
Datacomp: Locally Independent Adaptive
Compression for Real-World Systems

Peter A. H. Peterson∗, Peter L. Reiher†
∗University of Minnesota Duluth

pahp@d.umn.edu
†University of California, Los Angeles

reiher@cs.ucla.edu

Abstract—Non-lossy compression can save time and energy
during communication if the cost to compress and send input
is less than the cost of sending it uncompressed. Unfortunately,
compression can also degrade performance; no single method
is always beneficial, and outcomes depend on many factors.
As a result, compression choices in real systems are coarsely
grained and manually controlled, resulting in suboptimal or even
poor performance. Adaptive Compression (AC) systems make
compression choices dynamically to optimize utility. Existing
AC systems are limited in ways that reduce their suitability
for general-purpose computers. Datacomp is an AC system
that operates locally and includes no significant hard-coded
knowledge. Using real-world data, a broad range of environments
and the Comptool “AC Oracle,” we show that Datacomp’s
performance is equivalent or close to the ideal at bandwidths
between 1-100Mbit/s, even when static strategies are suboptimal
or more costly than no compression. While Datacomp struggles to
perform well at 1Gbit/s, understanding why illustrates important
challenges for AC systems and suggests solutions.

I. INTRODUCTION

Compression can improve the efficiency of communication
when data is compressible and bandwidth, not computation,
is the performance bottleneck. Communication cost is a func-
tion of size, which compression can reduce. Additionally,
computers can generally perform many operations during the
time it takes to transmit a single bit[2] over a network, and
decompression is typically cheaper than compression. Thus, if
the input can be compressed quickly and significantly enough,
it can increase the effective throughput of the channel, using
less time and energy than sending the data uncompressed.
However, some data is not compressible and can even expand
when compressed; effort spent compressing it is wasteful.

Furthermore, being compressible does not guarantee that
compression will be profitable, because improving communi-
cation efficiency with compression requires meeting or exceed-
ing size and run time requirements that are situation-dependent
and may not be possible. In other words, the compressor
must be fast and effective enough in the current execution
environment, on the given data and with respect to the I/O
channel in order to save more than it costs. Unfortunately, it is
generally not known a priori if compression will be profitable
on some input with any method in the current execution
and communication environment. A given compressor might
improve throughput in one scenario but degrade it in another if

the data is less compressible, the available bandwidth (ABW)
has increased, or there is less available CPU time.

Due to the risk of degrading performance, most systems
and applications do not compress or they use a specific
method only when it is near certain to improve (or at least
not degrade) performance. If compression is instead under
manual control, it is typically limited to a per-session choice
of on or off, which is suboptimal if conditions are sufficiently
dynamic. Furthermore, even if compression could be enabled
and disabled at will, it would often be impossible for a human
to achieve optimal results due to the frequency of decisions
required. As a result, the status quo captures low-hanging fruit
and generally avoids actively wasting resources, but ignores
many situations that could profit from compression.

Computers excel at high-speed analysis and decision-
making. Adaptive Compression (AC) centers on developing
mechanisms to dynamically choose and apply profitable com-
pression choices on the fly to save resources such as time,
space or energy. AC systems attempt to choose the best
compression method for every situation, with the assumption
that the best “method” may be to not compress at all. By
choosing the best method at every opportunity, AC systems
reap the benefits of compression when they exist, and avoid
losses when they do not.

This paper describes the design and evaluation of Datacomp
– a locally independent AC system for individual, general-
purpose computing devices in realistic environments. While
previous AC systems have achieved significant efficiency
improvements, they have limitations that make their perfor-
mance in general computing environments unclear. In con-
trast, Datacomp uses no remote support, makes no workload
assumptions, includes almost no precomputed or hard-coded
information and makes decisions using a local learning model.

We demonstrate significant improvements in many realistic
scenarios by using Datacomp to perform network transmission
of nine classes of data in a range of environments. Addition-
ally, we show that Datacomp’s strategies are close to the ideal.
These results suggest that the efficiency of general-purpose
computing devices could be significantly improved through the
use of locally independent AC mechanisms like Datacomp.



II. ADAPTIVE COMPRESSION

While compression can often improve throughput, no single
compression method is ideal for all scenarios. As a result, un-
less the workload is sufficiently static, choosing to universally
apply some static method is at best suboptimal and at worst can
degrade performance. Adaptive Compression (AC) systems
attempt to optimize performance by dynamically choosing and
using the best available method at every opportunity. This is
a challenging goal because the best choice depends on many
dynamic, interrelated and hard-to-predict factors.

All AC systems attempt to optimize some value by identify-
ing and applying the best available method for the current op-
portunity. Because of this fundamental similarity, AC systems
share a number of abstract components that we call methods,
monitors, models and mechanisms.

A. Compression Methods

A method is a distinct compression mechanism. Many
different compressors are used by AC systems, including
LZO[17], zlib[1], bzip2[23] and xz[21]. This diversity is due
to differing compression trade-offs and provides meaningful
alternatives for AC decisions. LZO is much faster than gzip but
typically compresses less effectively. Xz can compresses more
effectively than LZO or gzip, but can be slow. One compressor
may provide multiple distinct methods; for example, zlib
supports a “strength level” that changes the balance between
compression and run time. Typically, each AC system chooses
between at least two methods: “null compression” (copying
the data) and one or more actual compressors. Some systems
use multiple compression libraries[24], [20], modulate strength
levels of a single algorithm[13] or both[11].

A common way to describe compression effectiveness is
in terms of Compression Ratio (CR), the ratio of compressed
bytes divided by the input size. The reciprocal is the Compres-
sion Gain (CG) – the amount by which compressed data will
expand when decompressed. When compressing to improve
throughput, another important metric is the Output Rate (OR)
– the rate at which a method emits compressed bytes. 100MB
compressed to 80MB in 1.0 seconds results in a OR of
80MB/s, a CR of 0.80 and a CG of 1.25. In general, the CR
and CG of a particular operation depends on many factors. The
exception is “null compression” (NC), which always achieves
a CR and CG of 1.0 and the maximum output rate, since it
merely copies data.

