Comparing the Power of Full Disk Encryption
Alternatives

Aaron Fujimoto, Peter Peterson, Peter Reiher
Computer Science Department
UCLA
Los Angeles, CA
aaronfuj@gmail.com, pahp@cs.ucla.edu, reiher@cs.ucla.edu

Abstract— This paper examines the energy costs of different
approaches to full disk encryption, including hardware
encryption, software encryption, and “no encryption”. Using the
DEEP power measurement platform, we measured the energy
consumed by each configuration under various workloads. We
demonstrate that hardware encryption saves energy for many
(though not all) workloads, but that the energy savings may not
compensate for the hardware price at current rates.
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I. INTRODUCTION

As computers grow to process and store greater amounts of
sensitive information, there is an increasing need for privacy
and security. Encryption is perhaps the most effective
approach, and can be done on individual files or on entire
disks. While the piecemeal approach is simpler, the full disk
encryption (FDE) approach is generally more foolproof. There
are two main methods to perform FDE. Either the OS
transparently encrypts and decrypts all disk data using the
CPU, or special-purpose hardware performs the necessary
operations without any runtime software support.

This paper investigates the issue of the relative power
consumption of hardware and software FDE, using direct
measurement of live workloads. In our tests, hardware FDE
typically used only slightly more energy and time than an
unencrypted disk. Furthermore, hardware FDE was faster and
energy-cheaper than software FDE. However, the magnitude
of the savings was not as great as may be expected.

II. EXPERIMENTAL METHODOLOGY

A. Measurement Technology

Our experiments were performed on a UCLA Atom DEEP
[1] platform, which allows us to measure the instantaneous
power and energy consumed by the system’s processor, RAM,
hard disk, USB, and power supply. DEEP instrumentation
allows us to specify precisely when to start and stop measuring
power use, and can synchronize data to particular code
segments.
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DEEP’s ability to simultaneously measure discrete
components is important for this investigation because in
addition to system-level energy effects due to runtime factors,
software and hardware FDE will have different component-
level power profiles. For example, DEEP allows us to
measure how much more energy the CPU uses when
performing software FDE and how much more energy the
hardware FDE disk consumes.

B. Hard Disks

While we would have preferred to use a single test disk
with FDE hardware that could be enabled or disabled on a per-
test basis, such a disk was not available at the time of this
experiment. Therefore, we attempted to identify two very
similar disks --- one with encryption hardware and one
without. For our standard disk, we chose the Seagate
Momentus 7200.4 SATA 3Gb/s 250-GB Hard Drive
(ST9250410AS) [2]. For our encrypting disk, we chose the
Seagate Momentus 7200 FDE Laptop with FIPS 140-2 250-
GB Hard Drive (ST9250412AS) [3] which performs AES-128
[4] in hardware. Both are 2.5 inch laptop-class hard disks with
very similar specifications and performance ratings, making
them ideal for comparison. The OS (Linux) was installed on a
separate disk to minimize experimental noise.

Software encryption was performed by dm-crypt [5], which
uses the Linux Crypto API. This standard approach enables
FDE through the use of a cryptographic layer between the
kernel and the disk’s block device. Since the Momentus 7200
FDE performs AES-128 encryption [4], we also used AES-
128 via dm-crypt along with AES-256 (to investigate the
effect of key size) and “no encryption” as a baseline.

III. TEST DESIGN

A. General Issues

A hard disk is used to permanently store files and data in a
computer. Therefore the tests we used were designed to access
these files and data in various ways while limiting the amount
of power consumed by unrelated tasks. Careful consideration
was used when designing the tests to avoid possible caching of
data both in the kernel’s cache (by executing commands to
flush the kernel’s page cache) and in the buffer of the hard
disk itself. One way of attempting to avoid caching files in the



hard disk (without rebooting between each test) is to use
multiple copies of test data instead of reusing a single source.
The tests exercised writing and reading directly to and
from the disk, compressing and decompressing files on the
disk, querying a database stored on the disk, searching through
files on the disk, and playing back a video file from the disk.
These various tasks exercised different behaviors of the disk,
such as extended sequential access, read versus write, and
random access to allow us to determine if there were energy
differences based on these use cases. These tests are meant to
be reasonably realistic and varied, but we do not claim that
they are comprehensive or fully disjoint in their modes of use.

