains is far from a reality. Interoperation here refers to
the ability to communicate information about objects,
offer services, discover external services, and access
external resources. Ensuring suitable configuration and
compatibility is hard, given the heterogeneity of resource
capabilities, services offered, and credentials possessed
by the interacting devices and networks. Interacting
domains have different security, privacy and resource
constraints, which vary with changing context. Ensuring
proper static configuration for seamless service access in
all possible contexts is impractical [22], and a centralized
solution is neither scalable nor desirable. Ubicomp
interoperation should also be highly automated, requiring
minimal decision-making by its users.

Existing solutions for cross-domain interoperation fall
into two extremes: i) freely discoverable and accessible
services, which are vulnerable to abuse, or ii) tight and
inflexible security models that require prearranged trust
relationships. A more flexible solution would balance the
needs of service access and security. Interactions also
involve give-and-take by both parties, each acting as a
service producer and a consumer. To maintain privacy
and prevent resource abuse, it is undesirable to expose
local rules and constraints to external parties without
having some level of trust.

Consider a motivating scenario, where interoperation
fails without prior configuration due to stringent security
policies and a lack of preestablished trust. An ACM-
conducted conference is being held in a room containing
a wireless network, a display device, a projector and a
printer. To access conference room services, an attendee
would have to manually configure his device. Many
attendees have ACM credentials (e.g., certificates), which
should ideally permit automated configuration. All that is
needed is an effective procedure for the network to ask
for proof of satisfactory accreditation, verify it and grant
access; the user’s device is then ready to provide private
information in return for needed services. The network
could impose policy constraints on the requesting device,
such as an audio-silent request during the conference, and
grant service access only upon compliance. The
conference system might choose to offer further
privileges (such as copies of presentations or papers) to
users who subscribe to a journal related to the conference.
These tasks can be achieved through a step-by-step
progression of trading information and making agreement
decisions.

The dynamics of this scenario are similar to how web
services are accessed today. Clients and servers interact
through rigid protocols, often with user input, because of
the lack of a viable procedure for dynamic agreement,
projects like P3P [17] notwithstanding.

We propose a solution for interoperation between two
computers through a simple, generic, and automated
negotiation protocol, applicable to a wide range of
ubiquitous computing scenarios and services. The
common basis or abstraction of negotiation is the set of
policies (description of system state, constraints and

desired behavior) that every interacting entity must
possess. Given that the negotiation parties possess
policies specified in a common logic-based semantic
language, we show how they can come to a mutually
satisfactory resource-sharing and service-access
agreement. No common prior configuration or trust
relationship is required. The minimum requirement is a
shared high level ontology and language that allows a
common understanding of resource types and properties.
Negotiation is a multi-step exchange of requests, counter-
requests, and offers, guided by policy at every step. Since
the system policy is the only variable, the protocol is
flexible and responds dynamically to context changes.
Using policies to control system behavior, enforce
security constraints, and attain goals is not a new idea.
Enabling dynamic enforcement of such policies for
interoperation is our contribution; we treat expressivity as
a secondary concern.

In Section 2 we describe how policies are specified at
the negotiating end points. We describe the process and
semantics of the negotiation framework in Section 3. Our
implementation of this framework using the Panoply
ubiquitous computing middleware [8] and the ensuing
experiments are described in Section 4. We conclude with
discussions of applications and extensions.

2. Policy Language Features and Semantics

Our negotiation framework depends on the interacting
entities (single computing devices, networks, or clusters of
devices) possessing policies that describe their state and
constraints. Policies are sets of rules that describe the
behavioral constraints and ideals of a computing system.
Examples include policies for resource management,
security and access control, and context adaptation.
Developing a policy language was an important part of our
research, though not its focus. We had to identify a small
set of requirements for a policy language that would be
independent of the domain or applications it was used in,
and still be usable by the negotiation framework in diverse
scenarios. The constructs or syntactic features provided by
the language were important only to the extent that
scenarios could be constructed. To minimize our initial
effort, we chose to adapt a policy language from an
existing language that would provide a syntactic base and
basic reasoning semantics, retaining the option of
modifying or augmenting it later. Though a number of
desirable features of a policy language can be found in
existing languages (see Section 5), the combination of
features needed for a negotiation framework was not
available in any existing policy language.