The available bandwidth (ABW) of an I/O channel is the
rate at which bytes can be transferred. The Effective Output
Rate (EOR) is the rate at which information is being trans-
mitted over a compressed channel regardless of the number of
bytes used. As compression can enable the same information
to be sent using fewer bytes in less time, it can result in an
EOR that is greater than the ABW.

If the ABW is greater than the OR, the EOR for a method
is its OR times its compression gain (OR ∗CG). However, if
the method’s OR is greater than the ABW, then the method’s
rate is limited to at most the ABW. In this case, the EOR is
instead (ABW ∗ CG) – the amount of data that can be sent

over the I/O channel multiplied by the gain specific to the
method used. Combining these two cases, we have:

EOR = min(ABW,OR) ∗ CG (1)

Given that each method has different performance proper-
ties, the goal of AC is to choose the method that will result in
the greatest EOR. However, this is complicated by two main
factors: ABW and input data are often dynamic and the CR
and CG of methods are data dependent.

B. Compression Opportunities

A compression opportunity is the unique set of
performance-determining conditions that exist when an
AC decision must be made, and for which one or more
methods are ideal. Opportunities are determined by the
properties of the data and environment. Properties of the data
affect OR, CR, and CG as compressibility varies by content
and method. More input generally improves CR and OR.

Properties of the environment are also critical because of
the time-sensitive nature of AC. The ABW is the raw rate that
AC tries to effectively increase via compression. As band-
width increases, profiting from AC becomes harder because
transmission costs decrease relative to computation. Execution
environment properties that could affect a method’s output
rate (OR) are also essential, including CPU load, frequency,
number of cores, available memory, etc. Combined, the data
and environment determine the opportunity problem space
for which the best method is the solution. Assuming that all
critical properties of an opportunity are identified, performance
for a compressor in a given opportunity should be constant
because compressor behavior is deterministic.

C. Monitors, Models and Mechanisms

Monitors are the modules responsible for obtaining decision
information, including data and environment properties and
the results of choices. Monitors can be simple (e.g., reading
a value), or complex (e.g., predicting values). AC models
make choices using monitored values as input. Finally, these
components are united by a mechanism that determines the
abstraction layer at which the system operates. Examples
include application-level (libraries [11], [20] or built-in [15]),
remote proxies [8], [19], [18], a Java virtual machine [24],
middleware[14] and the kernel[13]. The mechanism also de-
fines the API of the system and the protocol used to encapsu-
late adaptively compressed data.

D. Related Work

Barr and Asanovic’s influential study[2] showed that (on
their platform) roughly 1,000 computations could be per-
formed on one bit for the cost of sending it across a network.
In practice, computational throughput usually far outstrips I/O
bandwidth. This surplus results in a window of opportunity
within which compression can be used to improve efficiency.

Datacomp is similar in spirit to several previous AC sys-
tems. Knutsson and Bjorkman implemented an early system
that adaptively compressed data in kernel send buffers by



varying the zlib strength level based on the rate that the buffers
were being drained.[13] Jeannot expanded that work in AdOC,
a pipe-based user-level library.[11] Krintz and Sucu built the
Java virtual machine-based ACE[24], which chooses between
multiple methods using a precomputed method comparison
model, recent history and the Network Weather Service[27].
Remote compression proxies[29], [8], [19], [18] can improve
the efficiency of end-hosts by performing compression in
the network. AC systems have also been built into in high-
performance distributed computing middleware[28], [14], [16].
Finally, ACCENT[20] added AC capabilities to an SSL library
using a model that made AC choices while considering the
additional cost of encryption.

Some systems have dependencies that, while appropriate
for their intended use, limit their suitability for the general
computing environment; grid middleware, trusted network
monitors and external computation support can all facilitate
AC, but the average laptop or mobile device cannot depend on
these facilities being available. Furthermore, external depen-
dencies transfer AC costs to other systems rather than directly
improving end host efficiency, which may actually increase
global resource use. Additionally, compression proxies have
other drawbacks: they only improve download throughput
(since the proxy is remote), and they raise security and privacy
concerns due to their access to raw input.[19]

Many systems also rely on hard-coded assumptions or
precomputed models. While efficient, these models reflect
the platform, input, compression methods, system state and
intuition used to create them and may not be accurate in
other circumstances. One approach to estimate CR uses a
table of averages by file extension, but this may not be
accurate for file types with highly variable CRs (e.g., PDFs
and binaries) and requires extensions to be available. Another
common assumption is that it is worthwhile to spend surplus
CPU time on increased compressor “strength,” but in practice
higher strength levels do not always improve CR (and may
reduce OR). The authors of ACE precomputed a method
comparison model based on an observed linear relationship
between the average CR and run-time of their methods on
their platform. However, this approach is not only hardware
and data dependent, but it does not recognize that some
compressors are non-linearly more effective for specific types
of data (see Section V-C). In contrast, Datacomp recognizes
differences in data type irrespective of method or source,
makes no assumptions about relationships between methods,
builds an adaptive model based on the local hardware and
encountered data and generally avoids hard-coded choices
based on intuition.

In addition, some systems were designed or tested in such
a way that it is difficult to estimate their behavior in more
common environments. For example, many previous work-
loads are not very diverse nor are they similar to typical
user data. Several systems were specifically designed for an
intended workload, such as improving throughput for large file
transfers[11] or specific types of data (e.g., VM images[16]).
Some systems have conservative minimum sizes for com-

pression (e.g., 32KB[24], 80KB or 512KB[11] and 2MB or
64MB[16]), which simplifies prediction and improves CR and
OR, but would result in many real-world payloads being
ignored even though they might benefit from AC. In contrast,
Datacomp considers compressing even very small inputs, does
not make assumptions about data characteristics, and was
evaluated using diverse workloads composed of a large corpus
of realistic data in many environmental conditions.

Finally, most AC systems monitor the characteristics of
input in some way. ACE[24] uses what we call the “last
block assumption” (LBA), which assumes that current and
previous inputs are similar. While effective, the LBA offers no
guidance for the first choice (which may be the only choice
for small transfers), can leave the system “one step behind” if
data properties fluctuate, and struggles with long segments of
incompressible data. Other systems compress a sample of the
input to estimate CR and OR,[28], [16] but this is wasteful
if the compressed output is discarded and inaccurate if the
performance of the sampling method is dissimilar from other
methods. In contrast, Datacomp uses a fast non-compressing
function that estimates input compressibility. Along with sam-
pling techniques, our novel mechanism (similar in spirit to
work by Culhane[6]) allows Datacomp to analyze all input,
responding immediately to changes in data compressibility.

