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Abstract—Protecting data from accidental loss or theft is
crucial in today’s world of mobile computing. Data Tethers
provides flexible environmental policies, which can be attached
to data, specifying security requirements that must be met
before accessing that data. Data Tethers uses fine-grain data
flow tracking to maintain these policies on derivative data. This
is implemented by dynamic recompilation of legacy applications
without the need to recompile from source. We demonstrate the
system’s feasibility with microbenchmarks that show individual
component performance and benchmarks of real user applica-
tions like word processors and spreadsheets.

I. INTRODUCTION

As computing devices become smaller and more mobile,
data loss due to physical loss of a device becomes more
and more of an issue for individuals, companies, institutions,
and government agencies. Hundreds of thousands of sensitive
records can be lost instantly when a laptop disappears from a
coffee shop or a flash drive falls out of a bag.

Many organizations respond to this problem by mandating
full-disk encryption for portable devices. While full disk
encryption is useful in some cases, it does not help when a
running laptop is stolen, or when the password that unlocks
the encryption is weak. It also offers no mechanism to protect
data that is sent over the network, or copied to non-encrypted
storage devices.

In this paper, we describe Data Tethers (DT), a system that
provides better control of information leakage by attaching
environmental policies to data to specify conditions under
which the data is safe from leakage. Data is stored encrypted,
and is decrypted on access, only when the environment is
deemed safe. When the environment is unsafe (e.g., when a
laptop leaves a secure work environment), we remove sensitive
data by encrypting it and destroying the key. Keys are stored
remotely, and only given to the local machine when it can
prove the environment is secure.

One issue with systems of this type is that it is difficult
to insure that all copies of the data have the proper policy
attached. Programs may make temporary copies or backups.
Users may copy or cut and paste between files. Coarse
grain solutions like attaching all policies associated with all
data in use by the application result in policies attached to
configuration or other unrelated files, over time rendering the
system useless.

Dynamic information flow tracking (DIFT), a traditional
solution for this problem, attaches a label to data and tracks all

applications that touch the data, reattaching the policy when
the data persisted. We use dynamic code rewriting techniques
that work on arbitrary executables to implement a DIFT system
to track labels at the word level. Thus, policies are applied only
to copies or derivatives of data that should not be leaked.

II. SYSTEM DESIGN

A. Threat Model
The DT system is design to protect data in the event that

a portable device is stolen by external attackers. We assume
that the attacker has full access and control of the device,
but cannot replicate or spoof the environment the device was
designed to run in. Thus, it is not designed to protect against
attackers internal to the organization who could conceivably
operate the device in an acceptable environment. DT is built
on top of existing access control, not as a replacement, and
we rely on this to provide security for internal users.

We also assume that rightful users are non-malicious, and
are not attempting to exfiltrate data or bypass the system.
DIFT systems are, at best, always subject to covert channels,
even such trivial ones as taking photos of the screen, and in
the absence of special languages, cannot be made completely
secure from leaks. The role of the DT DIFT system is to
provide a mechanism to keep track of secure data in the
system for clean up and correct labeling when persisting,
and is designed to operate only in a safe environment. When
the environment is unsafe, the policy enforcement mechanism
should remove access to the data, and the DIFT system will
never be used.

For similar reasons, we do not consider the case where the
attacker steals the device, modifies it, and returns it to the
owner. While we do verify that the operating system has not
been tampered with on boot, regular user applications may
be rewritten to leak information once the machine is back
inside the safe operating environment. In this situation, the
user should clean and reinstall the software on potentially
compromised machines.

Another assumption we make is that the policy attached to
the data is sufficient to detect that the current environment is
safe in a timely manner. While secure data is always written
to disk encrypted, it can be unencrypted in memory when the
environment is safe. While DT cleans up secure data extremely
quickly when an unsafe environment is detected, the transition
from safe to unsafe cannot be detected instantaneously. This



transition interval is a window of attack, particularly for
physical attacks such as cold boot. Proper selection of policy
to minimize this window is essential.
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Fig. 1. Data Tethers high-level architecture.

B. Overview
The DT system is composed of three major components

which can be seen in Figure ??: the policy server, the
policy monitor, and the dynamic recompiler. The policy server
is an application that runs in a secure location and stores
policies and keys for the data. The policy monitor runs on
the local machine, monitoring environmental conditions, and
handling communication with the policy server. The dynamic
recompiler also runs locally and instruments applications that
use tethered data. OS modifications support efficient tracking
of data and handle policy violations.