B. File Read and Write Performance

One direct way to measure the difference in power
consumption over the different configurations was to directly
write a file to the test disk and then read a file from the test
disk. We tested multiple small (10 MB) files designed to fit
into disk cache and a large file (1 GB) designed to overflow
the hardware cache and force sustained operation. When
writing, files were created by reading directly from /dev/zero.
Subsequent reads were performed by copying the files from
disk to /dev/null (discarding the output).

C. Kernel Decompression and Compression

A number of informal file system benchmarks and
workloads appear frequently in the literature, such as the
Modified Andrew Benchmark [16], decompressing and
compiling the Linux kernel, and others. [17] These tests
typically create a large number of files and directories and
perform various operations on them. While these non-
standardized benchmarks may be difficult to relate to one
another, they can still be useful when one test is used in a
head-to-head comparison between test systems. For this type
of test, we copied the compressed source of the Linux Kernel
to our test disk from the separate system disk, decompressed
it, re-compressed it, and deleted it. This exercised a variety of
disk operations, such as reading and writing of large and small
files, creating and removing nested directories, compression,
and decompression.

D. SQOL Query

This test (from [6]) focused on database access. We created
a MySQL database, loaded data into the tables, performed a
few queries, and then removed the database. SQL queries
provide a different method of accessing information than the
sequential reads/writes that are exercised in the basic
read/write and kernel extraction/compression tests.

E. Kernel Grep

Another common disk operation is searching. Searching
may involve looking through several directories for a specific
string. We used Linux’s grep tool to perform a search on a
directory containing an extracted Linux kernel. We recursively
searched for all instances of the word "module" in all of the
files. This exercised reads of several different files scattered
through multiple directories over a fairly short period. We
expected the results to be similar to the basic read/write tests.

F. Video Player

Computers are often used to play audio and video files. We
measured the power to play a short video clip [7] using the
Linux media player mplayer.

IV. TEST RESULTS

To handle statistical variation, we performed 10 to 20 runs
of most tests, which allowed us to obtain good confidence
intervals at the 95% level. For results that showed very close
power use for different cases, we ran the tests several extra
times to further shrink the confidence interval and better
understand whether the alternatives displayed statistically
significant differences.

We report various kinds of data corresponding to the
individual tests. In some cases, we show the instantaneous
average power (in watts) used by the components. This
measurement gives a sense of how hard each component
worked during that test. In other cases, we give the energy
used by various components, which is the product of the
power and the run time of the test. In other cases, we report
the total system energy used.

A. File Read and Write Performance Results

This test was the most direct comparison of power
consumption for both cached and sustained writes and reads.
To avoid caching effects, we dropped the kernel page cache
and synced the disk between each file creation. Ultimately, 10
MB writes consumed a statistically similar amount of energy
on each component for all configurations (Figure 1), and all
configurations took about the same amount of time. The
average power per component was also similar across
configurations, with only a slight difference found in the HDD
and RAM.
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Figure 1. Power Used for 10MB File Writes

Reading 10 MB files showed more significant results. For
the hardware FDE disk, the overall time was (0.154 + 0.013s)
which was only slightly longer than the time for the baseline
disk without encryption (0.151 + 0.005s). Software encryption
with AES-128 and AES-256 took significantly longer at 0.445
+ 0.005s and 0.564 + 0.003s respectively, resulting in a
significant increase in energy consumption as seen in Figure 2.
Figure 3 shows that while some of the difference in energy
used is due to increased run time, there are also differences in



the average amount of power used for the different

alternatives.
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Figure 2. Energy Used for 10MB File Read

Average CPU power is similar in all configurations, while
HDD and RAM have higher average power use in the non-
encrypted and hardware FDE configurations versus software
FDE as seen in Figure 3. This makes sense because the HDD
and RAM are utilized less efficiently during the software FDE
task (which spends most of its time performing encryption in
the CPU). Also, we see that the hardware FDE disk has a
higher average power for HDD than the standard disk without
encryption, presumably due to the cryptoprocessor and related
hardware. However, as Figure 2 shows, because software FDE
takes longer to complete, the overall energy used to perform
the operation is much higher than the energy used to perform
the same operation without encryption or using hardware
FDE.