III. DATACOMP DESIGN

A. Mechanism

Datacomp’s mechanism transparently performs compression
on behalf of the application via a user-space library providing
dcwrite() and dcread(), function calls which wrap the
familiar POSIX send() and recv() network calls (in their
“blocking” mode). When dcwrite() is called, Datacomp
chooses and executes a compression method on some amount
of input, flushing the compressor to produce all compressed
output, annotates the output with decompression instructions,
and send()s the data. Like previous systems[11], [24],
Datacomp uses separate compression and sending threads to
pipeline the process. To ensure the integrity of the compressed
output, Datacomp blocks until the entire compressed payload
is transmitted. Datacomp then returns to the caller the number
of bytes that were effectively sent (not the number of payload
bytes actually sent). For example, suppose dcwrite() is
called with 47KB of input and Datacomp chooses to com-
press only 32KB, which compresses to 20KB. Datacomp will
send() 20KB but tell the caller that 32KB was sent so that
the caller can re-send the remaining 15KB of input if desired.

Data sent by Datacomp is encapsulated so that the receiving
side can properly decompress it. Datacomp payloads are
prepended by a header of four four-byte fields: a magic number
indicating the start of a Datacomp Frame (DCF), the length
of the uncompressed payload, the algorithm and strength used
to compress the input (two bytes each) and the length of the
compressed payload (which forms the remainder of the DCF).



B. Methods

Datacomp supports arbitrary compressors using wrappers.
The wrapper API takes four parameters: the algorithm family
(e.g., zlib), the strength level (if applicable), how much data
to compress and how many threads to use. This work used
five compressor families providing a broad range of methods:
“null” copies the data (but can vary size and thread count);
LZO[17], a compressor that sacrifices compression ratio for
speed; zlib[1], a ubiquitous and well-balanced compressor;
bzip2[23], a stronger compressor using the Burrows-Wheeler
Transform[26]; and xz[21], an aggressive and resource-hungry
compressor. These libraries do not support parallelism natively,
but Datacomp can parallelize them internally. Rather than
supporting every strength level (which are not always very
different), we supported three levels for each wrapper. For
zlib and xz, these levels correspond to the strengths 1, 6 and
9. For LZO and bzip2, the “strength” parameter respectively
selects algorithm variants and adjusts memory use.

Like other AC systems, Datacomp consumes data in fixed
size chunks to simplify modeling. However, unlike previous
work, Datacomp adaptively selects from five different quanta:
32KB, 64KB, 128KB, 256KB and 512KB. Datacomp also
compresses “odd” sizes; a 40KB input can be compressed
but will be modeled as a 64KB chunk or two 32KB chunks.
Also, unlike some works, Datacomp will consider compressing
inputs as small as 1KB. Payloads smaller than 1KB are left
uncompressed because most algorithms have a practical limit
in the hundreds of bytes below which data will not compress.

C. Monitors

Datacomp monitors four environmental properties: CPU
utilization, CPU frequency, data type (i.e., compressibility) and
available bandwidth. Datacomp obtains CPU load and current
frequency from the /proc filesystem in Linux. To estimate
the available bandwidth (ABW), Datacomp uses ioctl calls
(present in Linux and BSD) that report the amount of data in
the kernel send buffer for the socket. By tracking the sizes and
times of buffer additions and using the ioctl call to measure
drain rates, Datacomp estimates the rate at which the kernel
is actually sending the socket’s data.

1) Data Type Prediction: Datacomp does not estimate data
properties based on context (e.g., file extension or recent
results) or wasteful sample compression. Instead, it uses an
efficient technique for compressibility estimation that we call
“bytecounting” (BC). Examining the distribution of unique
bytes in the input, BC returns a integral value that can be
used as a compressibility estimate. Informally, the BC is the
number of bytes in an input that appear at least as often as they
would if every byte was equally represented. Formally, the BC
is the number of unique bytes that appear in the input at least
threshold times, where threshold = input length/256.

A BC of 1 indicates that virtually the entire file is made
up of one byte and thus should be highly compressible (no
other bytes appeared threshold times). A BC of 127 indicates
that half of all possible bytes appeared “frequently.” Natural
language, sparse files and data with many repetitions have low

Level Load Freq. ABW BC
0 1-33 1-25 >100
1 34-66 26-49 1-768Kbit/s 67-99
2 67-99 50-74 768Kbit-2Mbit/s 34-66
3 100 75-95 2Mbit-200Mbit/s 1-33
4 95-100 20Mbit-200Mbit/s
5 >200Mbit/s

TABLE I
QUANTIZATION LEVELS. ALL COMBINATIONS ARE ALLOWED.

byte counts and tend to be relatively compressible. Conversely,
a high BC suggests “binary” data since text is limited to a
smaller character set. Not only is binary data less likely to
be compressible than text, but because threshold is based on
input length, a high BC also implies a relatively uniform
distribution of bytes, which can enable incompressible data.

In a very loose sense, BC can be thought of as an entropy-
like calculation. But, rather than measuring the information
content of data, it is designed to efficiently predict compressor
performance on real-world data. Calculating BC requires no
heap allocations or logarithms and uses a single integer divi-
sion operation – to compute threshold. Due to these and other
optimizations, BC is roughly twice as fast as LZO on a per-
byte basis. BC can also be used in conjunction with sampling
to further increase prediction throughput. The low overhead
of BC enables Datacomp to analyze all input, allowing it to
quickly respond to changes in the data.

D. Models

Datacomp’s model is based on the notion that the perfor-
mance of every well-defined method-opportunity combination
is constant (see Section II-B). If we can learn the best method
for every opportunity, choosing the best method becomes
trivial. Unfortunately, perfectly determining the current op-
portunity is unrealistic due to the number and the difficulty
of identifying all significant factors. Instead, Datacomp ap-
proximates opportunities by monitoring a small number of
factors that are known to be highly significant. However,
monitoring a small number of factors at high resolution
can become combinatorically overwhelming. Combining 100
levels of CPU load, 100 levels of CPU frequency, 127 levels
for bytecount and 1,000 levels of bandwidth results in almost
1.3 billion unique opportunities. Datacomp copes with this
complexity by quantizing the monitored values, reducing the
number of opportunities recognized to approximately 400.