Sensitive data is labeled with tags. When a user application
reads this data from the disk, network, etc., the OS detects
that tethered data is being accessed. If the relevant policy is
not currently being monitored, the policy monitor retrieves the
policy from the policy server and verifies that the policy condi-
tions are met. If so, the policy monitor retrieves the encryption
key for the policy from the remote policy server, passes this
key to the operating system, and adds the policy to the list of
currently monitored policies. The operating system starts the
dynamic recompiler for the application accessing the data. The
dynamic recompiler adds code to the application to track the
data labels. Labeled data written to a file by the application
is encrypted with the proper encryption key and tagged with
the policy ID. The policy monitor periodically reevaluates the
policy at policy-specified intervals. When a violation occurs,
it notifies the operating system, which suspends all processes
using affected data, encrypts that data, and destroys the local
encryption keys.

III. IMPLEMENTATION

A. Platform
Our target platform is primarily single-user machines, par-

ticularly laptops and other portable devices which periodically
leave the secure office environment. DT limits encryption
and special handling to tethered data only, minimizing its
performance impact. Operating system files, shared libraries,

executables, and other files containing non-user data generally
do not have policies attached, though it is not precluded for
special cases where this is desirable.

B. Attaching Policies to Data
Policies are attached to data in three ways, depending on

the data’s state. First, we prepend files with a unique 256-
bit marker followed by one or more policy IDs for the data
contained in the file. For network streams, policy-controlled
segments begin with a unique 256-bit marker, followed by a
start tag that includes one or more policy IDs, followed by
data in encrypted form, and closed with an end tag. Third,
data in user space memory is labeled at the word level, with
one word of label per data word. Each bit of the label indicates
the presence/absence of a particular policy, which limits the
number of policies per process; but for most cases this is
sufficient and is similar to previous work [?], [?], [?], [?],
[?]. Labels are stored in the user process’s address space, so
no switch to privileged mode is required to propagate labels.

C. Policy Propagation
Policy labels must be propagated whenever the data is

copied. The dominant previous approaches are specialized
languages, specialized hardware, and dynamic code rewriting.
While recent research has focused on specialized languages
or hardware due to the perceived high cost of dynamic
recompilation, a primary goal of DT was to demonstrate that
this approach was practical in a real computing environment.
Thus, we could not rely on special hardware or expect that
every application be rewritten and proven correct, given the
wide range of user applications available; nor was limiting
the user to secure applications desirable.

With the dynamic rewriting approach, we attach to a running
process and add instructions into the executable, augmenting
load, store, and arithmetic operators with instructions to copy
or combine labels. Rather than creating our own code to
perform dynamic rewriting, we use the Dyninst library [?].

While running instrumented code can be costly, we vali-
dated two assumptions that make the approach feasible. First,
our target platform is personal computers and user appli-
cations. Most of these applications use small percentage of
a modern computer’s processor time. Multiplying this small
percentage by a factor of four, five, or even ten will not
result in a noticeable degradation of the system. Second,
for many of these applications, much of the code never
touches protected data, but instead deals with rendering menus,
buttons, animations, etc. By carefully identifying portions of
the code that manipulate the data of interest, we can limit the
impact of the instrumentation. There are few references for
exactly how much processor time the average user application
takes, or what percentage of instructions operate on actual user
data, but we show in our performance results (Section ??) that
for several representative applications, our assumptions hold.

Policy data must be stored in memory, preferably in user
space to avoid switching between user and kernel mode. We
store labels at the word level, with one label word for every



word of controlled data. These labels are stored in “shadow
pages” in user space memory. Shadow pages are only allocated
for pages that actually contain labeled data.

Applications have two types of data flow. The first is explicit
flow which includes loads, stores, arithmetic operations, etc.,
where data is directly combined or moved from one memory
location to another. The second is implicit flow, where infor-
mation is transferred by the control flow of the program. It is
impossible to prevent certain types of information leakage via
implicit data flow without the use of special languages that can
guarantee noninterference; i.e., that we make no assignments
to low security variables inside conditional clauses controlled
by high security variables [?], [?]. However, for our threat
model, information flow tracking never takes place in an
unsecure environment.

D. Taint explosion
The issue of taint explosion has recently been a topic of

discussion in papers such as [?] or [?]. While DT is not
immune to taint explosion, it is largely unaffected by it. We
are focused on short lived user applications such as word
processors rather than longer running applications like web
servers or databases. Also, since the operating system itself is
aware of labeled data, operating system data structures do not
become tainted, spreading it to other processes.