We determined that our policy language had to be a
based on a formal logic and have well-defined reasoning
semantics, as: i) this makes the policy language usable in
domains with diverse resource capabilities and
constraints, without being tied closely to any one in

particular [12]; and ii) decision-making on the basis of
policies described in a logic-based language ensures
correct and consistent behavior. The language should
allow easy specification of intent and goals, leaving the
enforcement procedure to the runtime system. Thus,
while the vocabulary describing objects could be specific
to a domain, the semantics of dealing with the
specifications will be common across domains. Most
system information must be understood only within a
limited domain, and need not be part of a global
specification language. Interoperating devices still must
understand and interpret the objects that they trade. Such
specification issues have been researched in the context of
the Semantic Web and other open frameworks, examples
being RDF/XML (which have been widely adopted),
DAML+OIL [5] and OWL [16]. Our policy ontology is
inspired by SOUPA [1], which defines a set of core
components and optional extensions that can be used to
model ubiquitous computing applications. Our ontology
is fairly informal at this stage, but it includes the
following: entities and agents, resources and content,
properties and metadata, mechanisms (e.g., sensory,
networking, cryptography), context, relationships
between entities and resources, quantitative limits,
precedence rules, deontic constraints (e.g., permission,
obligation), actions and events.

Our policy language is built on Prolog, which is based
on first-order logic. Recent implementations [18] have
significantly advanced its computational efficiency,
making Prolog satisfactory for use in a real-world
framework, especially as mobile users are unlikely to
perceive appreciable response time lag (see Section 4.4).
The structure of predicates, variables and other terms in
Prolog allows us to specify categories and instances of
entities, objects and contextual parameters in policy rules.
The semantic nature of a logic-based policy language also
enables specification of high and low level policies, and
the specification of relations between these. We use the
SWI-Prolog code base and API [21], which offer
important features that will be discussed later. System
state and policy rules are defined in the form of Prolog
facts and rules (clauses). Examples are given below.
Clauses 4 and 5 illustrate if-then policies.

1) fileType(‘song.mp3’,audio). [‘song.mp3’ is an audio file]
2) relation(alice,bob). [‘alice’ and ‘bob’ are relations]
3) certificate(‘UCLA’).possess(john,’UCLA’). [‘UCLA’ is a

certificate, and is possessed by ‘john’]
4) member(X) :- candidate(X), teamMember(X),

numChildren(N), maxChildren(M), N<M. [X is a member
if it is a candidate, and a team member, and if the
number of current children is less than the maximum]

5) access(S,V) :- candidate(S), teamMember(S),
voucher(location,V). [entity S can be granted access to
voucher V if S is a ‘candidate’ and a team member, and
if V is a ‘location’ voucher]

Since Prolog does not completely obey first-order
logic semantics, we restricted the syntactic features of our
language to make the reasoning algorithms sound. The
syntax consists of standard conjunction, disjunction, and
implication operators. Function definitions are not
allowed; they are specified as relations, or predicates with
true/false values, thereby avoiding the occur-check [14]
problem. Cyclic predicate definitions are not allowed,
guaranteeing that query processing through the backward
chaining algorithm terminates. We use Prolog’s negation
by failure feature to prove negatives.

Policies are managed in a single database of Prolog
facts and rules, which can be accessed and manipulated
through meta-predicates defined by SWI-Prolog. We use
higher-level predicates, e.g., assert, retract, clause, and
functor, to manipulate and examine the database and
individual rules. Rule indexing and retrieval impact
system performance, and the core mechanisms provided
by SWI-Prolog proved reasonably efficient. SWI-Prolog
also provides a bidirectional Java to Prolog API, which is
valuable since the negotiation framework is implemented
in Java. The following examples illustrate low level rules:
in (6), a low-level JPL query (jpl_call) is required to call
a Java method to translate a group member name to a
player name; and in (7), the action of closing a port ‘Po’
requires the execution of the ‘iptables’ shell command.

6) teamMember(X) :- groupMember(X), playerName(Y),
jpl_call('panoply.policy.Helper','sphereName',[X],Y).

7) action(closePort,Po) :- atom_concat('iptables -A INPUT -j
DROP -p tcp --dport ',Po,C1), atom_concat(C1,' -i lo',C),
shell(C,0).

We have added mechanisms for the addition, removal
and modification of state information and policy rules in a
database. Methods for examination of policy rules, used
for negotiation message generation, are described in
Section 3. We define a special category of event-action-
trigger rules that respond to events. An example of such
update rules is given below:

8) update :- (((numRelatives(X,N), door(X), closeD(X)),
doorOpen(X), N>0)
(retract(doorOpen(X)), retract(closeD(X)))).