Quantization makes it feasible for Datacomp to track the
average performance of every event type. When Datacomp
needs to choose a method, it finds the results corresponding to
the current opportunity and chooses the method with the best
average EOR. After using the method, it updates the event
record with the latest results.

Table I shows the quantization levels and their ranges for
Datacomp’s monitors. CPU load is roughly divided into thirds,
with a fourth level reserved for 100% CPU load. Frequency
is divided roughly into fourths, with a fifth level reserved for



95-100% of the maximum CPU frequency. We divided these
ranges relatively evenly to avoid basing divisions on intuition
or specific experiments. The exception to this is the special
“top tier” bin for CPU load and frequency, which we added
because maximum load and frequency states have distinct
performance ramifications. Levels are independent; e.g., one
unique opportunity is represented by load level 1, frequency
3, ABW 4 and bytecount 2.

Because data consisting of a single repeated byte has a byte-
count of 1 and randomly generated (and thus incompressible)
data has a bytecount near 127, we divided bytecount values
below 100 into three roughly equal buckets with one bucket
for bytecounts above 100. The quantization levels for ABW do
not divide the range of bandwidths equally. Instead, they are
similar to common real world network bandwidths: 1-768kbit/s
for slow cellular connections; 768kbit/s-2Mbit/s for fast cel-
lular or slow WiFi connections; 2Mbit/s-20Mbit/s for faster
WiFi or slow LANs; 20Mbit/s-200Mbit/s for common LAN
performance; and 200Mbit/s and above for gigabit LANs.

Quantization creates a tension between complexity and
fidelity. Fewer quantization levels simplify the problem space
by producing fewer discrete combinations, but this loss of
resolution reduces accuracy because dissimilar data points are
more likely to be aggregated in the same bin. On the other
hand, while a greater number of levels (e.g., one-megabit
ABW divisions) might result in better accuracy, it would
definitely increase memory use and required training time.

The database for the model is a set of fixed-size memory-
mapped tables for each opportunity composed of event records
tracking the EOR for each method. This enables persistence
and direct in-memory offset-based access without requiring
read or write system calls. It also enables database persistence.
Each record is composed of three 32-bit unsigned integers: the
average EOR (cached to avoid recalculation), the count of
events and the sum of the count previous EOR values. When
first initialized, the model contains no information, and will
choose any method that has not been used at least twice until
all methods have been used twice in the given opportunity. To
facilitate adaptation and avoid overflows, Datacomp subtracts
the current average EOR from sum before adding the new
result to sum if count has reached 20.

One risk with this approach is that atypical events could
skew the model. To help avoid this, the model occasion-
ally artificially boosts a random record by increasing its
average EOR by 10% – without changing its sum or count.
If the boosted average EOR causes the method to be used, a
new average EOR will be computed incorporating the new
performance data.

Finally, thousands of data points generated during the de-
sign phase suggested that the vast majority of data with a
bytecount of 100 or greater are not very compressible and
thus are best handled using NC. However, “learning” this
would require a long training phase on incompressible data.
Based on the data, we added a shortcut so that regardless
of the environment, Datacomp sends the next 256KB of data
uncompressed when the bytecount is over 100. We felt this

was an acceptable compromise because bytecounting (the
expensive step in adaptation) is still performed every 256KB
and this training shortcut could easily be reversed.

IV. EVALUATION

Datacomp’s primary goal is to improve time and energy
efficiency by increasing effective throughput in realistic tasks
without external assistance or significant hard-coded informa-
tion. Additionally, rather than simply being profitable within
these constraints, our secondary goals are that Datacomp will
not only outperform any static compression method in the long
run but will also approach optimal performance. We can easily
measure relative improvement versus any static strategy, but
evaluating the optimality of AC decisions requires knowing
how much room for improvement exists. Achieving these goals
for general-purpose systems is an added challenge, because
it requires an evaluation that is representative of real-world
workloads, which are numerous and diverse.

A. Environments

The primary experimental environment for this project was
a private gigabit LAN and two personal computers, an In-
tel i7-920-based sender and an Intel i7-820-based receiver.
Hyperthreading was disabled, resulting in four CPU cores
being available for use. Along with their age, this made
the test machines similar in computing power to modern
laptops. We used dummynet[4] on the receiver to control
bandwidth. We performed tests at four bandwidths: 1Mbit/s,
6Mbit/s, 100Mbit/s and 1Gbit/s. To adjust system load,
we created a script, bzip2urandom (B2U), which reads
data from /dev/urandom, compresses it, and writes it to
/dev/null. Because this is such a computation-heavy task,
each thread virtually monopolizes a single CPU core. B2U
also performs a substantial amount of I/O, creating workload
for the kernel as well. We modulated load by performing tests
with zero, two and four B2U processes.

B. Data

To represent a broad range of “typical user data,” we
collected nine different types of data (called “pools”) in three
categories: controlled, uncontrolled, and synthetic. Controlled
data comes from well-known, readily available sources and
was collected in such a way that similar input should be readily
available to others. It includes the executables (434MB) from
an Ubuntu installation (called binaries) and two large personal
mailboxes (called mail) with attachments (inline and Base64
encoded[12]) in the popular one-message-per-file Maildir
format[3] (488MB). Controlled data also includes data from
three web sites, collected using Chaosreader[10] to extract
the components of web pages captured using Wireshark[5] or
tcpdump[25] while surfing with encryption and compression
disabled. Wikipedia data has a large text to graphics ratio
relative to other sites, so it is fairly compressible. Facebook
has a greater proportion of images, and is less compressible
in comparison. YouTube data is primarily lossy-compressed
video, so it is barely compressible. In all cases, a certain



number of megabytes was collected using a deterministic
process: for Wikipedia, random featured articles were loaded
(111MB); for Facebook, a user’s “news feed” was consumed
(154MB); for YouTube, the most popular videos in several top
categories were viewed (210MB).