E. The Data Barrier Concept
Policy-controlled data in the DT system exists either in

an encrypted, packaged form or unencrypted and labeled
in process memory. Conceptually, we create a data barrier
around a process, with any data crossing this barrier being
converted from one form to the other. Because various devices
use different interfaces in the Unix kernel, we implement the
data barrier in different ways for different devices. For disks,
we integrate at the VFS level, allowing us to be agnostic to the
file system. For the network, we augment the SockFS interface,
which is just above the transport layer, allowing us to send
tethered traffic over any transport. Some types of peripherals
are excluded from the barrier for practical reasons, such as the
video or sound card.

F. Environmental Monitoring
DT specifies environmental conditions under which data

is accessible. These may be security requirements such as
the presence or absence of software such as virus scanners,
some types of user identity verification, location, or almost
any other measurable status. Due to the flexibility of policies,
the policy monitor accepts pluggable modules, which are run
in a sandbox, that can be downloaded when a particular policy
element needs to be verified. Each policy element specifies the
granularity of detection it requires, in terms of both the length
of time between status checks and the length of time a vio-
lation may be tolerated. While many policy elements require
strict enforcement, others may not, for usability reasons. The
policy monitor is responsible for both initial verification that
the system’s state satisfies the policy and for notifying the
system when environmental changes invalidate a policy.

G. Cryptography

Keys are stored permanently on the remote policy server,
and are delivered to the policy monitor only on receipt of a
signed certification of the system state, including an attestation
that the operating system and DT components are uncompro-
mised. Keys are stored only in kernel memory on the DT
machine, never on disk, and are destroyed on notification of a
policy violation or on shutdown, suspend, or crash. Data may
be subject to multiple policies, in which case it is encrypted
sequentially with all applicable policy keys, in numerical order
by policy ID.

H. Policy Language

DT policies are written in an XML-based language. Each
policy in our language begins with the policy ID, followed a
list of modules and required parameters for those modules to
allow access. Modules implement testable conditions, such as
location, time of day, or user identity and may be combined
in AND/OR relationships. The polling interval specifies how
often the policy should be checked.

I. Policy Monitor

When a policy is first encountered by the operating system,
it sends a verification request to the policy monitor for the
policy ID. The policy monitor then requests the policy from
the remote policy server, downloads any modules necessary to
verify the policy, verifies that the current system state meets
the policy’s requirements and sends a signed attestation of this
to the remote policy server. The policy server forwards the
decryption key to the policy monitor, which hands the key to
the kernel for data decryption. The policy monitor then begins
monitoring the system state at the intervals prescribed in the
policy. If the state becomes inconsistent with the policy, the
monitor notifies the kernel which begins the cleanup process.

Several modules have been written to test various environ-
mental conditions including time of day, elapsed time, and
location. The most complex is the location monitor which uses
a remote server to determine if the client machine is inside a
local network.

J. Policy Violation

When a policy is violated, the kernel suspends all processes
affected by the policy change and encrypts their affected
memory. After it deletes the encryption keys for the violated
policy from memory, it flushes any devices, such as the video
or sound card, that have had labeled data written to them.
We encrypt swapped pages containing labeled data with the
appropriate keys, so once the keys are destroyed these pages
are secure. Processes that use encrypted data are suspended to
disk.

IV. PERFORMANCE

We break the cost of running instrumented applications
down into several costs: rewriting code, running instrumented
code, file system and network changes, extra memory pages,
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Fig. 2. Microapplication Benchmarks.

and watch points. We also evaluate the speed of cleanup fol-
lowing a policy violation. The machine used for our evaluation
was a virtual machine hosted on a Sun T2000 server with an
ULTRASparc T1 processor. Sixteen cores were allocated to
the VM, with each core approximately as fast as a 1 Ghz
Pentium 3 processor.

A. Correctness
While the correctness of an implementation is difficult

to verify, we tested multiple cases, ranging from copying
data from place to place in memory to combining data with
multiple policies in various ways. All of the performance
benchmarks discussed in the following sections were also
checked for correctness. In all cases file labels were correct.
We also verified that data with no policy attached was written
unencrypted when the writing process had policy-controlled
files open, and that data and keys were correctly cleaned
up when policies were violated. We plan to investigate other
methods of correctness verification.

B. Costs of Rewriting Code
The cost of rewriting code is low. The largest cost is

Dyninst’s initial parsing of the in-memory image of the
application, which depends on the size of the application. The
largest application tested, OpenOffice Writer, was around 100
megabytes in code size, including all libraries, and took less
than 3 seconds total CPU time to instrument.

