Automating DDoS Experimentation

Jelena Mirkovic
University of Delaware
Newark, DE

Peter Reiher
UCLA
Los Angeles, CA

Sonia Fahmy
Purdue University
West Lafayette, IN

Abstract— While the DETER testbed provides a safe
environment and basic tools for security experimentation,
researchers face a significant challenge in assembling the
testbed pieces and tools into realistic and complete exper-
imental scenarios. In this paper, we describe our work
on automating experimentation for distributed denial-of-
service attacks. We developed the following automation
tools: (1) the Experimenter’s Workbench that provides a
graphical user interface, tools for topology, traffic and mon-
itoring setup and tools for statistics collection, visualization
and processing, (2) a DDoS benchmark suite that contains
a set of diverse and comprehensive attack scenarios, (3)
the Experiment Generator that combines chosen AS-level
and edge-level topologies, legitimate traffic and a set of
attacks into DETER-compatible scripts. Jointly, these tools
facilitate easy experimentation even for novice users.

I. INTRODUCTION

The DETER testbed [1] allows security researchers
to replicate threats of interest in a secure environment
and to develop, deploy and evaluate potential solutions.
DETER’s sister project EMIST [9] provides a collection
of tools for traffic generation, statistics collection, anal-
ysis and visualization. Jointly, DETER and EMIST [9]
facilitate reconstruction of numerous security scenarios,
where every element of the scenario is customizable
by the researcher. However, the tasks of (1) choosing
realistic traffic and topology settings for experimentation,
and (2) setting up and controlling experiments in an
automated fashion remain open problems.

In this paper, we describe our work! on automating
DDoS experimentation via three toolkits: (1) The Ex-
perimenter’s Workbench, which provides a set of traffic
generation tools, topology and defense libraries and a
graphical user interface for experiment specification,
control and monitoring, (2) The DDoS benchmarks that
provide a set of comprehensive topology, legitimate and
attack traffic specifications, and (3) The Experiment

'This material is based on research sponsored by the Department
of Homeland Security under contract number FA8750-05-2-0197,
and by the Space and Naval Warfare Systems Center, San Diego,
under contract number N66001-07-C-2001. The views and conclusions
contained herein are those of the authors only.

Brett Wilson
SPARTA, Inc.
El Segundo, CA

Alefiya Hussain
SPARTA, Inc.
El Segundo, CA

Roshan Thomas
SPARTA, Inc.
Centreville, VA

Stephen Schwab
SPARTA, Inc.
El Segundo, CA

Generator that receives an input either from a user via
the Workbench’s GUI or from the benchmark suite, and
glues together a set of selected topologies, legitimate
and attack traffic into a DETER-ready experiment. This
experiment can be deployed and run from the Workbench
at the click of a button. Jointly, our tools facilitate
easy DDoS experimentation even for novice users by
providing a point-and-click interface for experiment
control and a way to generate realistic experiments
with minimal effort. Each component of an experiment,
such as topological features, legitimate and attack traffic
features, and performance measurement tools can also
be customized by a user, facilitating full freedom for
experimentation without the burden of low-level code
writing and hardware manipulation.

II. THE EXPERIMENTER’S WORKBENCH

The Experimenter’s Workbench enables even a novice
experimenter to reproduce complex scenarios by select-
ing various experimental elements from a pre-defined
palette, using an intuitive graphical user interface. The
palette includes: (1) a library of legitimate and attack
traffic generators, (2) a library of DDoS defenses that
are deployed in the DETER testbed, (3) a library of
experiment statistics collection tools and performance
measures that operate on these statistics (e.g., tcpdump
collection). The GUI enables easy deployment of palette
elements to an existing or a new DETER experiment,
experiment control (start, stop, restart) and traffic mon-
itoring and visualization. The workbench also contains
a library of topologies along with routing configurations
that can be used in experiments.

Figure 1 shows the main GUI window (Controls
tab, below the menu bar) with the palette on the left.
Experimentation starts with a user attaching an existing
DETER experiment to the GUI or using the GUI to
start a new experiment (Experiment item on the menu
bar). We now describe the current contents of the palette
but note that these can easily be extended by adding
new elements. The currently supported legitimate traffic
generators are: (1) A replay tool that replays traffic from

1= Workbench

(

File Expetiment Buld View

Cortrols | Topalogy | Graphs | Debug

Controls
=@ Traffic Generation

Participating Nodes and Settings

Replay
Harpoon
=-Weh

Clients

[paretof1000,1) !