When a Prolog query to ‘update’ is made, all such update
rules are evaluated; if all conditions on the antecedent of
the body of the clause are proved true, the consequents
are also evaluated. In (8), ‘update’ results in a change to
the state of a ubiquitous door service. Such policies are
examined whenever an addition or removal is made to the
database, the result being that appropriate state changes
are made in response to policy-specified events.

3. Negotiation Framework

In this section we describe our framework for
automated negotiation among ubiquitous computing
entities. We focus on two-party negotiation, but our
model can potentially be extended to multi-party
negotiation.

We have discussed how policies can be used to
describe state information and system constraints. In our
ubiquitous computing model, interacting entities possess
services, resources and policy rules, all of which may be
unknown to the other. Each entity also has goals that can
be achieved only through interoperation; in a large class
of scenarios, only one party (e.g., a mobile device
discovering and joining a network) starts off with goals.

3.1. Negotiation Model

Negotiation is a policy-guided operation by which
devices request and grant services from each other. Each
participant’s local policies are private and unknown to the
other, and they might conflict. Keeping policies private is
practical, since exposure of certain policies could open a
system to abuse. For example, the knowledge that
resource R can be accessed only between 8 pm and 9 pm,
and only by X, could invite denial-of-service attacks
targeted both at the resource host and at X. Each entity
starts with certain requirements, or targets, or goals;
negotiation guides entities to agreement or compromise
through the use of meta-policies, heuristics and logical
reasoning. It is, in effect, a decentralized process of policy
resolution and conflict management, except that each
entity has partial knowledge of the other’s policy, state
and goals. Negotiation is bi-directional, neither party
being a client or a server, since both entities may possess
objects that the other desires. For example, a patron’s
PDA and a coffee shop network could derive mutual
benefit from interaction; the former obtains network
access, while the latter could expand its customer base
through incentives that include network access.

In our negotiation model, we assume that each party
already knows about the other’s presence and has a low-
level data communication channel with it. Negotiation
starts with both entities attempting to attain their goals,
i.e., obtaining services from the other through queries and
responses. At every negotiation step, each party discovers
more characteristics, services and policy constraints
possessed by the other party, and this discovery triggers a
reevaluation of their policies and their original goals.

We describe negotiation here in semi-formal terms.
Negotiators C1 and C2 possess sets of resources and
services S1 and S2, policy sets P1 and P2, and goal or
requirement sets G1 and G2, respectively. Neither party
has any knowledge of the other’s sets. At the end of
negotiation, C1 will have access to a set of services Q1 ⊆
S2, and C2 access to a set of services Q2 ⊆ S1. This
assignment will be consistent with both entities’ policy
sets and will satisfy part of the requirements of the
respective goal sets. An ideal negotiation would result in
the maximal possible sets for Q1 and Q2, but this may not
possible without an oracle that has complete knowledge
of both parties. The negotiation protocol that we have
designed and implemented is a best-effort solution, and

does not provide theoretical guarantees of optimality in
terms of the agreement reached.

3.2 Protocol Units and Semantics

Our negotiation protocol is a lightweight message-
exchanging procedure with a small number of message
types that we determined were necessary and sufficient
for most negotiation scenarios, the contents of which can
be interpreted in a domain-independent manner. This is
necessary for both flexibility and extensibility. Therefore,
the negotiation messages in our protocol design are based
on illocutionary speech acts [19], which are simple
generic utterances of intent to perform particular actions
or to make wishes known; for example, assertion,
suggestion, promise, command, etc. Our negotiation
protocol has a few high-level message types:
• requests: access rights, permission to perform actions,

information queries.
• offers: replies to request(s), with supporting objects,

proofs, information; e.g., data files, certificates, etc.
• policies: rules or obligation statements that the

opposite entity must comply with.

Both negotiators run the state machine in Figure 1 and
send messages based on these high-level speech acts.
Other kinds of illocutionary speech acts, such as
commands, affirmations, declinations and promises, are
subsumed within the above set and do not require special
handling at the state machine level.