Writing the 1 GB file further shows the difference between
the software FDE process and no encryption or hardware FDE.
Hardware FDE is only slightly slower than no encryption at
35.599 + 0.999s vs. 34.172 + 0.288s. Software FDE is
significantly slower than both (58.824 + 0.679s for AES-128
and 72.425 + 1.085s for AES-256). In other words, the overall
energy consumed follows the same trend as reading the 10 MB
file.
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Figure 3. Power Used for 10MB File Read

B.  Kernel Decompression and Compression Results

The most significant portions of this test were the
decompression and compression operations. Decompressing
the kernel source confirmed the results of the single file test,
namely that software encryption took longer to execute a task

than no encryption or encryption done in hardware. The
standard disk was able to perform the task in 80.464 + 0.903s
on average, while the disk using hardware FDE was able to
extract the files in an average of 80.946 + 3.373s. Software
FDE required an average of 100.279 + 15.444s using AES-128
encryption and 107.093 + 1.839s using AES-256 encryption.
This large difference in time was reflected in the energy
consumed by each component for the software configurations.
The overall energy used by the system during this task also
shows a correlation with the time required to perform the task.
The standard disk consumed 2414.687 + 30.313 J, hardware
FDE consumed 2455.955 + 17.425 J, the software FDE using
AES-128 consumed 3033.972 + 52.530 J, and the AES-256
software FDE configuration consumed 3229.965 + 72.550 J.

We found the instantaneous average power per component
to be fairly similar across configurations, except for the RAM
(which followed what was seen in the Single File tests). Since
the instantaneous power across configurations was similar, we
were able to determine that the overall energy used for this
task was based on the time spent, rather variations in
component energy use.

Compressing the directory into a file produced the same
ordering of costs for the various options, but the differences
between software encryption and the other options was smaller
which was reflected in the run times for the various encryption
options.

Looking at the kernel decompression/compression test as a
whole (Figure 4), the total energy used by all components
reflects the results from the extraction and compression
phases. The system with no encryption used the least amount
of energy; the system using hardware encryption only
consumed slightly more energy; and both software-encrypted
systems consumed much more energy than the other two
configurations.

An interesting anomaly in this test was that the energy cost
of software FDE with AES-256 was often less than that for
AES-128. One would not expect the larger key size to run
faster and use less energy than the smaller, but it did (with
statistical confidence). This question was not core to the
purpose of our study, so we did not investigate it further.
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Figure 4. Total System Energy For Kernel Decompression/Compression (All
Phases)

C. SQL Query Performance Results

Unlike the other tests, the SQL query performance results
showed no significant difference in either the time required or
the energy consumed to execute the query between any of the
configurations. One explanation for the similar performance



could be the small size of the database. This may have resulted
in less disk IO and more computation. In other words, the
energy used for decryption may have been small compared to
the energy consumed by the MySQL process itself.

D. Kernel Grep Performance Results

We ran the Kernel Grep test 10 times on separate
directories with each directory containing copies of the same
structure and files, which proved more than enough to achieve
our desired confidence interval.

30
E 25
g 20
215
>
% 10
c 5
Ll
0
CPU(J) HDD(J) RAM(J)
Onon_enc  Hencl28  Menc_256 Bhw_enc

Figure 5. Energy Used in Kernel Grep Tests

Once again, the time required to perform this test was
lower using the disk with no encryption and the disk with
hardware FDE than either of the software configurations. The
disk with no encryption took 5.175 £ 0.090s while the disk
with hardware encryption took 5.055 + 0.106s. Software FDE
with AES-128 took 7.59 £ 0.104s while AES-256 took 8.346
+ 0.135s. Figure 5 shows the energy used by various systems
components for this test using the different encryption options.

E. Video Player Performance Results

The video playing test was run a total of 60 times, resulting
in a maximum margin of error found in a single component to
be 2%. Accordingly, we show full system power in Figure 6.
(Note that the scale on this figure starts at 2100 J.)
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Figure 6. Total System Energy for Video Player Tests

One plausible explanation for why we see so little
difference among the configurations is that the energy spent to
play the video far exceeds the energy required to access and
decrypt the video file. Another possible explanation is that
since the timing of the task is tied to the video playback, faster
options (e.g. “no encryption”) still pay the cost of longer
runtimes. With the use of DEEP’s energy caliper capability,
we could verify these hypotheses, but we have not done so yet.

V. DISCUSSION

Having seen the differences in power consumption
between full disk encryption implemented in software and
hardware, we can consider whether this difference is
significant enough to warrant using one configuration over the
other for efficiency’s sake.

