
PathFinder: Capturing DDoS Traffic Footprints
on the Internet

Lumin Shi∗, Mingwei Zhang∗, Jun Li∗, Peter Reiher†
∗ University of Oregon

{luminshi, mingwei, lijun}@cs.uoregon.edu
† University of California, Los Angeles

reiher@cs.ucla.edu

Abstract—While distributed denial-of-service (DDoS) attacks
are easy to launch and are becoming more damaging, the defense
against DDoS attacks often suffers from the lack of relevant
knowledge of the DDoS traffic, including the paths the DDoS
traffic has used, the source addresses (spoofed or not) that appear
along each path, and the amount of traffic per path or per source.
Though IP traceback and path inference approaches could be
considered, they are either expensive and hard to deploy or
inaccurate. We propose PathFinder, a service that a DDoS defense
system can use to obtain the footprints of the DDoS traffic to the
victim as is. It introduces a PFTrie data structure with multiple
design features to log traffic at line rate, and is easy to implement
and deploy on today’s Internet. We show that PathFinder can
significantly improve the efficacy of a DDoS defense system, while
PathFinder itself is fast and has a manageable overhead.

Index Terms—distributed denial-of-service; DDoS; traffic foot-
print; autonomous system (AS); PFTrie

I. INTRODUCTION

Today’s Internet is vulnerable to distributed denial-of-
service (DDoS) attacks. During a DDoS attack, an attacker
controls many compromised machines to flood the victim with
unwanted traffic in order to exhaust the network or compu-
tational resources of the victim. DDoS attacks have become
more frequent and damaging to many network services [1].
For example, a recent large-scale DDoS attack on Dyn [2]
disabled its domain name service, and crippled many major
web services that relied on it such as Twitter, Netflix, PayPal,
and over fifty others for hours.

While many DDoS defense systems have been proposed,
a primary challenge in effectively defending against DDoS
attacks is that a DDoS defense system usually has little
knowledge regarding which paths DDoS traffic has traveled
along, how much traffic traveled along each path, and also
which source addresses or prefixes of the DDoS traffic are
associated with each path. Such information about the DDoS
traffic, which we collectively call the footprints of the DDoS
traffic, if available, can enable a DDoS defense system to most

ISBN 978-3-903176-08-9 c© 2018 IFIP
This project is in part the result of funding provided by the Science and

Technology Directorate of the United States Department of Homeland Security
under contract number D15PC00204. The views and conclusions contained
herein are those of the authors and should not be interpreted necessarily
representing the official policies or endorsements, either expressed or implied,
of the Department of Homeland Security or the US Government.

effectively handle the DDoS attack. It can better decide at
which positions to deploy DDoS traffic filters or take other
defense actions, such as the autonomous systems (ASes) that
have seen a large amount of traffic to the victim; it can also
know better which source addresses (or more likely the source
IP prefixes, for scalability) to filter in the case of source-based
filtering; and it could also conduct traffic pattern analysis if
the footprints are continuously provided.

Various approaches to obtaining such information could be
considered, including numerous IP traceback approaches and
path inference methods that aim to address the asymmetric
nature of Internet paths and ascertain the paths traveled by
DDoS packets to reach the victim. Unfortunately, they have
serious drawbacks. For example, the path inference methods
are often inaccurate, and IP traceback approaches introduce
significant changes to router hardware or software, rely on
inter-AS collaboration, and need routers on the Internet to
constantly monitor the traffic. These approaches are also not
well-equipped to provide other footprint information, such as
total or per-source bandwidth consumption information or the
addresses or prefixes of DDoS sources. (We discuss these
approaches in more detail in Sec. II.)

We therefore introduce the PathFinder system as a service
for DDoS defense systems. Upon request from a DDoS
defense system on behalf of a DDoS victim, PathFinder can
gather and provide the footprints of the traffic to the victim.
We make the following contributions:

• PathFinder consists of an architecture that is easy to
implement and deploy on today’s Internet. Every AS can join
PathFinder without reliance on other ASes, and it employs
an on demand service model with low overhead.
• We design the setup and operations of each component
of the architecture while considering a series of real-world
factors and the high speed and large scale of DDoS traffic.
• We design a new data structure called PFTrie that supports
fast and easy storage and retrieval of traffic footprint infor-
mation. And we also design a set of PFTrie optimization
methods.
• We show the benefits of using PathFinder for DDoS
defense, and we further evaluate PathFinder to show it is
fast and has a manageable overhead.

An apparent issue here is IP spoofing. The DDoS traffic
could carry spoofed IP source addresses. However, we note
that regardless whether the IP source addresses of DDoS traffic
are spoofed or not, PathFinder will still discover the correct
set of paths that DDoS traffic take to reach the victim, thus
enabling a DDoS defense system to use the path information,
together with other traffic footprints information, to block the
DDoS traffic en route accordingly. On the other hand, if a
DDoS defense system needs to filter DDoS traffic based on
the source addresses of DDoS traffic, the DDoS defense itself
needs to handle the IP spoofing separately, which is out of the
scope of PathFinder.

The rest of this paper is organized as follows. We first
discuss related work in Sec. II, followed by an overview of
PathFinder in Sec. III. We then describe individual components
of PathFinder, including the PathFinder monitor in Sec. IV,
the PFTrie data structure for traffic logging in Sec. V, and
the PathFinder proxy in Sec. VI. We evaluate PathFinder in
Sec. VII, discuss some open issues in Sec. VIII, and conclude
the paper in Sec. IX.