A negotiation is triggered by one of the entities but
then proceeds in a peer-to-peer fashion. Negotiation starts
with one entity making request(s) of the other; these
requests are derived from the initiator’s goals and
requirements encoded in policy. Offers or counter-
requests could be made in response. Every negotiation
message is identified by its high-level type, and consists
of a set of policy-derived statements. A request message

contains a set of predicates drawn from the common
vocabulary and indicates certain wishes on the sender’s
part. Request message entries are drawn from a small set,
including possessions (e.g., a wish to obtain possession of
an object, or access to a service owned by the opposite
party), actions (e.g., permission to perform certain
actions, such as running an application, or commanding
the other to run a piece of code), state changes (e.g.,
permission to join the host network), or a simple query
(e.g., asking about the resolution of a color display
possessed by the other). Correspondingly, offers would
contain either an acceptance or a rejection of the request.
For acceptances, the object of the request is appended to
the message (for example, proof of possession of a
credential in the form of a certificate, or an answer to a
query as a string). Every negotiation protocol message
contains multiple entries for efficient communication.

Counter-requests can be generated in response to a
received request, resulting in a request queue on either
side. A request is dequeued when an offer is accepted or
rejected. The protocol terminates when either side has
both its sent request and received request queues empty.

The state machine is non-deterministic and presents
various choices at every state. Local policy and message
contents determine the choices made. We kept the state
machine simple to make it generic and capable of
supporting a wide variety of applications.

3.3. Policy-Guided Reasoning Mechanisms

The negotiation framework parses request and
response messages, determining appropriate actions by
examining and manipulating the policy database.

Request Processing: When a negotiator receives a
request, every entry is extracted and queued. A query is
run on every entry to test whether that request can be
granted based on the current policy set. If it can, an
affirmative offer is noted; eventually, offers are sent in a
batch for optimized communication. If the request cannot
be granted, counter-requests are generated through the
following procedure. First, the sets of policies that govern
the request are selected. For example, if a request for
access to a service is made, policies of the form

access(ServiceName) :- pred1 & pred2 &……
are selected and parsed. Our policies are conjunctions of
conditions. The overall policy governing access to the
service is a disjunction of the sets of conjunctions that
make up the bodies of these policy statements. Conjuncts
in each such policy statement are evaluated; if the result is
true, and the predicates represent objects or actions that
can be requested, they are added to a queue. If an
unsatisfied predicate in the body is not part of the shared
global vocabulary, the algorithm recursively examines all
policies having that predicate as the head until leaves (or
facts) are reached. For example, a policy of the following
structure would lead to recursion:

Send

REQUEST(S)

INITIATE

Trigger: Start
Negotiation

Receive
REQUEST(S)

Receive
REQUEST(S)

Send REQ(S) / OFF(S) /
POL(S)

Send REQ(S) /
OFF(S) / POL(S)

Receive
OFF(S) / POL(S)

Receive

OFF(S) / POL(S)

Receive

TERMINATE

Send
TERMINATE

Send
TERMINATE

START

SERVICE

EXPECT

PROCESS

STOP

Figure 1. Negotiation Protocol State Machine

pred2 :- pred21 & pred22 &……
At the end of this procedure, multiple sets of request
predicates are generated. Each set is a collection of
counter-requests to be returned to the other party; if the
opposite party satisfies this set of requests, its original
request will be granted. If multiple sets are generated, one
is immediately sent, and the rest saved as alternatives in
case the opposite party is unable to satisfy the ones sent
earlier. If no counter-requests can be generated, or no
alternatives remain, a rejection offer is sent.

Offer Processing: If an acceptance offer is received,
the request that was satisfied is popped from the queue. If
requests A, B, and C were sent as counter-requests in
response to a request R received, and if acceptance offers
were received for all three, A, B, and C are popped from
the sent requests queue, and R is removed from the
received requests queue. On the other hand, if a rejection
is sent, an alternative set of counter-requests (computed
during request processing) is sent back. In some cases, an
acceptance offer is received that does not contain valid
supporting objects; e.g., a certificate does not validate, or
a request for closing port 25 was not met. In this case, an
offer rejection message is sent. The other party could re-
send a correct offer, an alternative offer, or a rejection.

Negotiation messages containing policy statements
demand compliance with particular policy rules, so they
are handled like requests. We separate policies and
requests for flexibility: instead of specific requests, an
entity can send its policy and let the opposite party
determine a means of compliance. Also, different
“secrets” are revealed by a request and a policy, and we
want to control what information is released when.
Though our current applications of negotiation mainly
involve requests and offers, research in enhancing the
negotiation protocol with rich strategic control is
ongoing.

4. System Implementation

To demonstrate how our negotiation system would
interface with a full-featured ubicomp platform, we
describe how negotiation and policy management works
in Panoply [8]. Panoply provides functions for
applications to manage individual devices and groups.
The policy management and negotiation mechanisms are
independent of the Panoply design, and could work for
other ubicomp platforms with minor adjustments.