Servers

FTP
S5H
[RC
WolP
DN3
Ping

--@ Attack Agent
Flooder
Clen

=@ Defense
FloodWatch
Cossack
DWard

= Data Processing
TCPDutmp
Perf Toal

Thinking Time

File Sizes

Set |[Skart][Stap

Attached to FloodWatch/dwardtest: active

Fig. 1. Main GUI window with the palette

a tcpdump trace, (2) Harpoon [10], a flow-level traffic
generator, which generates synthetic traffic whose statis-
tical properties are mined from an input Netflow trace,
(3) Several application traffic generators that generate
traffic using real client and server applications accord-
ing to user-specified distributions. Supported application
traffic types are: Web, FTP, SSH, IRC, VoIP, DNS and
Ping. For the replay tool and Harpoon, the user supplies
the trace file and specifies the set of nodes whose
communication should be replayed from the file, along
with a few additional, tool-specific parameters such
as number of client and server sessions for Harpoon.
For application traffic generators, the user specifies the
distribution of request and reply sizes and the request
interarrival time distribution. The supported distributions
are Paretto, Gamma, Exponential and MinMax. During
the experiment, traffic generator tools may not be able to
generate traffic according to these predefined parameters
because of testbed limitation or congestion caused by
attacks. To amend the first problem we allow for request
and response scaling so that the generated traffic can be
supported by limited resources while still maintaining
timing and message size distribution selected by the
user. We view the second phenomenon, modification of
traffic because of attacks, as a desired feature in DoS
experimentation, and do not try to amend it.

There are two currently supported attack traffic
generators: (1) UCLA’s Cleo tool and (2) SPARTA’s

lacal. outputlist completed

Script Skatus: (0 queued)

Flooder tool. Both tools generate flooding attacks, with a
customizable protocol, packet sizes, packet rates, spoof-
ing and rate dynamics (flat, pulse, ramp up and ramp
down). The Flooder tool provides additional customiz-
able parameters such as TCP flag settings, ICMP codes,
pulses with ramp up and ramp down features, etc.
The Cleo tool provides an option of organizing attack
machines into a master-slave architecture.

The palette currently supports automatic place-
ment and configuration of three defense systems: (1)
SPARTA’s FloodWatch defense [13] that detects and fil-
ters attacks based on the entropy measure and Chi-square
statistic of various traffic parameters, (2) USC/ISI’s
Cossack defense [8] that forms a multicast group of
collaborating, distributed Snort modules that communi-
cate to detect and suppress attacks and (3) UCLA’s D-
WARD defense [5] that is deployed at the source-end
to prevent network participation in attacks. Parameters
specific to each defense and defense deployment points
can be specified from the palette.

There are two statistics collection tools: (1) The tcp-
dump tool and (2) The Perf tool, which calculates several
denial-of-service measures [6] we developed during our
benchmark work. Tool-specific parameters and monitor
deployment locations can be specified from the palette.
Note that tcpdump may fail to collect all packets if the
host CPU is too busy, a situation not unusual in DoS
experiments. To amend this problem we have developed

Fie Evperiment Buld Visw

Controls [{Topology | Graphs | Debug

B1
B2 oo
BLan
control
BR
100Mb. Gl
13%!1 mainLan SR =
90m AR c2
.
- ¥ s
ALan
100Nt e
A1 s
Fig. 2. Topology tab with a sample topology
£ Workbench B@%
File Experiment Build view
Contrals | Tapology | @raphs | Debug
@ ppd

Hode | &

outgoing <== 0 ==> incoming
5

| s [s8.7.8 mm)[v

120 % Secs

O bps

12:83: 00

12:84: 00

Attached b Floodyystchidwardtest: active

Fig. 3. Traffic visualization at the node S

two device drivers that are integrated with the Click
modular router [3]. The device drivers provide direct
access to Click’s kernel memory from a user application,
hence bypassing the default IP stack. Thus, the task of
tcpdump is split into two parts. The filtering part resides
in kernel-level Click, while the packet writes to disk are
in the user-level application. Our simple test application
was able to read packets from Click’s buffer at over
800 KPackets/s. Writing the packets to disk was achieved
at a rate of 220 KPackets/s. Thus, it is now possible to
filter and capture packets of interest to disk at very high
rates, increasing the fidelity of the measurements.