While the controlled classes consisted of popular and
widely-available data, they were nevertheless selected by us.
To include data from “real users,” volunteers provided us
with two types of “uncontrolled” data. First, web traffic was
captured by five volunteers using the mechanism just described
(User Web, 317MB). Volunteers were discouraged from using
Facebook (which was already collected) or performing sensi-
tive tasks (e.g., banking). Second, four volunteers, all heavy
computer users from a variety of professions, provided virtu-
ally the entire contents of their home directories. From the files
of each user, which primarily contained a mixture of docu-
ments and multimedia, 500MB of files were drawn (User Files,
2GB)[22]. Finally, “synthetic” data includes 100 1MB chunks
of worst-case data (random) drawn from /dev/urandom
and best-case data (zero), which is composed of one repeated
byte.

The data resources in each pool were left in their original
sizes rather than concatenating similar files into a large corpus.
This ensured that Datacomp could not artificially benefit from
the concatenation of many small or redundant inputs into
a larger and potentially more compressible input. Because
Datacomp’s model uses a learning mechanism, each pool was
divided into training and testing sets. These sets were then
sampled in such a way as to mimic eavesdropping on a one-
megabyte transfer of random files from that pool. These 1MB
“file sets” were numbered and saved so that tests on the same
input could be performed in different environments.

C. Experiment Design

drcp is a Datacomp-enabled remote copy utility. Where
drcp would normally use send() and recv(), it instead
uses Datacomp’s dcwrite() and dcsend(). While trans-
ferring the training file sets with drcp, we modulated both
the CPU load and ABW until all methods had been tried at
least twice in each opportunity and performance stabilized.
CPU frequency was dynamically controlled by the kernel.

Next, we made the model read-only. While in normal use
the model would continually learn (i.e., there is normally
no distinct “training phase”), we wanted to make sure that
Datacomp would not unfairly learn how to compress the test
data during encounters with the same file set in different
environments. In the testing phase, we timed 25-50 drcp
transfers of each type of test data within each combination
of CPU load and ABW limit. Datacomp is fully capable of
decompressing input, however, to focus on compress-and-send
performance, the receiver discarded input.

Since most real-world applications use one compression
method (or none), we wanted to quantify the difference
between Datacomp and current approaches. To do this, we
ran tests in matching environments with drcp in a “static
mode” where it used one of NC, LZO or zlib with 512KB

chunks and one compression thread. Apart from consuming
input in 512KB chunks, no bytecounting, monitoring, history
model or any other explicit AC overhead was paid during the
static tests.

D. Comptool and Energy Measurement

The ideal performance and strategy for a given workload
is generally unknown. Thus, while we can show Datacomp’s
ability to improve efficiency by comparing it to static strate-
gies, we cannot – with these tools alone – quantify the
optimality (or error) of Datacomp’s choices and performance.
To provide a best-case scenario against which to compare
Datacomp, we built Comptool – an Adaptive Compression
Oracle. Comptool tries and measures by brute force every
combination of method and opportunity for a given input
and, using a greedy strategy, constructs an event sequence
optimizing some criteria, such as runtime or energy.

Comptool measures time using standard approaches. While
it requires special hardware, Comptool can also use LEAP[7],
a technology that captures high-resolution time-synchronized
component-level energy consumption information. As with
time, LEAP allowed us to determine the compression strategy
resulting in the lowest energy consumption. By comparing the
best strategies for a variety of workloads, we determined that
Comptool’s ideal energy strategy saved only 0.563% more
energy than the ideal time strategy – less than the ∼1%
overhead incurred by LEAP. Because of this (and because
LEAP requires specialized hardware), we used “best time”
as a very good approximation for the “best energy” strategy.

Comptool cannot be an effective AC mechanism due to
its extreme cost, but it can provide a best-case performance
estimate free of adaptation costs. Comptool is written in
Python and is completely separate from Datacomp. Certain
differences mean that Datacomp and Comptool’s absolute
performance in the same circumstances can differ slightly.
(Comptool does not parallelize compression and its bandwidth
throttling mechanism is only virtual.) However, by identifying
the baseline performance of Datacomp and Comptool when
using null compression, we can calculate and compare the
relative difference in performance when using one of the
dynamic or static strategies. Looking at these differences as
improvement percentages allows us to perform a side-by-side
comparison of the potential solutions.

V. RESULTS

The following charts show the relative mean difference
in run time between the specified strategy and NC as the
bandwidth increases from 1Mbit/s to 1Gbit/s, expressed as
a percentage. In other words, y = 0 represents the result
achieved by sending the data without compressing it, y = 50
means that the mean run time of the given method was half
that of no compression and y = −50 indicates that run time
was increased by half (i.e., 1.5 times longer). A y-value of
100 is impossible because it would mean that the method
runtime was 0, while a y-value of −100 indicates that run
time doubled. In addition to null (y = 0), CT indicates the



Fig. 1. Improvement (vs. no compression) by strategy for zero data.

ideal improvement derived by Comptool, drcp indicates the
improvement of Datacomp’s throughput model, and LZO and
zlib indicate the improvement gained by the respective static
strategy. Error bars were computed using the BCa bootstrap
with 20,000 samples and show the 95% confidence interval. A
rough estimate for the run time of NC is sample size/ABW ;
for example, at 1Mbit/s, a 1MB transfer takes on the order of
8s, while at 1Gbit/s it takes approximately 0.008s.1

A. Zero and Random Data

Shown in Figures 1 and 2, Zero and random are best-
and worst-case types useful as bookends for the range of
improvements possible through compression. Zero’s results
should have the highest possible gains. At 1Mbit/s, all non-
null methods reduce run-time by over 99%, reducing runtime
by almost three orders of magnitude. At 6Mbit/s, while all
methods are well above 90%, we begin to see that zlib, LZO
and drcp lose ground to CT. LZO and drcp’s closeness
suggests that Datacomp is largely using LZO but that it is just
not as efficient as CT’s idealized behavior. (We did not track
Datacomp’s specific choices during testing in order to avoid
hurting performance.) At 100Mbit/s, while CT still manages
to improve by 99%, drcp and LZO fall to ∼90% and zlib
to ∼71%. At 1Gbit/s, all methods are less profitable; zlib
improves by only 10%, LZO and drcp improve by 67-71%
and CT falls to 96%.