4.1. Spheres of Influence and Panoply

The core representational unit of Panoply is the Sphere
of Influence, which can represent an individual device or
a group of devices united by a common interest or
attribute such as physical location, application, or social
relationship. Spheres unify disparate notions of “groups”,
such as device clusters and social networks, by providing
a common interface and a standard set of discovery and

management primitives. Spheres map onto the domains
discussed in Section 1.

Panoply provides group management primitives that
allow the creation and maintenance of spheres of
influence, including discovery, joining, and cluster
management. Intra- and inter-sphere communication is
via a publish/subscribe event model that propagates
events between devices and applications, subject to
scoping constraints embedded in events and interest.
There is a symbiotic relationship between the Sphere of
Influence framework and the policy-guided negotiation
framework. The latter ensures the integrity of sphere
joining and communication, and provides a security
blanket. Panoply ensures that appropriate events are sent
to the policy manager, enabling it to keep its database
updated and make suitable decisions about when and how
to negotiate.

4.2. Policy Management within Panoply

The policy manager is a module of the Panoply
middleware that serves as a container for system (or
sphere) policies which are enforced through both passive
and proactive means. The architecture can be functionally
decomposed into three layers (see Figure 2).

The front end is the policy manager shell that

interfaces with other local sphere components, as well as
interacting with remote spheres through Panoply events.
It receives state change events from the sphere and
applications, and communicates them to the policy
engine, which updates the policy database and triggers
suitable actions. It mediates information flow to Panoply
applications by monitoring events. The negotiation
protocol state machine runs here. Multiple simultaneous
negotiation threads, and the flow of negotiation messages,
are managed at this layer. Concurrent independent
negotiations with multiple peers are supported, though all
threads share a common policy database. The front end

Figure 2. Policy Manager Functional Diagram

Messaging Interface to other
system components and remote
computers

Policy Database

FRONT END

Knowledge Engineering
Mechanisms

Heuristics &
Metrics

Security & Trust
Model

Semantic Interpretation of
Messages

Protocol State Machine Message
Mux/DeMux

Event Listener

CONTROLLER

POLICY ENGINE

allows users to observe and modify policies with a
graphical interface.

The policy engine manages the database containing
state information and policy rules. It interfaces with the
SWI-Prolog database and exports methods for
manipulating the database and extracting information.
These methods include the simple querying operations,
addition and removal operations, and the policy
examination and the request-generation mechanisms.

The controller guides and controls the rate and the
strategy of negotiation. Every negotiation thread has its
own controller. It examines negotiation message contents,
the request queues, and sets of alternative requests and
offers. Individual message entries are extracted and
analyzed based on protocol semantics. Such analysis
includes inferring why those entries were sent, how to
process them, and what messages to send in response. As
described in section 3.2, negotiation messages contain
queries, responses, and supporting objects ranging from
string tokens to credentials, data files and mobile code.
Part of the controller’s task is to extract or attach suitable
objects. For example, in the case of a message containing
a request to run a virus-scanner, the controller would find
the scanning code and attach it to the message. In a
message containing an offer of a certificate, the controller
would look for, extract, and validate the certificate object;
different decisions are made depending on whether the
correct offer was sent. How a message is processed
depends on the message type and the objects it carries.
We cannot handle all possible objects of interest in every
ubicomp scenario, so the controller allows pluggable
helper functions and mechanisms for different objects as
the need may arise. The controller interfaces directly with
the policy engine and uses the methods exported by it to
drive the negotiation strategy. Our controller framework,
though powerful, is fairly basic in its design. We are
investigating a more dynamic negotiation control that
sends messages based on game-theoretic strategies.
Heuristics will be based on incentives and risks, backed
by trust and utility models [7].

4.3. Example Negotiation Scenarios

We experimented with multiple negotiation scenarios
within the Panoply framework. Since the unit of
interaction in the Panoply model is a sphere, the examples
involved two spheres negotiating to gain certain
privileges, chiefly the ability to become a member of
another sphere. For example, a host sphere has the
following policy for granting membership to a supplicant:

member(X) :- candidateSphere(X), action(X,order,run,'uname
-a | cut -f 3 -d \' \'',JVerInfo), JVerInfo='2.6.17.1',
closedPort(X,25),
possess(X,U),socialVoucher(U,G,G),localSphereID(G).