Iocal.getgraph completed

Seript Status: (0 queued)

The palette enables composable experimentation. Each
element can be instantiated as many times as needed,
with various parameter settings. For example, to gen-
erate a mixture of Web traffic from two clients to a
common server, where one client’s requests follow an
exponential distribution while the other client’s requests
arrive uniformly, two Web elements would need to be
instantiated, one for each parameter setting (distribution).
If both clients communicated with the server (or a set of
servers) with the same distribution of request interarrival
times, request size and reply size, a single Web element
could be used to generate their traffic. In Figure 1 at the

right part of the window we show instantiation of a Web
element called web1 for the topology shown in Figure 2.
Client and server nodes are selected by the user from a
pop-up menu, showing all the nodes in the experiment’s
topology. In our example we selected nodes B1 and C1
to act as clients, node S as a server, and specified an
exponential distribution of the request interarrival times
and a Paretto distribution of the reply sizes. The second
argument in the distributions is the multiplicative factor,
used to scale samples up or down.

The Topology tab displays the experimental topology,
as shown in Figure 2. The black squares represent
network interfaces. During experimentation, interfaces
that relay traffic are colored green or red, depending if
the traffic is legitimate or attack. The size of the colored
portion relative to the square size is proportional to the
bandwidth consumption at that interface.

Left clicks on the interfaces or nodes open the graphs
representing traffic statistics (packets or bytes per sec-
ond) in the Graph tab. Multiple graphs can be opened.
We show one sample graph in Figure 3, for an experi-
ment with the topology shown in Figure 2. Legitimate
Web and FTP traffic is generated from B1, B2, C1 and
C2 to S. Additionally, A1 and A2 send a high-volume,
pulsing UDP flood to S. The graph shows incoming (top
portion) and outgoing (bottom portion) traffic in packets
per second at the node S, with legitimate traffic colored
green and attack traffic colored red.

The Workbench is a stand-alone JAVA application, and
is easily run on a variety of operating systems. It runs
locally on the user’s desktop, and communicates with
the DETER’s experiment server using Xmlrpc to send
commands to each node in the topology. In addition
to the GUI, the workbench also provides support for
experiment automation and repeatability via a Perl-based
scripting interface. For example, the following script sets
up the same webl traffic generator shown in Figure 1,
and runs the traffic for 120 seconds.

use Agent;
use EventTx;

Stx = EventTx::New();

Create Web traffic
Swebl = Agent::New($tx, 'HTTP’,
Swebl->SetLocation (Bl Cl1 S’);
Swebl->Set (
servers=>'S’,
think=>"expo(5,1)’,
sizes=>"pareto (1000,1)”

"webl”);

)i

Start traffic
Swebl->Start () ;
Stx->wait (120);

Stop traffic
Swebl->Stop () ;

The scripting language allows an experienced user to
rapidly execute a large set of experiments in the batch

mode.

III. DDOS BENCHMARKS

In the previous section we discussed the challenge of
setting up and controlling large, distributed experiments.
Another challenging task in any experiment is choosing
realistic and comprehensive scenarios, and reproduc-
ing them in a testbed or in a simulation. In case of
DDoS experimentation, these scenarios consist of three
dimensions: (1) Attack traffic — features describing
a malicious packet mix arriving at the victim, and the
distribution and activities of machines involved in the
attack. (2) Legitimate traffic — features describing
communication patterns of the target network. (3) Net-
work topology and resources — features describing the
target network architecture.

Our work on DDoS benchmarks addresses this chal-
lenge by developing test scenarios with realistic topolo-
gies and legitimate traffic patterns, and with a compre-
hensive suite of attacks. To develop these scenarios we
designed a collection of tools that harvest traffic and
topology samples from the Internet.

A. Legitimate traffic

The LTProf tool produces legitimate traffic models
that describe communication between a set of active
clients and a network that is the target of a DDoS
attack. The tool collects legitimate traffic samples from
public traces by creating a communication profile for
each observed subnet and deriving relevant traffic feature
distributions from these profiles. These distributions then
serve as an input to the Workbench’s traffic generators.

We build subnet models by first identifying /24 and
/16 subnets in a traffic trace anonymized in a prefix-
preserving manner. For each subnet, we identify the total
traffic received by it and select the largest receivers to
act as target networks in our scenarios. We then identify
subnets that send a significant percentage of traffic to
this target network and model their sending behavior.

We model separately a sender’s outgoing traffic for
each well-known port number. Within the selected traffic
mix, we identify individual sessions between two IP
addresses and extract the distributions of the number
and length of service requests, the reply length and the
request inter-arrival time. These distributions are used
during an experiment to drive the traffic generation.
For example, the outgoing traffic from the anonymized
network 0.3.117.0/24 in the CAIDA’s OC48 traffic trace
consists of traffic to port 53 and port 80, with the
characteristics shown in Table 1. The LTProf tool auto-
mates this traffic modeling and produces for each target
network a set of outgoing traffic models for its most
active client subnets. These models can be fed directly
into the Workbench’s traffic generators.

port | traffic feature distribution
Requests per second Poisson(1.828)

53 Requests per host Paretto(1.1,2.17)
Requests size Paretto(32.74,2.5)
Reply size Paretto(117.5,3.1)
Requests per second Poisson(94.147)

30 Requests per host Paretto(10,2.315)
Requests size Paretto(287,2.35)
Reply size Paretto(259,2.028)

TABLE 1

OUTGOING TRAFFIC MODELS FOR 0.3.117.0/24

B. Topologies

For DDoS experimentation, we are interested in mod-
eling topologies of the target network and its Internet
Service Provider. We will refer to these as end-network
topology and AS-level topology.