These results establish several trends that recur throughout
the results. First, most methods are generally equivalent at
1 and 6Mbit/s. Next, although it can still be profitable, zlib
is rarely the best choice at 100Mbit/s and is never the best
choice at 1Gbit/s; instead, it is often worse than NC at these
ABWs. Third, Comptool always performs extremely well and
often squeezes out statistically significant benefits at 1Gbit/s.
However, it is important to remember that Comptool’s results
only include compression and transmission time – no AC
overhead is included. Finally, drcp and LZO are sometimes
able to perform well at 100Mbit/s, but are unable to match
Comptool at 1Gbit/s. Nevertheless, they can still improve
performance over NC if the data is sufficiently compressible.

1Variance is introduced by implementation issues (e.g., dummynet throttling
and software or networking overhead).

Fig. 2. Improvement (vs. no compression) by strategy for random data.

Figure 2 shows the results for random data. Because the
data is incompressible, we expect no improvement from any
technique – breaking even is the best case. CT does this
at all bandwidths, showing that it correctly chooses NC. In
contrast, even at 1Mbit/s, drcp, LZO and zlib are respectively
0.008%, 2% and 1.5% slower than NC. LZO and zlib are
penalized because they perform compression even though
there is no possible benefit. drcp is penalized 0.008% at
1Mbit/s because, even though it correctly chooses NC, it must
still pay adaptation costs, such as bytecounting.

The value of compression decreases as ABW increases (per
Equation 1) because all compressors require CPU time and
higher ABW means less time to compress. This effect is
most visible for incompressible data, which shows penalties
even at low bandwidths because there is no benefit to offset
any costs. However, this occurs even for compressible data,
because even the fastest compressor will eventually become
a bottleneck if bandwidth increases enough. While drcp
does not compress random data, it still pays the cost of
bytecounting. This results in a loss of ∼4% at 100Mbit/s and
∼10% at 1Gbit/s.2 Nevertheless, drcp still outperforms static
strategies at 1Gbit/s (where LZO and zlib respectively cost
∼72% and ∼169%) because bytecounting prevents drcp from
wasting even more resources.

B. Wikipedia, Facebook and YouTube Data

Results for Wikipedia (WP) data are shown in Figure 3,
where at 1Mbit/s and 6Mbit/s, CT, drcp, LZO and zlib
improve performance by between 60 and 70%. For WP data
at 100Mbit/s, CT, drcp, and LZO achieve around 50%, while
zlib is clearly suboptimal, improving throughput by only 16%.
At 1Gbit/s, CT predicts potential improvements of ∼28%, but
drcp and LZO are only able to break even. At the same time,
zlib more than doubles the run time of NC (∼-134%).

Facebook performance (Figure 4) is similar, but with less
overall improvement owing to less compressible data. At
1Mbit/s and 6Mbit/s, all methods are statistically similar,
improving by 33-40%. At 100Mbit/s, CT, drcp and LZO
reduce run time by 16-27%, while zlib increases runtime by

2Database access and other AC costs are much smaller than the bytecount-
ing cost.



Fig. 3. Improvement (vs. no compression) by strategy for Wikipedia data.

Fig. 4. Improvement (vs. no compression) by strategy for Facebook data.

20%. At 1Gbit/s, CT estimates a potential 14.3% improvement.
While drcp costs 7% (due to bytecounting costs and FB’s
lower compressibility), this penalty is much less than LZO
(43%) and zlib (176%).

Results for YouTube (YT) data are shown in Figure 5.
Over all bandwidths, CT’s analysis estimates a potential im-
provement of 1.3-2.4% because, unlike random, YT is slightly
compressible. As a result, at 1Mbit/s and 6Mbit/s, drcp,
LZO and zlib manage to break even with NC. However, at
100Mbit/s, drcp still manages to break even, but LZO and

Fig. 5. Improvement (vs. no compression) by strategy for YouTube data.

Fig. 6. Improvement (vs. no compression) by strategy for mail data.

zlib lose ∼21% and ∼44%. At 1Gbit/s, drcp loses 5% to
bytecounting – much better than LZO (-69%) or zlib (-178%).

Looking at these three types of data, we see that the best
static choice (NC, LZO or zlib) depends on both the data
and bandwidth – no single method is always ideal, and some
choices are very costly. In contrast, Datacomp’s dynamic
performance is statistically similar to Comptool’s analytically
derived result for 1Mbit/s through 100Mbit/s. While Datacomp
can cause a small loss at 1Gbit/s, there are potential solutions
to this issue and it nevertheless outperforms static compression
methods like zlib and LZO (See Section VI).

C. Mail and Binaries

Needed at a time when not all I/O channels were “8-bit
clean,” Base64[12] encoding represents binary data using 64
printable characters, such as [A-Za-z0-9+/]. Because Base64
encodes a sequence of three 8-bit bytes of input as four 7-bit
bytes (which are stored as 8-bit bytes in modern systems), it
expands data by approximately 25% without adding informa-
tion and is thus always compressible, even if the original input
was random. However, compression performance on Base64
data varies significantly by method. In particular, while CT,
drcp and zlib all manage to improve performance by 28-
35% for mail at 1Mbit/s, LZO only breaks even with NC.
At 100Mbit/s, even though drcp manages to improve perfor-
mance by ∼10%, zlib and LZO lose 29% and 23%.3 Similarly,
although binaries are also generally quite compressible, zlib’s
output rate is much lower for binaries than for other data types.
As a result, even though under zlib the entire binaries pool
has a CR of 0.41, zlib loses 246% at 1Gbit/s – nearly 70%
worse than its 1Gbit/s performance on random data.

These results are interesting for a number of reasons.
They show that even though LZO is fast in general, it is
not always a “safe” choice (or profitable) for compressible
data – even at or below 100Mbit/s. Additionally, sometimes
a particular compressor is unable to effectively compress
data although it is compressible by other methods; where
gzip -6 achieves a CR of 0.68 on a concatenation of mail
input, LZO only achieves 0.92. The zlib results for binaries
show that while random data may be the worst case from
a compressibility perspective, it is not necessarily the worst

3drcp’s results at this bandwidth are likely due to parallelization.