II. RELATED WORK

A. IP Traceback

IP traceback, first introduced in [3], allows a victim to trace
the source of an IP packet it has received and reconstruct the
router-level path taken by the packet, even if the source address
of the packet is spoofed. While many IP traceback solutions
have been proposed [4], marking and logging are the two most
well-developed approaches.

In a marking approach, such as those described in [5], [6],
[7], when a router along a path forwards a packet to the
victim, the router marks the packet with its own IP address
(or its hashed result) or an edge that the packet has traversed,
typically using some unused fields in the IP header of the
packet. When the victim receives enough marked packets, even
if routers en route mark packets with certain probability rather
than all the time, the victim can then reconstruct the paths of
these packets (assuming the paths are stable).

In a logging approach such as [8], [9], before a router along
a path forwards a packet to the victim, instead of marking the
packet, the router uses some data structure (e.g., a Bloom filter)
to store the digest of the packet (rather than the packet itself in
order to save space), enabling it to later determine whether it
has seen the packet. When the victim wants to trace a packet,
it can query its upstream routers, asking whether they have
seen the packet. Similarly, a router that has seen the packet
can query its own neighboring routers about the packet, and
so on. Eventually the victim can reconstruct the packet’s path
using an ordered list of routers that have seen the packet.

PathFinder has advantages over existing IP traceback ap-
proaches in the following respects:
• Operation: PathFinder is also essentially a logging ap-
proach, but while the previous logging-based IP traceback
approaches try to trace the path(s) of any packets (such as
packets from a specific source) that a victim has received,

PathFinder aims to discover the paths of upcoming packets
(often all upcoming packets within a time window) toward
a victim when requested. So, while existing IP traceback
approaches record packet information or mark packets con-
stantly, PathFinder is an on-demand service and PathFinder
monitors will only record traffic information when requested.
• Overhead: Because it operates on demand, PathFinder
incurs much less operational overhead than existing IP trace-
back approaches. In addition, packet marking approaches
will modify packets before forwarding them, which will
introduce delays in processing packets and could downgrade
the network throughput significantly, especially when dealing
with a high-bandwidth link.
• Accuracy: The accuracy of the marking approaches de-
pends on how many marked packets the victim can receive
to reconstruct the paths of packets. The accuracy can suffer
if the victim cannot receive enough marked packets, such
as when its inbound link is congested with DDoS traffic.
The existing logging approaches (and also PathFinder), on
the other hand, as long as their monitoring mechanism
can process packet headers at line speed, can log packet
information with little loss and thus reach a high accuracy
in tracing packets.
• Deployability: Existing IP traceback approaches face obsta-
cles for deployment: Whether based on marking or logging
techniques, they introduce significant hardware or software
changes to routers, and also require inter-AS collaboration.
PathFinder instead introduces few changes to routers, and
PathFinder-participating ASes talk directly with a PathFinder
proxy and do not need to communicate with each other.

B. Path Inference

Researchers have studied how to infer the path between two
end points on the Internet. Without assuming any control over
the network infrastructure or access to end points, research
in [10] investigated how to leverage Border Gateway Protocol
(BGP) tables collected from multiple vantage points to infer
the AS path between any two end points on the Internet.
Also, via the probing from multiple vantage points and the IP
timestamp and record route options, research in [11] proposed
a “reverse traceroute” to allow a user to infer the path from
a remote end point to the user, without accessing the remote
end point. Inference-based approaches do not require changes
to network equipment and are easy to deploy, however, in
general they are subject to some degree of inaccuracy (e.g.,
the accuracy from the research in [10] is 70-88%). Moreover,
since they are not based on watching traffic in real time, they
will not be able to report the bandwidth consumption and other
traffic-related information associated with the path.

III. PATHFINDER OVERVIEW

A. PathFinder as a Service for DDoS Defense

We design PathFinder as a service for DDoS defense.
Upon request from a DDoS defense, PathFinder can provide
the footprints of all the traffic toward a victim that each
participating AS has witnessed. Note that PathFinder does

not distinguish DDoS traffic from the legitimate traffic, which
PathFinder assumes to be the job of the DDoS defense. The
footprints include:

• all the AS paths taken by the traffic;
• if requested, the source IP addresses or prefixes of the

traffic; and
• if requested, the amount of traffic per source address, or

per source prefix, or per AS en route, or other information
about the traffic.

When requesting the PathFinder service, a DDoS defense
can specify to PathFinder a set of parameters regarding the
traffic footprints, including:

• the destination address of the victim, which could be an
IP address or prefix, or an IP address plus a port number;

• the length of time for which to collect the traffic footprints
(typically during the DDoS attack);

• from which ASes (if not all the ASes supporting
PathFinder) to collect the traffic footprints;

• whether to collect the source addresses or prefixes of the
traffic, and if so, the prefix granularity (e.g., /24 is to
learn all the /24 source prefixes; /32 is to learn all the
/32 source prefixes, i.e., all the source IP addresses); and

• whether to collect the bandwidth consumption of the traf-
fic, and if so, the granularity of the bandwidth information
(per source address, per source prefix, or per AS en route)
and the unit (packets per second or bits per second).

B. Architecture

PathFinder is a log-based system that enables a user (which
is DDoS defense in this paper) to learn the AS paths, sources,
bandwidth consumption, and other information of the traffic
toward a DDoS victim, i.e., the footprints of the traffic. As we
will show in the following, it is easy to deploy as it requires
minimal reconfiguration of routers; it is scalable as it will
continue to perform well if there is more traffic from more
sources or if more ASes support PathFinder; and it is accurate,
fast, and efficient in providing the traffic information.