C. Costs of running instrumented code
To evaluate the cost of running instrumented code, we tested

both microbenchmarks and user application benchmarks, mea-
suring CPU time and total elapsed (wall) time for the base
system, the DT system with non-policy controlled data, DT
with explicit flow tracking only, DT tracking both implicit and
explicit flows. For applications we also measured DT with full
instrumentation of the executable. Our microbenchmarks are
iterative versions of merge sort and gzip. These applications
work almost exclusively with data and are instrumented in
their entirety, representing the worst-case scenario for DT.
We tested gzip with multiple file sizes, from a few kilobytes
to several megabytes and merge sort with labeled input files
from 1000 elements to 1 million elements, and averaged run
times over multiple runs. These results are shown in Figure ??.
In both cases, the cost of instrumentation was approximately
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4.1 times the base CPU time for explicit flow tracking and
6.4 times for tracking explicit and implicit flows. This was
expected, considering the number of instructions added in the
instrumentation process, increased cache misses and other side
effects.

For application tests we chose two representative user appli-
cations: Writer and Calc, the OpenOffice word processor and
spreadsheet. Typical use of these types of applications is hard
to define, but we attempted to capture representative real user
interactions using automated testing tools. These tools do not
simply record and playback, but interact with the application in
a similar way to a user, waiting for tasks to complete before
continuing. We played this recording back, measuring CPU
time and wall clock time, averaged over multiple runs, with
the results seen in Figure ??. All data in files used in the
benchmarks was tethered.

The full instrumentation number shown in the figure is for
the case where the complete application and all libraries are
instrumented with both implicit and explicit flow tracking.
This is similar to the case of the microapplication benchmarks,
and indeed the performance penalty is similar, approximately
6.6 times the base, uninstrumented, CPU time. Elapsed wall
time for this case is 1.45 times the base wall time. In contrast,
when using selective instrumentation CPU time is only 2.6
times base for Writer and 2.9 times base for Calc, for the
implicit and explicit flow tracking case. This indicates that
with selective instrumentation, we instrumented only 28% and
36% of blocks that executed for Writer and Calc, respectively,
a significant savings. Wall times for both applications were
also only slightly affected by the selective instrumentation,
requiring approximately 1.04 times the base wall time.

D. File System Benchmarks
For the file system, we performed a series of microbench-

marks to quantify the costs of our modifications to tethered
and untethered files. Table ?? shows the results of our tests for
both reading and writing both types of files. Care was taken
to eliminate caching effects by using different files for each
iteration of the test.

DT slows down the file system, primarily due to the need to
scan memory for tags and to encrypt/decrypt. Approximately
the same overhead is added to both reads and writes, but the
base time for writes is much lower than for reads. Reads must
wait for the disk read to complete before returning to the user,



TABLE I
FILE SYSTEM BENCHMARKS.

Base DT
Read 16k 14.6ms 31.0ms
Write 16k 2.7ms 18.0ms
Open 13.3ms 25.2ms

while writes may be completed asynchronously. Numbers for
larger files are linearly related by size to the number shown for
16k files. Overhead is added for opens because an additional
check is done on open to determine if the file is tethered.
For most user applications, the overhead introduced is not
noticeable compared to the runtime of the application, but
applications that open and close many small files may see
a performance decrease.

E. Network Benchmarks
For the network, we are mainly interested in the overhead

of packing and unpacking tethered data, so our benchmarks
measured time spent in the appropriate SockFS functions,
not transmission time. Since network traffic always requires
scanning for start tags, we benchmarked the DT system
both for data with and without a policy attached. For these
benchmarks we computed average time spent in the SockFS
send and recv functions for small buffers of 256 bytes.

TABLE II
NETWORK BENCHMARKS.

Base DT/no policy DT/policy
send 49 µs 69 µs 106 µs
recv 2127 µs 2204 µs 6623 µs

Table ?? shows that the cost of sending a packet of tethered
data is approximately twice that for a nontethered packet,
primarily due to scanning and encrypting the data. Receiving
tethered packets costs slightly more than three times as much
as an untethered packet. This difference between send and recv
is due to buffering partially received decryption blocks. Very
network-intensive applications may be negatively impacted
by DT, but for most end-user applications, the overhead
introduced is dwarfed by transmission times.