Fig. 7. Improvement (vs. no compression) by strategy for binary data.

case from a throughput perspective, a fact that is critical
for AC choices. Comparing LZO and zlib’s results for mail,
Facebook, YouTube and Wikipedia, we also see that LZO’s
improvement percentage is not predictable based on zlib’s
performance alone. For instance, while zlib’s improvement
at 1Mbit/s for Facebook (39%) and mail (35%) are similar,
LZO’s results (33% for Facebook and 0% for mail) are very
different. Also, while LZO typically becomes more profitable
than zlib somewhere between 6Mbit/s and 100Mbit/s, the
ABW and improvement percentage at which this occurs varies
significantly by input type. These conclusions all highlight the
importance of considering data type for AC decisions.

While drcp’s performance on mail between 1Mbit/s and
100Mbit/s is equivalent to Comptool’s analytic “best,” it makes
a significant misprediction at 1Gbit/s, resulting in a loss of
nearly 64%. This is considerably worse than the expected
bytecounting loss at 1Gbit/s of ∼10% (Figure 2), so we
know that drcp’s model is erroneously choosing to compress.
Similarly, while drcp performs well on binaries between
1Mbit/s and 100Mbit/s it makes a significant misprediction
at 1Gbit/s, losing nearly 53%. Fundamentally, these errors are
caused by Opportunity Aliasing in Datacomp’s learning model.

Opportunity Aliasing (OA) occurs when significantly dif-
ferent opportunities (see Section II-B) are treated as a single
group during training or use, as through quantization. For
example, in this work, bytecount is divided into four levels to
reduce model complexity, resulting in a range of about 33 byte-
count values per level (Table I). Aliasing can also occur prior
to quantization if monitor resolution is too low. For example,
it is possible to construct two files with identical bytecounts
but different CRs. Like adaptation costs (e.g., bytecounting),
the deleterious effects of OA increase with bandwidth for
two related reasons: fewer compression strategies are able to
improve performance and mistakes become more costly.

Unfortunately, some amount of Opportunity Aliasing is
unavoidable when estimates, rounding, statistical summaries
or quantization are used. Dynamic learning mechanisms are
one way to mitigate the effects of aliasing. Had drcp been
allowed to learn during testing, the pathological combina-
tions of LZO+mail and zlib+binaries should have quickly
reduced their average EOR as recorded in the model, resulting
in more effective methods being used. Another method to

minimize aliasing might be to select and adjust quantization
levels dynamically, which could result in outlier types being
treated individually. Finally, aliasing, like bytecounting cost,
is most visible at higher bandwidths, because profit margins
are thinnest and mistakes are more costly. These errors would
not have occurred if drcp did not compress if the ABW was
above some local limit (see Section VI).

D. Other Tests
Performance was similar for the data pairs User web and

Facebook, and User Files and YouTube. This is presumably
due to similar compressibility; User Files contains a large
amount of compressed data relative to uncompressed data
(like YouTube) and modern websites include a large amount of
compressible text, including markup, stylesheets and scripting
(like Facebook). While not shown due to space constraints,
drcp coped well with varying levels of CPU load generated
by B2U [22]. However, B2U not only heavily loaded the CPU
but also decreased I/O throughput (likely due to the large
number of I/O requests). For example, without B2U drcp lost
64% on mail data at 1Gbit/s, but broke even in that scenario
with four B2U processes. This could be due to drcp correctly
modeling the effect of CPU load, but throughput measured
during the test was about four times lower with four B2U
processes. Since lower ABW makes AC improvement easier,
it is difficult to separate the effect of CPU contention generated
by B2U from the reduction in overall throughput.

E. Future Work
Datacomp as described is a foundation for future develop-

ment. Datacomp’s lookup table model and quantization levels
are somewhat ad hoc and naı̈ve, chosen as a first approach
due to their simplicity and efficiency. However, Datacomp’s
methods, monitors, models and methods are all changeable.
Enhancements to its model, such as increasing the granularity
of its quantization, a sensitivity study for quantization factors,
dynamic quantization, or a more traditional machine learning
approach could improve accuracy and robustness. If they can
be accurate and fast enough, they may be able to improve per-
formance and improve efficiency. Similarly, we may be able to
improve Datacomp’s compression choices and compressibility
estimation by including compressors faster than LZO, such
as Snappy[9] or by comparing bytecounting against optimized
entropy-based estimation approaches.

Improvements to existing experiments are also planned,
including a CPU contender that does not make I/O requests
and potentially an I/O-only contender. The impact of receiver-
side decompression is also important to explore. New types
of experiments and environments are planned, including com-
parison with existing remote copy tools that incorporate com-
pression and evaluation in mobile, embedded and/or sensor
environments where conditions can change rapidly and effi-
ciency is critical.

VI. CONCLUSION

Datacomp is an Adaptive Compression system that im-
proves the throughput of network communication by choosing



and using the best compression methods for every opportunity.
Datacomp is designed to be useful for devices like laptops
and smart phones, so it performs its work locally, without
precomputed models or remote support. At 1-100Mbit/s the
performance of Datacomp’s adaptive strategy is always either
statistically similar or very close to the Comptool oracle’s
estimate. Our results also show that no single compression
method is optimal; in some test, using a fixed method is either
significantly suboptimal or costs more than not compressing.
At 1Gbit/s, the current version of Datacomp generally fails
to break even because any per-byte adaptation costs will
eventually be unrecoverable as bandwidth increases. Potential
solutions to this problem include disabling analysis and falling
back to “no compression” at higher bandwidths.

Unusually poor performance by LZO on mail and by zlib on
binary data shows that relationships between methods do not
hold across all data. Datacomp does not assume relationships
between methods, but it does assume that opportunities are
well-defined and thus that method performance for an Oppor-
tunity will be consistent. Unfortunately, due to Opportunity
Aliasing (OA) and decreasing profits at higher bandwidths,
the current version makes costly mistakes for these data types
in gigabit scenarios. This highlights the need for improved
opportunity modeling. Dynamic approaches for adjusting the
number and divisions of quantization levels or using multiple
data characterization methods could improve the accuracy of
each “bucket,” reducing OA. Of course, more monitors and
more complicated modeling could increase overhead.