Fig. 1: PathFinder architecture.

Fig. 1 shows the high-level architecture of PathFinder. It
consists of three types of entities:
• PathFinder users who interact with their proxy to request
the PathFinder service, and retrieve from their proxy the
footprints of the inbound traffic to a DDoS victim;
• PathFinder proxies which (1) pass their users’ requests
(including all parameters described in Section III-A) to all
participating ASes—actually their PathFinder monitors; (2)
receive and process from these ASes the PathFinder logs,

which we call PFLogs, to derive the DDoS traffic footprints;
and (3) return the footprints to their user; and
• PathFinder monitors at all participating AS which, ac-
cording to the request from a proxy, (1) process the traffic
that their AS originates or forwards towards the victim
specified in the request; (2) generate PFLogs of the traffic,
which record the AS path, source addresses (if requested),
and amount (if requested) of the traffic; and (3) return the
PFLogs to the proxy. Note that monitors from different ASes
do not need to interact with each other, thus not introducing
into the architecture any reliance on inter-AS collaboration.

IV. PATHFINDER MONITOR

A. Addressing Design Requirements

Foremost, the monitor at each PathFinder-participating AS
faces the following two design requirements. First, the monitor
needs to consult routers within the AS to learn the AS path
from the AS to the victim. Second, it also needs to access
the traffic toward the victim in order to record their source
addresses and/or amount, if requested. As an AS can have a
complicated topology with inter-connected border routers and
inside routers, some routers may not be on any path toward
the victim at all and some may be on the same path. To meet
both requirements, for every path of the traffic to the victim,
the monitor must be able to talk with at least one router that
is on the path, in order to learn its AS path to the victim or
access its traffic to the victim. For the former (to learn its AS
path), as every border router on the Internet runs BGP and
maintains a Routing Information Base (RIB), the monitor can
query the RIB at the router. Note that BGP router vendors
such as Cisco [12] and Juniper [13] all support the query of
AS paths. For the latter (to access traffic), the monitor needs
to receive a copy of the traffic by applying traffic mirroring
or tapping techniques (we rule out the possible hardware
telemetry support from routers; although they produce traffic
records such as those in NetFlow or IPFIX format, the records
are only exported periodically, often with a long interval).

The monitor may further face a third requirement if it needs
to produce PFLogs with source information or also the traffic
amount records. There may be a huge amount of traffic from
many distinct sources toward the victim, especially if the
victim is currently under a severe DDoS attack, thus making
it challenging for the monitor to record all the sources and
their corresponding bandwidth consumption at a high speed.
The most obvious solution is to use a digest-oriented data
structure such as a Bloom filter or hash table. However, while
the monitor can use a Bloom filter to easily answer whether
it has seen an IP address or prefix or not, it is not good at
recording which source IP addresses or prefixes it has seen. A
hash table is better, but it can only output whatever is stored
in itself as is; it is not flexible in processing or aggregating
IP address and prefix information, thus scaling poorly when
the logs are of a huge size. We therefore design a new, trie-
based data structure called PFTrie to facilitate the recording
and transmission of PFLogs, which we detail in Section V.

B. Setup

A PathFinder-participating AS needs to set up its PathFinder
monitor and its working environment as follows. First, the
monitor needs to set up the traffic mirroring or tapping with
every border router from which it will need to obtain traffic
in real time. To do so, given the autonomy of ASes, each AS
may adopt a different procedure that it prefers. For a small AS
without many routers, it can physically wire the monitor with
every router for wiretapping (Fig. 2a shows an example). For
a large AS with many routers over a large geographic region,
we assume it can first learn which routers the AS has and then
use virtual circuits for traffic mirroring with the routers [14],
[15]. Further, a large AS may employ multiple monitors, with
one monitor configured as a master monitor that can assign the
workload across all the monitors. (Without losing generality,
we assume one monitor per AS in the rest of the paper.)

Second, the monitor needs to be able to remotely login to
each router that it is wired with and execute commands on
the router, such as querying the AS path or the next hop from
the router to any destination IP address. To do so, we assume
every router supports secure shell (ssh), which is true for most
routers nowadays, such as Cisco and Juniper routers [16], [17].

Finally, the monitor must be easy to discover by every
PathFinder proxy. While the monitor can employ a running
daemon process with a publicly known port number, proxies
must also know the monitor’s IP address. Many options exist;
for example, the monitor can have its IP address and other
information maintained at a web page. Or, the AS can set
up a Domain Name System (DNS) record for its PathFinder
monitor; e.g., 3582.pathfinder.org may point to the
PathFinder monitor of AS 3582.

C. Operation

The monitor at every PathFinder-participating AS operates
on demand, remaining idle unless it receives a request from a
PathFinder proxy, in which case the monitor will learn the IP
address or prefix of the victim in question, together with the
parameters in the request as defined in Sec. III-A, and start to
generate PFLogs on behalf of the victim.

The very first step that the monitor takes is to identify a
set of routers in its AS that are both sufficient and necessary
to capture all the possible traffic that the AS may originate
or forward toward the victim. Note the AS may also originate
traffic toward the victim from any router of the AS itself. We
therefore use all possible egress routers from which the traffic
to the victim may exit the AS. For example, in Fig. 2b as the
AS forwards two traffic flows toward the victim and both exit
the AS from egress router R3, the monitor will select R3 to
produce PFLogs for the victim. Further, it is straightforward to
decide which routers are possible egress routers for the traffic
to the victim. The monitor can query every border router’s RIB
to learn its next hop to reach the victim’s IP. If the next hop
is a router still within the AS, the border router in question is
not an egress router; otherwise, it is an egress router.