In most cases less energy is used when using hardware
FDE than software FDE. The hardware solution is usually
faster than the software solution, and the hardware-encrypting
disk did not use considerably more energy than the standard
disk; therefore, less overall energy is used with hardware
versus software FDE. In fact, we saw that in most tests the
hardware-encrypted disk performed at or near the level of the
disk with no encryption at all, indicating that the
cryptoprocessor is not a throughput bottleneck or energy-
expensive. Thus, for the sole purposes of access time and
energy consumed, the hardware-encrypted disk is more
efficient than the software solution. This is not entirely
surprising, since hardware implementations of algorithms are
usually more efficient than  equivalent software
implementations.

However, there are additional concerns that may not make
the hardware configuration the desired solution in all
scenarios.  While the hardware-encrypted disk typically
consumes less energy, the software FDE solution costs less to
acquire. Hardware FDE disks currently cost more than non-
encrypting disks, and software encryption is essentially free in
terms of hardware costs. At the time of this writing, the test
disks in question cost around $65 for the standard disk and
$90 for the hardware-encrypted disk. This is more than a 30%
increase in disk cost. Since commodity hardware
manufacturers care deeply about even small component costs,
a difference of this magnitude is likely to keep hardware FDE
as a premium option at current prices, even if it were offset
with bulk purchases.

What about an individual pricing a new laptop? Suppose a
user requires FDE and is interested in a hardware solution.
How long will it take for the extra cost to be offset by power
savings? Recent electricity costs in Los Angeles are around
$0.12/KWatt hour. There are 3,600,000 joules per kilowatt
hour. As shown in Figure 4, using hardware full disk
encryption saves around 1000 joules on one run of our kernel
decompression/compression test. Therefore, to make up a $25
difference in disk cost on the basis of power use, one would
need to run this test almost 750,000 times over the lifetime of
the machine in order to recoup the cost. This test takes a bit
less than 2 minutes, so running it 750,000 times would take
roughly 25,000 hours, which is almost 3 years --- about the
lifetime of many laptop computers. Of course, nobody runs
the equivalent of this test for nearly three solid years, and the
relative benefit of other workloads is probably lower, on the
whole. In total, this suggests that hardware FDE is not a very
good investment in terms of simple economics.

There are other possible benefits of hardware encryption,
of course. Battery lifetime is an important statistic for most
portable devices. (The Atom DEEP uses an Intel Atom
processor and is similar to a netbook or tablet in terms of



hardware.) In this mode of use, decreased energy use is much
more important, since it impacts how long one can work
before the battery is exhausted. One can purchase batteries for
laptop computers that advertise 50-60 watt hours, which is
roughly 180,000 joules. If the entire power budget of such a
battery was used to run the kernel decompression/compression
test, it would run around 15 times with no encryption, 14 times
with hardware FDE, and 13 times with AES-128 software
FDE — a meaningful difference, but not tremendous.

These “back of the envelope” calculations are admittedly
dependent on many limiting assumptions involving our
experiments, workloads, hardware, and local energy costs.
However, they do provide interesting food for thought and
give a general sense of how much more battery life one can
get out of a laptop using hardware full disk encryption versus
software: some, but not a lot.

The results we report show significant differences in the
power saved based on the workload. In essence, workloads
consisting primarily of intense disk activity will benefit more
from hardware FDE than those that have little disk 1/O
compared to computation. These workloads are useful as
worst case scenarios, but may not be realistic use cases for
mobile users.

One issue we have only briefly touched upon in this paper
is access times. While the energy used by the overall system is
important, a user of the disk may find it more crucial to have
quick access times to the disk. In general, hardware FDE is
more responsive versus software, so this could be a significant
factor in some cases. On the other hand, caching will also tend
to minimize the differences between configurations, since
cached data will not exercise any form of encryption. We did
not study caching explicitly, but the degree of care required to
minimize caching effects in our tests suggest that effective
caching could further reduce the energy value of hardware
FDE.

Also, the security issues of encryption done in hardware
versus software may justify the use of one solution over the
other for certain users. Both configurations have their own
vulnerabilities and neither is immune to all attacks, so issues
of the style of use of the machine and the expected forms of
attack could make a difference on which alternative is
preferable.