AS-level topologies consist of router-level connectiv-
ity maps of selected Internet Service Providers. They are
collected by the NetTopology tool, which we developed.
The tool probes the topology data by invoking tracer-
oute commands from different servers, performing alias
resolution, and inferring several routing (e.g., Open
Shortest Path First routing weights) and geographical
properties. This tool is similar to RocketFuel [14], and
was developed because RocketFuel is no longer sup-
ported.

We further developed tools to generate DETER-
compatible input from the sampled topologies: (i)
RocketFuel-to-ns, which converts topologies generated
by the NetTopology tool or RocketFuel to DETER ns
scripts, and (ii) RouterConfig, a tool that takes a topology
as input and produces router BGP and OSPF configura-
tion scripts.

A major challenge in a testbed setting is the scale-
down of a large, multi-thousand node topology to a few
hundred nodes available on DETER [1], while retaining
relevant topology characteristics. The RocketFuel-to-ns
tool allows a user to select a subset of a large topology,
specifying a set of Autonomous Systems or performing
a breadth-first traversal from a specified point, with
specified degree and number-of-nodes bounds.

The RouterConfig tool operates both on (a) topolo-
gies based on real Internet data, and on (b) topologies
generated from the GT-ITM topology generator [18].
To assign realistic link bandwidths in our topologies,
we use information about typical link speed distribution
published by the Annual Bandwidth Report [16].

Since many end-networks filter outgoing ICMP traf-
fic, the NetTopology tool cannot collect end-network
topologies. To overcome this obstacle, we analyzed
enterprise network design methodologies typically used
in the commercial marketplace to design and deploy
scalable, cost-efficient production networks. An example
of this is Cisco’s classic three-layer model of hierar-
chical network design that is part of Cisco’s Enterprise

Composite Network Model [7], [17]. This consists of the
topmost core layer which provides Internet access and
ISP connectivity choices, and a middle distribution layer
that connects the core to the access layer and serves to
provide policy-based connectivity to the campus. Finally,
the bottom access layer addresses the design of the
intricate details of how individual buildings, rooms and
work groups are provided network access, and typically
involves the layout of switches and hubs. We used these
design guidelines to produce end-network topologies
with varying degrees of complexity and redundancy. One
such topology is shown in Figure 4.

C. Attack traffic

To generate comprehensive attack scenarios we sought
to understand which features of the attack interact with
the legitimate traffic, the topology and the defense. We
first collected information about all the known DoS
attacks and categorized them based on the mechanism
they deploy to deny service. We then selected for further
consideration only those DoS attacks that require distri-
bution. These are packet floods and congestion control
exploits. Packet floods deny service by exhausting some
key resource. This resource could be bandwidth (if the
flood volume is large), router or end host CPU (if packet
rate of the flood is high) or tables in memory created
by the end host operating system or application (if
each attack packet creates a new record in some table).
Packets in bandwidth and CPU exhaustion floods can
belong to any transport and application protocol, as long
as they are numerous, and may contain legitimate trans-
actions, e.g., flash crowd attacks. An attacker can use
amplification effects such as reflector attacks to generate
large-volume floods. Examples of memory exhaustion
floods are TCP SYN floods and random fragment floods.

In congestion control exploits the attacker creates
the impression at a sender that there is congestion on
the path. If the sender employs a congestion control

Production

Host cvs

To one provider

Border
router

Internal

o fouer N
To another provider

Tech support

Data
center
Hast switch

Host

ot Web DNS Mail
server server server

Host Executive

Fig. 4. A sample end-network topology

mechanism, it reduces its sending rate. One example of
such attacks is the shrew attack with pulsing flood [4].

Table II lists all the attack types in the benchmark
suite and their denial-of-service mechanisms. Although
there are a few attack categories, they can invoke a
large variety of DoS conditions and challenge defenses
by varying attack features such as sending dynamics,
spoofing and rates.