Once the routers are selected, the monitor then talks with
them to collect and produce PFLogs based on the request by

(a) The setup of a PathFinder-
participating AS.

(b) The snapshot when the monitor
is capturing traffic.

Fig. 2: An example setup of a PathFinder-participating AS.

the victim. First, the monitor will query each selected router to
retrieve its AS path to the victim from its RIB. Furthermore,
if the user requests the bandwidth consumption information
of the total traffic to the victim via the AS, since the monitor
is mirroring or tapping the traffic from these routers (among
others), the monitor can observe the traffic from these routers
and count their total volume (# of packets or # of bits), either
per time unit or over a period of time (as specified in the
request or based on a default value). Note that the mirrored
or tapped traffic is only the traffic to the victim and more
importantly, not on the path of the production traffic, therefore
they will not impose a burden on the production traffic.

At this point, if the user did not request the source ad-
dresses or prefixes of the traffic, or source-based bandwidth
consumption or other information, the monitor has collected
all the PFLogs for the user, and thus can return them to the
proxy of the user. We call this mode of operation source-
agnostic mode. Otherwise, the monitor will operate in the
source-aware mode to further produce source-based PFLogs
via PFTrie (see Sec. V) before it returns them to the proxy.

Finally, note that each monitor only communicates with
PathFinder proxies. No inter-AS collaboration is needed. In
other words, monitors from different ASes are not required
to communicate or collaborate, and each AS independently
participates in PathFinder without any reliance on other ASes.

V. PFTRIE—A PATHFINDER DATA STRUCTURE FOR
TRAFFIC LOGGING

When in source-aware mode, the monitor at every
PathFinder-participating AS will need to record all the sources
that the AS has seen sending traffic to the victim in question,
and if requested, the bandwidth consumption information per
source. In doing so, the monitor needs to employ a data
structure and accompanying algorithms to log sources, count
bandwidth consumption, and transmit such data, all at a high
speed to keep up with the line-speed packet arrival rate.
Meanwhile, due to its speed, the trie data structure has been
popular in storing IP addresses and prefixes, such as those in
the Forwarding Information Base (FIB) of routers. A trie is
also called a prefix tree, where every node on the trie uses its
position on the tree to store the key of the node, such as the IP

address or prefix represented by the node. We therefore adopt
the trie data structure for this purpose. Furthermore, to meet
the design requirements discussed in Sec. IV-A, we enhance
the trie data structure and design the PFTrie as follows.

A. Basic PFTrie Operations

The monitor captures and processes every packet toward the
victim. It will make sure the IP source address of the packet
is stored into the PFTrie via a put process. In this process, the
monitor may modify the PFTrie by adding new nodes to store
the IP, or discover that the address is already stored due to a
previous packet with the same IP. The put process will return
a node representing the IP, which the monitor can further
update with bandwidth consumption information incurred by
the current packet, if requested.

In the put process, the monitor will traverse the trie from
the root downwards. It will traverse a node at each level—
which we also call an anchor—to further move to the next
level; clearly, when the traversal starts the anchor is the root
of the trie. At the same time, it iterates through the bits of the
IP address, starting from the leftmost bit, as follows:

(1) If the current bit in the IP address is 0, it traverses to the
left child of the anchor, otherwise it traverses to the right child;
either way, the chosen child will become the new anchor.

(2) In case the new anchor does not exist, the monitor will
detect a fault, i.e., the trie has not stored this IP address yet;
the monitor will then add the missing child onto the trie, and
use this child as the new anchor. (Note that this new anchor
will also avoid the same fault for the next time.)

(3) If the current bit is already the rightmost bit of the IP
address, the monitor then knows that the IP address is stored
in the trie as represented by the new anchor, and thus return
the new anchor node. Otherwise, it still needs to move to the
next bit of the IP address; it then uses the new anchor as the
current anchor to repeat step (1) above. Note the returned node
is always a leaf node on the trie.

Fig. 3 shows an example of inserting a new IP address that
ends with 101. When it traverses to node a by following bit 1,
it needs to follow bit 0 to go to a’s left child; since it does not
exist, the monitor adds node b as a’s left child. It then needs
to follow the last bit 1 to go to b’s right child; since it does
not exist either, node c is then added, which also represents
the newly stored IP address.

Fig. 3: Store an IP address that ends with 101.

B. Trie Optimization

We further optimize the PFTrie toward a faster traversal
process. First, with the design in Sec. V-A, for every bit of

Fig. 4: PFTrie optimization: Aggregating sibling leaf nodes
into one new leaf node.

an IP address, the trie must maintain a node at each level;
for example, an IPv4 address will lead to 32 nodes at 32
respective levels on the PFTrie. We address this issue with
two optimization methods that can go in parallel: the bottom-
up aggregation of leaf nodes and the top-down collapse of
prefixes. Furthermore, we also introduce a method to avoid
duplicate traversal of the PFTrie when a source address is
already stored. We describe each method below.