This indicates that membership can be granted only if the
supplicant is a candidate sphere, runs a Linux kernel
version 2.6.17.1, has network port 25 closed, and proves

possession of a voucher credential granted by the host.
The negotiation starts by the supplicant requesting
membership in the sphere. The host generates a request
message containing a query for the OS kernel version, a
request to shut port 25, and proof of possession of a
“social” voucher. The supplicant’s policies allow the
release of kernel version information and the shutting of
certain network ports, but it will not release its private
credential without the host providing a valid UCLA
voucher. (We do not list the policies here due to limited
space). It sends a counter-request for proof of a UCLA
credential, which the host releases. The supplicant then
satisfies all the original requests. Finally the host returns a
positive response to the membership request, and makes
appropriate configuration changes. The supplicant, having
been satisfied, terminates the negotiation session.

This is a simple example. The negotiation takes only a
few steps, and few policy rules are involved. But our
model can handle arbitrarily complex policies and
requests for a wide variety of services. We use negotiation
for membership in various real sphere applications and for
access control in Panoply through event flow mediation.

For example, we built a smart party application for
dynamically choosing songs to play, and a GUI for
manually changing their order. Party host spheres are
assigned credentials in the form of vouchers. The sphere
running the song-playing application will only allow
designated party hosts to control the GUI through the
following policy: “A control event destined for the song-
playing application is allowed to pass only if the event
sender is a valid party host.” Every control event is
redirected to the policy manager upon arrival. If it cannot
establish that the sender was a valid host, it triggers a
negotiation requesting proof of possession of a party host
voucher. If a satisfactory offer is received, negotiation
terminates and the event is passed to the application;
otherwise the event is dropped.

4.4. Evaluation

Automated negotiation is a fresh approach for dynamic
service discovery and access in ubicomp environments.
As our experience with building and testing a policy
manager in Panoply shows, we created a negotiation
framework independent of particular devices, domains
and applications. Our negotiation procedure ensures
consistency with local policy, since no decisions are made
during negotiation that would conflict with a policy rule.
The protocol is guaranteed to terminate in a finite number
of steps, because the policy database is of finite size, and
every policy statement is of finite length. Though not
completely tolerant to network failures, our framework
could directly make use of existing research.

A detailed performance analysis is beyond the scope
of this paper, but we show sample timings for certain
characteristic negotiations in Table 1. The negotiation

was conducted between two spheres, N1 running on an
IBM Thinkpad T42 (1.7 GHz, 512 MB) laptop and N2
running on an Intel P4 (2.53 GHz, 512MB) desktop; both
machines ran Linux. Messages were exchanged through a
TLS connection running over an 802.11b wireless
channel. The table indicates the times taken to complete
negotiation, from the first message sent or received until
termination. P indicates the local processing time, W the
wait time when expecting a reply from the negotiator, and
‘Total’ is the total time (Total=P+W). In each case,
Negotiator 1 initiates the protocol by sending a request
message. R(k) indicates that k is sending a request to its
negotiator, AO(k) indicates an affirmative offer sent by k,
NO(k) a negative offer, and T(k) indicates termination. ‘3
C-R(k)’ indicates three counter-requests sent by k.

Table 1. Sample Negotiation Performance
Measurements (in milliseconds)

Case I: R(N1) AO(N2) T(N1)
Case II: R(N1) NO(N2) T(N1)
Case III: R(N1) 3 C-R(N2) 3 AO(N1) AO(N2) T(N1)
Case IV: R(N1) C-R(N2) NO(N1) 3 C-R(N2) (alternative)

 3 AO(N1) 1 AO(N2) T(N1)

Negotiator 1 (N1) Timing Negotiator 2 (N2) Timing P W Total P W Total
I 180.5 1081.2 1261.7 97.5 1958.8 2056.3
II 8.7 1124.6 1133.3 112 1897.8 2009.8
III 387.8 4251.2 4639 2231.1 3167.8 5398.9
IV 504 6871.5 7375.5 3178.7 4886.5 8065.2

All numbers are reported with 99% confidence
intervals whose widths are typically ~5% of their mean.
‘Tot’ includes the message processing overhead
introduced by the Panoply middleware, which explains
the discrepancy between the processing and total times.
Entries in boldface indicate which negotiator’s time
dominates the other. As we can see, simple negotiations
take a few seconds (~8) to terminate, and additional steps
introduce a small linear overhead. Our counter-request
generation algorithm introduced reasonable overheads, at
N2, of 1710.5 msec in Case III and 2573.8 msec in Case
IV. Using external methods to verify vouchers took ~15
msec, which is small, but running shell commands and
executing code may introduce larger overhead. In
practice, a few seconds overhead for negotiation will not
be noticed by users in a majority of ubicomp scenarios.
Ongoing research will reduce the costs of negotiation.