The research reported here was designed primarily to
discover the differences in energy used by software and
hardware encryption, rather than to identify the reasons for
these differences. There are a number of interesting future
directions for research based on obtaining a deeper
understanding of why various encryption alternatives
performed as they did, and possible alterations of the system
to improve their performance.

VI.  RELATED WORK

Energy measurement or characterization systems are not new
[8][9], although they are often special systems built in-house
for a specific experimental purpose. [9][14] [13][15] Many
energy measurement projects measure only a single
component or full system energy. Due to its ubiquity on

laptops, the ACPI battery interface is a popular source of
information, although its resolution is known to be poor [9].

In contrast, the DEEP project [1] intends to provide a kind of
“standard platform” for energy experimentation. It is under
active development, has a simple, easy-to-build design and
provides novel features in terms of accuracy, synchronization,
instrumentation, and more. DEEP enabled us to synchronize
real code execution to component level energy data with very
fine granularity to simultaneously capture energy effects
across the CPU, RAM, and disk itself, in real time. DEEP's
simple instrumentation makes it trivial to create and test new
workloads in a commodity, off-the-shelf environment.

While our experiment was a head-to-head comparison of
alternatives, it is in some sense related to the larger issue of
energy accounting and management in operating systems.
Large projects [9][10] have treated energy as a first-class
resource to be managed, and in so doing have highlighted
many issues and potential solutions for relevant problems. In
particular, one issue that is important for comprehensive
energy accounting in modern operating systems is accurately
accounting the cost of delayed or asynchronous operations,
such as network transmission following a user request.
Resource Containers [11] are one method for attempting to
capture these costs however this solution requires kernel
modifications.

DEEP uses an off-the-shelf version of Linux, and our work
on this experiment did not incorporate kernel modifications.
As a result, our data describes the energy consumed between
the start and the end of the user-initiated activity. Thus, it does
not include the cost of delayed writes and other kinds of
asynchronous operations may not be captured. However,
because our experiments were head-to-head comparisons
under controlled conditions, we are confident that the
comparison is fair (although it likely underestimates the true
cost of asynchronous operations such as delayed writes).
Work on DEEP continues towards making it multi-process and
preemption aware, as well as including more comprehensive
energy accounting mechanisms.

To our knowledge, no one has performed a comparable
head-to-head comparison of hardware and software
cryptography for disks. However, this work falls into the
larger body of work investigating the direct energy costs of
security choices in general. Li and Xu [13] investigated the
direct energy costs and benefits of offloading some security-
related operations. Potlapally, et al. [12] investigated the
varying direct energy costs of various software cryptosystems
(and noted that hardware represented a path to greater
efficiency). We previously [6] used the DEEP platform (then
called Atom LEAP) in an undergraduate research course at
UCLA investigating the energy costs of various security
technologies.

Finally, the results of this project support the conclusions
drawn by Dawson-Haggerty, et al. [14] in that, for many
computer systems, frequency scaling and other efficiency
strategies are often beaten handily by the so-called "race to
sleep," where the best strategy (from an energy perspective) is
the one that simply finishes fastest. This is due to the large



static energy cost of most hardware, which can dwarf the
combined costs of other system components. When this
happens, the savings of "finishing first" typically is greater
than the component level differences that may exist between
various strategies. However, while our results are consistent
with this concept, the idea itself does not offer insights into the
relative costs of hardware versus software full disk encryption.

VIL

Full disk encryption (FDE) provides security benefits, but
has energy and associated economic costs. These costs can be
statistically insignificant or very large, depending on the
workload and the FDE implementation used.

Hardware FDE almost always uses less energy than
software cryptography and in many cases is statistically
indistinguishable from using no encryption whatsoever. In
particular, hardware FDE tends to be significantly more
efficient than software FDE wunder especially intense
workloads. Conversely, workloads that use the disk but are
time bound (such as video playback) see little benefit from
hardware FDE.

While not rigorously tested here, caching effects are likely
to reduce the observed differences in energy use between the
hardware and software alternatives. As a result, the lower
energy use of the hardware alternative might not lead to any
benefits that would be meaningful to an individual user,
especially in more realistic use cases.

This research studied primarily the effects of different full
disk encryption alternatives, not the causes of those effects. A
more detailed study (which the DEEP approach would allow)
could reveal opportunities for making greater reductions in
energy use when performing full disk encryption or when
performing general file system operations. This possibility
remains an interesting avenue for future research.

CONCLUSION
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