1) Bottom-up Aggregation of Leaf Nodes: Because of traffic
locality, sometimes there can be multiple sources from the
same prefix sending traffic to the victim. For example, besides
seeing the 32-bit source IP xxx...x101 to the victim,
the monitor may also see traffic to the victim from another
source IP xxx...x100, which only differs from the former
source IP by the very last bit; in other words, they share
the same 31-bit prefix. When such locality is detected, two
leaf nodes at level 32 are not needed to represent the two IP
addresses. Instead, as shown in Fig. 4, we can aggregate the
two leaf nodes into one new level-31 leaf node, indicating
the monitor has seen traffic from both IP addresses in the
31-bit prefix. Furthermore, this aggregation can continue if
the new leaf node has a sibling leaf node. Clearly, this
bottom-up aggregation process can reduce the depth of certain
branches of the PFTrie, thus speeding up the put process. One
challenge here is the logging of the bandwidth consumption
information. After aggregation, the monitor could simply copy
the bandwidth consumption of each old leaf node into the new
leaf node; or, it can also sum the bandwidth consumption of the
two leaf nodes, thus recording the bandwidth consumption of
the IP prefix represented by the new leaf node. The choice here
depends on the user’s request regarding the prefix granularity
for recording the bandwidth consumption information (e.g.,
a /32 prefix granularity means to record the information per
IP address, while a /0 prefix means the total bandwidth
consumption for the whole IP space).

2) Top-down Collapse of Prefixes: We notice that in the
put process the nodes at the top portion of the PFTrie are
frequently traversed. Rather than traversing these nodes one
by one each time, we collapse them into all the IP prefixes
they represent, allowing the sub-trie below each prefix to be
reached by directly indexing an array. Fig. 5 shows an example
of collapsing /24 prefixes into an array (the monitor can
collapse prefixes of other lengths, such as all the /16 prefixes,
similarly). We populate the array with all /24 prefixes that exist
in the PFTrie. For every /24 prefix, the monitor treats the 24

Fig. 5: PFTrie optimization: Collapsing all /24 prefixes into
an array with 224 entries.

bits of the prefix as an integer, use the integer as the index
to directly locate the entry of the array, and have that entry
point to the sub-trie originally below the prefix. So, instead of
traversing 24 nodes of a /24 prefix and then traversing the sub-
trie of the prefix, the monitor can immediately locate the entry
for this prefix in the array, access from the entry the sub-trie
of this prefix, and then traverse the sub-trie as before.

3) Avoidance of Duplicate Traversal: So far, if the PFTrie
has recorded an IP address, when a packet with the same IP
address arrives, the monitor will still run the put process and
traverse the PFTrie, only to find the IP address is already
stored. With n more packets from the same IP address, the
extra overhead will be multiplied by n times.

We introduce a bitmap for each one of M most recently
visited sub-tries. After storing an IP address in a sub-trie, the
monitor will also set the bit in the bitmap corresponding to
this IP to 1, so that the put process for the same IP later
will return very quickly. For example, the sub-trie for prefix
a.b.c/24 can have a bitmap of 28 bits, with the bit at index
d corresponding to IP address a.b.c.d.

If we also need to update the bandwidth consumption
information for the IP address (or its prefix), we will need
to access its leaf node. To still have a speedy put process for
duplicate IP addresses, we replace the bitmap with an array of
pointers, and setting a bit to 1 above becomes inserting into
the array a pointer that points to this leaf node. In the above
example, the pointer at index d will be either null or point to
the leaf node for IP address a.b.c.d (or its prefix).

VI. PATHFINDER PROXY

A. Addressing Design Requirements

The purpose of the proxy is to learn the footprints of the
traffic toward a victim. Since on the same AS-path of the traffic
there can be multiple ASes, when the monitors of such ASes
report the AS-paths of the traffic, the AS-paths reported by
them may overlap. The proxy must determine which AS-path
includes the largest number of ASes. Furthermore, if source-
based traffic footprint is requested, these monitors may also
store and report the same IP address or prefix. The design
of the proxy should resolve the potential conflict between
monitors regarding the same IP address or prefix. Finally, the
proxy’s design should be cost-aware. Since the proxy does not
contact monitors unless requested by the user, clearly the best
operation mode of the proxy is also on demand.

B. Setup

Every PathFinder proxy will make itself available to poten-
tial PathFinder users. If a user needs PathFinder service, it
will register itself at a proxy, including setting up all security
credentials. The user then can send a request to the proxy when
it needs to obtain the traffic footprints of a DDoS victim.

We assume the proxy has a list of PathFinder-participating
ASes (which the proxy can obtain, for example, through a web
page). Further, it knows how to locate the PathFinder monitor
of each AS, as described in Sec. IV-B.

C. Operation

Like any PathFinder monitor, every proxy also operates on
demand. Once a proxy receives a request from a user, it will
verify that the request is authentic and valid, and if so, learn
who the victim is from the request and forward the request
to monitors at PathFinder-participating ASes (or a subset of
them if specified in the request).

If the footprints do not need to be source-based, each
monitor will function in source-agnostic mode and the proxy
will receive PFLogs from each monitor that contain the AS
path from the monitor’s AS to the victim, as well as bandwidth
consumption information if requested. The proxy then adds the
path to a path pool, with two exceptions: (1) If the path is just a
part—i.e., a sub-path—of another path in the pool, the proxy
can ignore this path. (2) Conversely, if a path from the pool
is a sub-path of this path, the latter will replace the former in
the pool. As a result, the proxy will learn a set of AS paths
to the victim, and can return them to the user, together with
the bandwidth information if requested.