5. Related Work

The problem of interoperation for resource access is
widely recognized as important, and existing technologies
are inadequate for dealing with strangers and dynamic
context changes [22]. Many research efforts have
investigated the use of policies to specify goals, and
control systems and security, because of their flexibility
and adaptability [20]. Such research has primarily
focused on policy specification and expressivity as

compared to the interoperation mechanism, but we have
borrowed concepts from several policy languages. The
most relevant policy language is Rei [12], which is
targeted towards both ubicomp and the Semantic Web.
Rei is based on domain-independent logical semantics,
and adds support for specification of actions, speech acts,
and modality to other standard features. Other languages
either have restrictive semantics, like Ponder [4], or have
restricted application models, like IBM’s Trust Policy
Language [11]. Semantic Web technologies like
RDF/XML, DAML+OIL [5], OWL [16], and SOUPA [1]
have contributed towards cross-domain communication,
and are largely complementary to our work.

Our work advances research in universal spontaneous
interoperation for services by enabling dynamic
agreements based on variable policy, going beyond
frameworks like Jini [24] and UPnP [23], which are
inflexible in some aspects, especially security.

Our negotiation framework can also be viewed as a
process of gradually building up trust and controlling
access to services. Advanced role-based access control
systems, such as GRBAC [2] and dRBAC [9], and law-
governed interaction [15], provide more expressive and
flexible policy-based access control than traditional ACLs
and capabilities, but do not handle conflicts and
disagreements, where negotiation would be required.

The most related work is automated trust negotiation
[25], through which web entities (typically client-server,
but also peer communications) can establish trust to
obtain access to a guarded resource, resulting in a grant or
denial of access. The negotiation protocol involves
progressive request and exposure of sensitive credentials
evaluated using per-credential access control policy rules.
The TrustBuilder system [25], based on TLS, implements
trust negotiation as a more flexible policy-guided access
control mechanism. It suffers some drawbacks for
ubicomp interoperation. The policy language is not based
on logical semantics, and requests can be made
exclusively for credentials. Conflicts cannot be resolved
through compromises or alternatives. PeerTrust [10] uses
a distributed logic programming language based on
Prolog to advance TrustBuilder concepts and applies a
more powerful model for trust negotiation in the
Semantic Web. Both PeerTrust and TrustBuilder lack
support for context-awareness; their fixed goals cannot be
reevaluated during negotiation, and they rely excessively
on credential-based trust. Our protocol supports a wider
range of speech acts.

Negotiation protocols have been proposed for access
to grid services to match resource owner and consumer
preferences [13]. SNAP [3] is a service-level agreement
protocol for grid resource allocation. These protocols,
though effective in their targeted environments, are
inflexible and lack support for security and context-
awareness. Dang and Huhns [6] propose a protocol to

manage multiple concurrent negotiations for services
among service providers and consumers. Their
negotiation agreements are based on utility functions that
must be reconciled, whereas our framework is based on
security and resource usage policies.

6. Conclusion and Future Work

Ubiquitous computing is characterized by computing
and communication services available almost everywhere.
The heterogeneity in the nature of devices and networks
that interact, and the diversity of security constraints and
resource capabilities that they possess, pose obstacles for
spontaneous service discovery and access, especially
when there is no prior trust basis among the interacting
entities. We have designed and implemented a flexible
automated negotiation protocol that allows entities to
come to agreement through the use of local policies.

We plan several improvements to our negotiation
framework, such as more flexible heuristics and strategies
to control the flow of the protocol, and using
compromises and security risks, based on perceived
benefits and costs. We are also building new applications
for negotiation, primarily geared towards ubicomp
security. We will also consider integrating technologies
like RDF/XML into our policy framework.