Finally, while Datacomp performs well across a broad range
of realistic types of data and bandwidths, more varied tests are
necessary to show Datacomp’s utility. Tests with dynamic data
types and environmental conditions could show Datacomp’s
flexibility, and tests with Datacomp-enabled versions of real-
world software would demonstrate feasibility. In addition,
Datacomp may be able to improve the general efficiency of
other distributed environments, such as office LANs, server
farms, sensor networks or even cloud computing environments.

In summary, compared to any static strategy (including
not compressing) Datacomp improves efficiency and perfor-
mance in a wide range of environments on realistic data
without requiring precomputed models or external support.
At 100Mbit/s. where compression is often disabled to avoid
degrading performance, Datacomp reduces transfer time of
Wikipedia data by an average 33% more than zlib and 49%
more than choosing not to compress. For mail, Datacomp
improves runtime by 10% at 100Mbit/s while LZO and zlib
degrade it by 23% and 29%. For worst-case data at 100Mbit/s,
Datacomp loses only 4% while LZO and zlib lose 24% and
44%. While there is room to improve, these results show that
Datacomp has significant potential for improving the efficiency
of real-world computer systems.

VII. ACKNOWLEDGMENTS

This work was supported under NSF grant CNS-1116898.
We sincerely thank the anonymous reviewers for their thought-
ful and constructive criticism.

REFERENCES

[1] ADLER, M., AND ROELOFS, G. zlib home site. http://www.zlib.net.
Accessed 07/14/2014.

[2] BARR, K., AND ASANOVIC, K. Energy-aware lossless data compres-
sion. ACM Trans. Comput. Syst. (2006).

[3] BERNSTEIN, D. J. Using maildir format. http://cr.yp.to/proto/maildir.
html. Accessed 06/07/2013.

[4] CARBONE, M., AND RIZZO, L. Dummynet revisited. ACM SIGCOMM
Computer Communication Review (2010).

[5] COMBS, G. Wireshark – go deep. http://www.wireshark.org/. Accessed
06/07/2013.

[6] CULHANE, W. Statistical measures as predictors of compression
savings. The Ohio State University (Undergraduate Honors Thesis)
(2008).

[7] GOOGLE, INC. Data compression proxy - Google chrome mobile. https:
//developers.google.com/chrome/mobile/docs/data-compression. Ac-
cessed 06/07/2013.

[8] GOOGLE, INC. Snappy by google. http://google.github.io/snappy/.
Accessed 04/28/2016.

[9] GREGG, B. Chaosreader. http://chaosreader.sourceforge.net/. Accessed
06/07/2013.

[10] HOVESTADT, M., KAO, O., KLIEM, A., AND WARNEKE, D. Evaluating
adaptive compression to mitigate the effects of shared i/o in clouds. IEEE
Internation Parallel & Distributed Processing Symposium (2011).

[11] JEANNOT, E. Improving middleware performance with AdOC: an
adaptive online compression library for data compression. 19th IEEE
International Parallel and Distributed Processing Symposium (2005).

[12] JOSEFSSON, S. RFC 4648 - the base16, base32, and base64 data
encodings. http://tools.ietf.org/html/rfc4648. Accessed 07/15/2014.

[13] KNUTSSON, B., AND BJORKMAN, M. Adaptive end-to-end compres-
sion for variable-bandwidth communication. Computer Networks (1999).

[14] MOTGI, N., AND MUKHERJEE, A. Network conscious text compression
system (NCTCSys). Proceedings of the IEEE International Conference
on Information Technology: Coding and Computing (2001).

[15] NICOLAE, B. On the benefits of transparent compression for cost-
effective cloud data storage. Transactions on large-scale data-and-
knowledge-centered systems III (2011).

[16] OBERHUMER, M. F. X. J. oberhumer.com: LZO real-time data com-
pression library. http://www.oberhumer.com/opensource/lzo/. Accessed
07/07/2013.

[17] OPERA SOFTWARE. Opera help: Opera turbo. http://help.opera.com/
Linux/10.60/en/turbo.html. Accessed 06/07/2013.

[18] PANDYA, G. Full disclosure: Nokia phone forcing traffic through proxy
(mailing list). http://seclists.org/fulldisclosure/2012/Dec/95. Accessed
06/07/2013.

[19] PARK, K. W., AND PARK, K. H. ACCENT: Cognitive cryptography
plugged compression for ssl/tls-based cloud computing. ACM Transac-
tions on Internet Technology (2011).

[20] PAVLOV, I. LZMA SDK (Software Development Kit). http://7-zip.org/
sdk.html. Accessed 07/07/2013.

[21] PETERSON, P. A. H. Datacomp: Locally Independent Adaptive Com-
pression for Real-World Systems. PhD thesis, The University of
California, Los Angeles, 2013.

[22] SEWARD, J. bzip2: Home. http://www.bzip.org/. Accessed 06/07/2013.
[23] SINGH, D., PETERSON, P., REIHER, P., AND KAISER, W. J. The Atom

LEAP Platform For Energy-Efficient Embedded Computing: Architec-
ture, Operation, and System Implementation, 2010.

[24] SUCU, S., AND KRINTZ, C. Adaptive on-the-fly compression. IEEE
Transactions on Parallel and Distributed Systems (2006).

[25] TEAM, T. T. Tcpdump/libpcap public repository. http://www.tcpdump.
org/. Accessed 04/28/2016.

[26] WHEELER, M., AND BURROWS, D. A block-sorting lossless data
compression algorithm. DEC Systems Research Center (1994).

[27] WISEMAN, Y., SCHWAN, K., AND WIDENER, P. Efficient end to end
data exchange using configurable compression. ACM SIGOPS Operating
Systems Review (2005).

[28] WOLSKI, R. Dynamically forecasting network performance using the
network weather service. Cluster Computing (1998).

[29] XIAO, Y., SIEKKINEN, M., AND YLA-JAASKI, A. Framework for
energy-aware lossless compression in mobile services: the case for e-
mail. IEEE International Conference on Communications (2010).