Also of interest is the data size overhead introduced when
tethering streams. This varies depending on the degree to
which the data is tethered. In the best case, where a stream is
tethered with a single policy, the overhead is around 100-200
bytes. In the worst case, where every word is tethered with a
different policy, or even multiple policies, this could balloon
to 100-200 bytes per word. We anticipate that the worst case
is very unlikely, and that most streams will contain few or no
policies.

F. Paging and Page Protection Faults
Calculating the number of extra pages used by tethered

applications is straightforward since one page is allocated for
every page of tethered data. For applications like merge sort
and gzip, there is one extra page per page of data, since all

data is tethered. For the OpenOffice applications, it depends
on the amount of internal data structures that are generated
by opening the document. We found on average that for a
1 megabyte document where all data was tethered, around 3
megabytes of shadow memory physical pages were generated.

Also of interest is the number of page protection faults
generated by the application. For gzip and merge sort, after
the initial round of watch point faults, no additional page pro-
tection faults were generated since all code was instrumented
at this point. For the OpenOffice applications, a small number
of page protection faults were generated due to the application
accessing non-watch pointed data on pages containing watch
points, but the number was quite small, 0.4 faults per second
on average.

G. Speed of Cleanup
To measure speed of cleanup we opened several applications

with labeled data, and then forced a policy violation. Timing
code was added to the kernel to measure the amount of
time from the initial notification of the violation until the
completion of cleanup. This took, on average, less than half a
second.

V. RELATED WORK

Recently, there has been new interest in practical informa-
tion tracking implementations in both hardware and software.
Many hardware solutions have been proposed including RI-
FLE [?], Minos [?], Raksha [?], and Flexitaint [?]. These
solutions generally involve special hardware built into pro-
cessors to track tags in memory, similar in most cases to the
labels used in DT but performed simultaneously with regular
instructions. Many software information flow tracking systems
have also been written, mostly focused on taint tracking
to prevent buffer overflow type attacks. Some of the more
prominent include Vigilante [?], Dytan [?], LIFT [?], and
GIFT [?] as well as [?], [?].

Implicit flow tracking is an active area of research; how-
ever, much of this research is of limited use to us since it
involves high level programming language abstractions and
specialized language constructs. These systems include special
security typed languages or language additions for augmenting
code with information flow tracking, or specialized compilers.
Sabelfeld and Myers [?] provide a good survey of this work.

FLASK [?] is a well-known operating system that provides
flexible policy-based access control, similar to DT policies.
Keypad[?] is a file system that tracks file access and allows
for revocation of access when a device is stolen. Asbestos [?],
Histar [?], and Flume [?] provide information flow control,
labeling, and data isolation with high efficiency, at the cost
of requiring applications written for those operating systems.
[?] details a posture-based security system which does en-
vironmental monitoring similar to DT, but this system only
limits what applications may be run under various conditions.
The DStar system [?] extends the Histar model to distributed
systems, allowing for transmission of labeled data between
machines, however it is limited to tightly coupled machines



in a cluster environment. A data provenance system called
GARM [?] uses static analysis to track provenance informa-
tion. CLAMP [?] is a system with similar goals of preventing
data leakage, but focuses on web applications using a LAMP-
style development stack.

There have been two recent virtual machine based ap-
proaches that are similar in nature to DT, the S3 system[?]
and the Neon system[?]. Both of these systems run the
operating system inside of QEMU and convert native x86
assembly instructions into simulated instructions that do in-
formation flow tracking. While these are similar in flavor to
DT, they suffer from several drawbacks in comparison. Since
the information flow tracking happens at a higher level than
the operating system, it is difficult to detect the types of
environmental conditions we use in DT, for example, that a
virus scanner is running or a specific user logged in. Also,
since the operating system itself is instrumented it is possible
for unrelated processes to become tainted, particularly since
the operating system, by its very nature, is a long running
process.

Another promising approach is that used in TaintDroid[?].
This system tracks the flow of sensitive user information inside
Android applications by modifying the Dalvik JVM. While
very low overhead was achieved with this approach, it is only
applicable to applications that run inside a virtual machine,
and not to native binary applications.

VI. CONCLUSION

DT offers a new method for organizations to prevent their
valuable and sensitive information from being lost, by loss of
portable machines and media. Unlike full disk encryption, DT
can protect data even while a machine is running. While DT
performance can be costly in the worst case, for many end-user
applications the decrease in performance is not noticeable. DT
works on legacy binary applications and does not require any
changes in typical user behavior, except when such behavior
would improperly leak data.
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