7. References

[1] H. Chen, F. Perich, T. W. Finin, and Anupam Joshi,
“SOUPA: Standard Ontology for Ubiquitous and Pervasive
Applications,” MobiQuitous 2004: pp. 258-267.
[2] M. J. Covington, M. J. Moyer, and M. Ahamad,
“Generalized Role-Based Access Control for Securing Future
Applications,” 23rd National Information Systems Security
Conference, Baltimore, MD, Oct. 2000.
[3] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S.
Tuecke, “SNAP: A Protocol for Negotiating Service Level
Agreements and Coordinating Resource Management in
Distributed Systems,” 8th Workshop on Job Scheduling
Strategies for Parallel Processing, Jul. 2002.
[4] N. Damianou, N. Dulay, E. Lupu and M. Sloman, “The
Ponder Policy Specification Language,” Policy Workshop 2001,
Jan. 2001, Bristol, U.K.
[5] “The DARPA Agent Markup Language Homepage,”
http://www.daml.org.
[6] J. Dang and M. N. Huhns, “Concurrent Multiple-Issue
Negotiation for Internet-Based Services,” IEEE Internet
Computing, Nov./Dec. 2006, Vol. 10, No. 6, pp. 42-49.
[7] C. English, S. Terzis, and P. Nixon, “Towards Self-
Protecting Ubiquitous Systems: Monitoring Trust-based
Interactions,” Personal and Ubiquitous Computing Journal,
Vol. 10, Issue 1, Dec. 2005, Springer London, pp. 50–54.
[8] K. Eustice, L. Kleinrock, S. Markstrum, G. Popek, V.
Ramakrishna, and P. Reiher, “Enabling Secure Ubiquitous
Interactions,” 1st Intl. Workshop on Middleware for Pervasive
and Ad-Hoc Computing (at Middleware 2003), 17 Jun. 2003,
Rio de Janeiro, Brazil.
[9] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V.
Karamcheti, “dRBAC: Distributed Role-Based Access Control

for Dynamic Coalition Environments,” 22nd Intl. Conference on
Distributed Computing Systems (ICDCS'02), IEEE Computer
Society, Jul. 2002.
[10] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M.
Winslett, “No Registration Needed: How to Use Declarative
Policies and Negotiation to Access Sensitive Resources on the
Semantic Web,” In Proc. 1st First European Semantic Web
Symposium, Heraklion, Greece, May 2004.
[11] A. Herzberg, Y. Mass, L. Mihaeli, D. Naor, and Y. Ravid,
“Access Control Meets Public Key Infrastructure, Or: Assigning
Roles to Strangers,” Symposium on Security and Privacy, pp. 2–
14, 2000.
[12] L. Kagal, T. Finin, and A. Joshi, “A Policy Language for a
Pervasive Computing Environment,” IEEE 4th Intl. Workshop
on Policies for Distributed Systems and Networks, 2003.
[13] R. Lawley, K. Decker, M. Luck, T. R. Payne, and L.
Moreau, “Automated Negotiation for Grid Notification
Services,” Euro-Par 2003, pp. 384-393.
[14] K. Marriott and H. Sondergaard, “On Prolog and the Occur
Check Problem,” ACM SIGPLAN Notices, Vol. 25, Issue 5, May
1989, pp. 76-82.
[15] N. H. Minsky and V. Ungureanu, “Law-governed
Interaction: A Coordination and Control Mechanism for
Heterogeneous Distributed Systems,” ACM Transactions on
Software Engineering and Methodology (TOSEM), Vol. 9, No.
3, pp. 273-305, Jul. 2000.
[16] “OWL Web Ontology Language Overview,”
http://www.w3.org/TR/owl-features/.
[17] “P3P Public Overview”: http://www.w3.org/P3P/.
[18] P. Van Roy, “Can Logic Programming Execute as Fast as
Imperative Programming?,” PhD thesis, University of
California at Berkeley, November 1990.
[19] J. R. Searle and D. Vanderveken, “Foundations of
Illocutionary Logic,” Cambridge University Press, Cambridge,
UK, 1984.
[20] M. Sloman and E. Lupu, “Security and Management Policy
Specification,” IEEE Network, Special Issue on Policy-Based
Networking, (invited) 16(2), Mar. 2002.
[21] “SWI-Prolog’s Home,” http://www.swi-prolog.org.
[22] A. Toninelli, R. Montanari, L. Kagal, and O. Lassila, “A
Semantic Context-Aware Access Control Framework for Secure
Collaborations in Pervasive Computing Environments,” 5th Intl.
Semantic Web Conference, Athens, GA, Nov. 5-9, 2006.
[23] “UPnP Forum,” http://www.upnp.org.
[24] J. Waldo, "The Jini Architecture for Network-Centric
Computing," Communications of the ACM, Vol. 42, No. 7,
pp.76-82, 1999.
[25] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson,
R. Jarvis, B. Smith, and L. Yu, “Negotiating Trust on the Web,”
IEEE Internet Computing, Nov./Dec. 2002.