However, if the footprints need to be source-based, the
proxy will construct a local PFTrie based on the PFTries it
receives from monitors. Every monitor incrementally transmits
its PFTrie to the proxy; e.g., whenever it can fit newly added
PFTrie nodes into an IP packet or a timer expires, the monitor
will transmit the updates of its PFTrie to the proxy. For each
leaf node of the PFTrie from each monitor, which represents
an IP address or prefix ip that the monitor has captured, the
proxy will store ip in its local PFTrie, following the same
put process described in Sec. V-A. Furthermore, assuming the
monitor’s AS is AS k, the proxy also marks the leaf node
that represents ip with k, in order to indicate the AS-path of
traffic from ip to the victim is the AS-path from AS k to
the victim. However, if ip is already in the local PFTrie, the
proxy will retrieve the marked AS number of the leaf node for
ip, say x, and compare AS k (i.e., the monitor’s AS) with
AS x to see which AS is upstream. If AS k is upstream, the
proxy marks the leaf node with k; if AS x is upstream, the
leaf node continues to be marked with x. We thus always can
obtain the most complete AS-path from ip to the victim.

VII. EVALUATION

A. Goals

We now evaluate PathFinder in terms of the following:
• Benefits of PathFinder for DDoS defense: Since PathFinder
footprints include path and traffic information, any DDoS

defense system that deploys filters inside the network to
discard DDoS traffic can take advantage of the footprints to
make better filter deployment decisions. We build a DDoS
attack and defense simulation to study how PathFinder can
benefit a DDoS defense system and make it more effective.
We look at four different strategies of placing DDoS traffic
filters and show that a DDoS defense system—when utilizing
PathFinder—uses much less resource and achieves a much
higher level of success.
• Speed and Overhead of PathFinder: At the core of
PathFinder are the PFTrie-based operations at each moni-
tor and proxy, particularly the put process. Therefore, we
evaluate the time to store an IP address or prefix ip in a
PFTrie under two scenarios. In one scenario, ip is new
and the PFTrie needs to be updated with a set of new
nodes, including the leaf node that represents ip. In another
scenario, ip is in the PFTrie, so the put process will
check and return the current leaf node that represents ip.
We call these two scenarios put_a_new and put_an_old,
respectively. Furthermore, we evaluate the memory overhead
of the PFTrie at each monitor and proxy when producing
source-aware footprints and the network overhead when
transmitting a PFTrie.

B. Benefits of PathFinder for DDoS Defense

To quantify the benefits of PathFinder for DDoS defense,
we first define the model of DDoS attack and defense, and then
compare the simulation results of a DDoS defense system with
and without PathFinder.

1) DDoS Attack and Defense Model: The DDoS attack
and defense model includes a botnet, an attack victim, a
DDoS defense system, and the PathFinder system. The botnet
contains 100,000 bots, where each bot is at a random tier-3 AS
and has a fixed uplink bandwidth of 25 Mbit/s. The victim can
at most handle 10 Gbit/s incoming traffic. During an attack,
the victim applies the DDoS defense system to filter DDoS
traffic, with or without the help of PathFinder to locate best
locations for filters. We allow only tier 2 and 3 ASes that are
close to the attack sources to deploy filters, as in practice the
ASes close to the victim are subject to link congestion under
DDoS attack (often too late for them to filter the DDoS traffic).

Since the same set of bots tend to take the same paths to
send traffic toward the victim, these bots will no longer be
effective once filters are deployed to filter their traffic. An
intelligent attacker therefore would periodically switch to a
new batch of bots to launch its attack. We define the attack
cycle as the time window for every batch of bots used by the
attacker. On the other hand, upon a newly seen DDoS traffic,
we assume it takes T seconds in total for PathFinder to collect
traffic footprints and also for the DDoS defense system to
place the filters. In this study, we evaluate PathFinder system
under the worst-case scenario where the attack cycle is no
greater than T ; in another words, before the DDoS defense
places filters for the current bots attacking the victim, the
attacker already switches to a new attack cycle with a new
batch of bots.

 1000

 2000

 3000

 4000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

er
 o

f
fi

lt
er

s
d

ep
lo

y
ed

Defense success ratio

no PathFinder, with spoofing
no PathFinder, without spoofing
with PathFinder, filters randomly placed
with PathFinder, filters placed at top congested AS

Fig. 6: DDoS defense with and without PathFinder

2) DDoS Defense Efficacy with PathFinder: We then com-
pare the DDoS defense efficacy without and with PathFinder.
When the DDoS defense does not have help from PathFinder,
it uses the inferred AS-level topology to place filters, with
two cases: 1) there is a 30% chance that a filter deployed
is ineffective due to asymmetric routing on the Internet [10];
2) further with some portion of the bots using IP spoofing,
there is then a 50% chance that a filter will be ineffective.
When PathFinder is in place, we use two AS selection methods
for filter placement with the help of PathFinder: 1) randomly
select an upstream AS; 2) select an AS that belongs to top k
ASes that carry most of the DDoS traffic.

Figure 6 shows results for all four cases defined above. We
see the results of DDoS defense system without PathFinder
performs much worse than both cases when PathFinder is
available. With PathFinder in place, and by applying filters
at top congested ASes (which requires path and bandwidth
information from PathFinder), the victim can survice 90% of
the attack cycles with roughly 500 filters, whereas it takes at
least 3,500 filters for a DDoS defense system to subdue 90% of
the attack cycles if there was no PathFinder. In the case when
the DDoS defense system uses only path information from
PathFinder and places filters randomly at ASes, the system
still uses much less number of filters compared to the two
defense cases without PathFinder.

C. Speed and Overhead of PathFinder

1) Experiment Setup: To evaluate the PFTrie speed and its
memory overhead, we used a desktop with Intel i7-4790 at
3.6 GHz with an 8-MB L3 cache and a 32-GB RAM at 1600
MHz. We implemented the PFTrie in C, and used the Clang
compiler with the optimization level 2 to compile the code.
We also created 50 synthetic traffic traces that contain 150
thousand to 64 million IP addresses; for each size we created
five traces with different levels of source address locality, with
0%, 25%, 50%, 75%, and 100% addresses, respectively, that
belong to the same IP prefix and can be aggregated.

2) Speed of PathFinder (i.e., PFTrie): We compare
PFTrie’s performance against Adaptive Radix Tree (ART) [18]
and the well-known Generalized Prefix Tree [19] (also called
Patricia Trie) under the two scenarios defined in Sec. VII-A.
We use the synthetic traces that contain one to four magnitude

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

: Patricia fails at this point

T
im

e
(m

s
)

of sources

PFTrie
ART

Patricia

(a) put_a_new scenario.

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

: Patricia fails at this point

T
im

e
(m

s
)

of sources

PFTrie
ART

Patricia

(b) put_an_old scenario.

Fig. 7: PFTrie speed.

more IP addresses, in order to evaluate the three different data
structures under stress.

Fig. 7a shows the comparison results under the put_a_new
scenario for storing all IP addresses in a trace as new addresses
into a data structure. For every synthetic trace size ranging
from 160,000 to 64 million source addresses, when storing a
new IP address or prefix, PFTrie always outperforms ART and
Patricia. For example, to store 16 million IP addresses, it takes
more than 1300ms for ART but it only takes around 700ms
for PFTrie. In general, PFTrie spends 50% less time than ART
to store the same number of IP addresses. Even to store 64
million IP addresses, it takes only 2.93s.

Fig. 7b shows results under the put_an_old scenario for
performing 15 million put processes of storing an IP address
or prefix already stored. Here, the time needed by PFTrie is
virtually constant at about 27.0ms, much less than that in the
put_a_new scenario; e.g., we can deduce with 64 million IP
addresses, it would be about 115ms as opposed to 2.93s in
the put_a_new scenario. Moreover, the time is also further
less compared to ART and Patricia, and PFTrie is at least 10
times faster than ART in every case. This speed is because
of the PFTrie optimizations we introduced, including the top-
down collapse of prefixes (Sec. V-B2) and the avoidance of
duplicate traversals (Sec. V-B3).

While the PFTrie operations are a combination of the two
scenarios, from various real-world traces we notice that the
put_an_old scenario is more frequent than the put_a_new
scenario. For example, in the Booter 3 DDoS trace [20][21],
the put_an_old scenario will happen 369 times more than the
put_a_new scenario.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1x10
6

 1x10
7

M
em

o
ry

 u
sa

g
e

(M
B

y
te

s)

of sources

a=0%
a=25%
a=50%
a=75%

a=100%

Fig. 8: PFTrie memory overhead across five different
source profiles. Each profile has a different percentage of
aggregatable addresses (a).

3) Overhead of PFTrie: We are particularly interested in
the memory cost of PFTrie when there are millions of IP
source addresses. We used synthetic traces that include a huge
number of IP source addresses, and evaluated the memory
usage for each number of sources under five different profiles,
as shown in Fig. 8. We can see the logarithm of the memory
cost is basically a linear function of the logarithm of the
number of sources, and overall the memory cost is manageable
under all five profiles. Moreover, a profile with a higher
address locality can have much lower memory cost. This
feature is due to the optimization via bottom-up aggregation of
PFTrie leaf nodes (Sec. V-B1). Because of the tree nature of
PFTrie, the memory cost complexity for storing 2n addresses
in a PFTrie is O(2n) with n levels of nodes, but if it shrinks
to k levels, the memory cost will become O(2k), a reduction
of O(2n−k) times.

We also evaluated the network overhead across 25 different
AS-level Internet topologies, using one million IP source
addresses. For each AS-level topology, we assigned every IP
address to an AS, where the number of addresses assigned
to each AS is proportional to its IP address space size. Fig. 9
shows the network transmission overhead for an AS to transmit
the PFTrie for 1 million source addresses to a proxy. Clearly,
the further away an AS is from the victim, the smaller the
network overhead it introduces. The AS that is the last hop
to reach the victim would see traffic from all addresses, thus
incurring the largest overhead, but only about 3.9MB.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1 2 3 4 5 6+

Bytes

AS-hop counts from the victim

Fig. 9: Network overhead in transmitting PFTries of
1 million source addresses.

VIII. DISCUSSIONS AND OPEN ISSUES

PathFinder is an approach to obtaining the DDoS traffic
footprints at the Internet scale, and we have made many design
choices in order to provide a line-rate, cost-effective, and
deployable solution. Nonetheless, some issues remain to be
addressed due to space limitations:

One obvious issue is IP spoofing. Clearly, nothing would be
affected if a monitor’s mode of operation is source-agnostic,
but if a user requests source-based traffic footprints, the
PathFinder system may learn some source IP addresses that
are spoofed. An attacker may even generate many spoofed
sources to overwhelm every monitor and the proxy of the
user. We point out that even if a source address is spoofed, the
path that the user learns about the source will still be valid,
since the monitor that reported the source was on the path of
the packet with the spoofed source. Furthermore, if the user
notices multiple paths for the same source address or prefix,
the user will know that either a routing change occurred, or
at least some of them are spoofed sources.

We have also assumed that every AS (via its PathFinder
monitor) is willing and able to communicate with any
PathFinder proxy for the common good from DDoS defense.
While we have shown the traffic overhead when a proxy
communicates with every AS is not concern (Sec. VII-C3),
it is likely that this assumption is not true for some ASes due
to incentive or connectivity issues, which we treat as an open
issue out of the scope of this paper.

Another issue is to make PathFinder work for IPv6. In fact,
the design of the PFTrie is independent of the length of an
IP address and works for both IPv4 and IPv6. In the future,
we plan to evaluate its speed and memory cost when handling
millions of IPv6 addresses.

We do not fully discuss the security of PathFinder. We
assume that every node in the PathFinder system must be
authenticated before it can talk to other nodes in the sys-
tem. We also assume that the system employs state-of-the-
art defense mechanisms to protect itself against any security
attacks; for example, a PathFinder proxy can employ a DDoS
defense solution to protect itself and its communication with
PathFinder monitors from DDoS attacks.

IX. CONCLUSIONS

While DDoS attacks have become more frequent and dam-
aging and, once launched, can cause severe damage to services
on the Internet, defense against DDoS attacks has often suf-
fered from the lack of relevant knowledge of the DDoS traffic.
However, it is fairly challenging to grasp the topological nature
of the DDoS traffic while the attack is occurring: the DDoS
traffic often originates from many different locations, follows
various paths to reach the victim, sometimes carry spoofed
source addresses, and can be extremely dynamic. Currently
the best options are various IP traceback or path inference
approaches, but they impose stringent demands to run and
deploy. We fill this gap by proposing the PathFinder system
as a service that a DDoS defense system can use to obtain the
footprints of the DDoS traffic to a victim, including specifying

many details of the footprints such as whether the source
address and/or bandwidth information is needed. In particular,
PathFinder embraces an architecture that not only eases its
deployment in today’s Internet, but also ensures it has a low
cost (e.g., its on-demand model) and is fast to meet the line
rate of the packets it must capture.

REFERENCES

[1] Akamai. (2016) Q4 2016 state of the Internet security report. http://
www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/
global-state-of-the-internet-security-ddos-attack-reports.jsp.

[2] K. York. (2016) Dyn statement on 10/21/2016 DDoS attack. http://dyn.
com/blog/dyn-statement-on-10212016-ddos-attack.

[3] H. Burch and B. Cheswick, “Tracing anonymous packets to their ap-
proximate source,” in USENIX Large Installation System Administration
Conference (LISA), 2000, pp. 319–327.

[4] K. Singh, P. Singh, and K. Kumar, “A systematic review of IP traceback
schemes for denial of service attacks,” Computers & Security, vol. 56,
pp. 111–139, 2016.

[5] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network
support for IP traceback,” in ACM SIGCOMM, 2000, pp. 295–306.

[6] A. Yaar, A. Perrig, and D. Song, “FIT: fast Internet traceback,” in
Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 2, 2005, pp. 1395–1406.

[7] K. J. Argyraki and D. R. Cheriton, “Active Internet traffic filtering: Real-
time response to denial-of-service attacks,” in USENIX Annual Technical
Conference, 2005, pp. 135–148.

[8] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer, “Hash-based IP traceback,” in ACM
SIGCOMM, 2001, pp. 3–14.

[9] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale IP traceback in high-
speed Internet: Practical techniques and theoretical foundation,” in IEEE
Symposium on Security and Privacy, 2004, pp. 115–129.

[10] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang, “On AS-level path
inference,” in ACM SIGMETRICS, 2005, pp. 339–349.

[11] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott, J. Sherry,
P. Van Wesep, T. E. Anderson, and A. Krishnamurthy, “Reverse
traceroute,” in USENIX Symposium on Networked Systems Design and
Implementation, vol. 10, 2010, pp. 219–234.

[12] Cisco. (2016) Cisco IOS IP routing: BGP command reference.
http://www.cisco.com/c/en/us/td/docs/ios/iproute_bgp/command/
reference/irg_book/irg_bgp5.html.

[13] J. Stretch. (2016) JUNOS-to-Cisco IOS/XR command reference.
http://web.archive.org/web/20140114070827/http://packetlife.net/wiki/
junos-cisco-iosxr-command-reference.

[14] Cisco. (2016) Catalyst switched port analyzer (SPAN) config-
uration example. http://www.cisco.com/c/en/us/support/docs/switches/
catalyst-6500-series-switches/10570-41.html.

[15] Juniper. (2016) Example: Configuring port mirroring for local
monitoring of employee resource use on EX series switches.
https://www.juniper.net/documentation/en_US/junos/topics/example/
port-mirroring-local-ex-series.html.

[16] Cisco. (2007) Configuring secure shell on routers and switches run-
ning cisco ios. http://www.cisco.com/c/en/us/support/docs/security-vpn/
secure-shell-ssh/4145-ssh.html.

[17] Juniper. (2015) Configuring SSH service for remote access to the
router or switch. https://www.juniper.net/documentation/en_US/junos/
topics/task/configuration/ssh-services-configuring.html.

[18] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: ARTful
indexing for main-memory databases,” in 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pp. 38–49.

[19] D. R. Morrison, “PATRICIA—practical algorithm to retrieve information
coded in alphanumeric,” Journal of the ACM, vol. 15, no. 4, pp. 514–
534, 1968.

[20] SimpleWeb.org. (2015) Traces. https://www.simpleweb.org/wiki/index.
php/Traces.

[21] J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto, M. Wier-
bosch, L. Zambenedetti Granville, and A. Pras, “Booters - an analysis
of ddos-as-a-service attacks,” in IFIP/IEEE International Symposium on
Integrated Network Management (IM), May 2015, pp. 243–251.