Attack type
UDP/ICMP packet flood

DoS mechanism

Large packets consume bandwidth,
while small packets consume CPU
Consume end-host’s connection ta-
ble

Consume bandwidth or CPU

TCP SYN flood

TCP data packet flood

HTTP flood Consume Web server’s CPU or
bandwidth

DNS flood Consume DNS server’s CPU or
bandwidth

Random fragment flood
TCP ECE flood
ICMP source
flood

Consume end-host’s fragment table
Invoke congestion control
Invoke congestion control

quench

TABLE II
ATTACK TYPES IN THE COMPREHENSIVE BENCHMARK SUITE

Attack traffic generated by the listed attacks interacts
with legitimate traffic by creating real or perceived
contention at some critical resource. The level of service
denial depends on the following traffic and topology fea-
tures: (1) Attack rate, (2) Attack distribution, (3) Attack
traffic on and off periods in case of pulsing attacks,
(4) The rate of legitimate traffic relative to the attack,
(5) Amount of critical resource — size of connection
buffers, fragment tables, link bandwidths, CPU speeds,
(6) Path sharing between the legitimate and the attack
traffic prior to the critical resource, (7) Legitimate traffic
mix at the TCP level — connection duration, connection
traffic volume and sending dynamics, protocol versions
at end hosts, (8) Legitimate traffic mix at the application
level — since different applications have different quality
of service requirements, they may or may not be affected
by a certain level of packet loss, delay or jitter.

If we assume that the legitimate traffic mix and topo-
logical features are fixed by inputs from our legitimate
traffic models and topology samples, we must vary the
attack rate, distribution, dynamics and path sharing to
create comprehensive scenarios. Additionally, presence
of IP spoofing can make attacks more challenging to
some DDoS defenses. Table III lists the feature variations
included in our benchmark suite for each attack type
listed in Table II.

The benchmark suite contains a list of attack specifica-
tions that include: attack type (from table II), packet size
(large or small), attacker deployment pattern (uniform
or clustered), attack dynamics (flat rate, synchronous
pulse and interleaved pulse), attack rate (low, moderate
or large), attacker aggressiveness (whether the chosen

Feature Variation

Rate Low, moderate and large

Attacker ag- | Low, moderate and large

gressiveness

Dynamics Continuous rate vs. pulsing (vary on and off

periods) Synchronous senders vs. interleaved
senders

Uniform vs. clustered locations of attack ma-
chines; legitimate clients are distributed uni-
formly

None, subnet, fixed IP and random

Path sharing

Spoofing

TABLE III
ATTACK FEATURE VARIATIONS THAT INFLUENCE DOS IMPACT

attack rate is spread over a low, moderate or large
number of attackers) and spoofing type. All combina-
tions of attack features are explored, but those that are
contradictory, e.g., spoofing with an application-level
attack such as HTTP flood, are discarded.

IV. EXPERIMENT GENERATOR

The Experiment Generator receives as input (1) AS-
level and edge-network topologies from the topology
library, (2) legitimate traffic models generated by the
LTProf tool, and (3) list of attacks. It glues these
elements together into an ns file containing topology
specification and a collection of Perl scripts, one for each
attack from the list and one script for legitimate-traffic-
only testing.

The AS-level and the edge-network topology are glued
together by the TopologyMerge script in the following
manner:

1) We identify the nodes in the AS-level topology
that have less than 9 neighbors, with 9 being the
maximum number of network interfaces a node
can have in DETER. Identified nodes become
candidates for expansion.

2) We identify border routers in the edge-network
topology and connect each to one candidate AS
node, via a limited-bandwidth link.

3) One input parameter to our script is the desired
number of edge networks in the final topology.
This is relevant for experiments that test collabo-
rative defenses and need several copies of the edge
networks to deploy the defense at each copy. If the
input number of copies is greater than 1 we create
multiple copies of the edge network and repeat
step (2) for each copy.

4) Each candidate AS-node is further expanded by
attaching to it several newly created nodes to play
the role of the external subnet communicating with
the attack’s target, or the role of an attacker. We
call these new nodes clones. The number of clones
to be attached to each AS-node is given as an input
parameter to our script.

5) Each clone is assigned a /24 or /16 address range
(an input parameter controls the size of the range)

0000 0000 Q000
O O
O
Q 0
o
‘.G‘f 2 8O
3.
N i- *

@ Ca1

© O U
o—+-0
O
O
@)
O
O
o ..
O
o d
@) c1
O
@) © O U

‘ 24
26 C2 ‘
c19 Q)
townNY c20 Q @
S acuseN c17 18
c21 Q) C[l4_#frisFrance

Cc13

rNY

‘ AndoJK
e\ &

. AmsterdamNetherl 4ridSpaii
% O Madrid§pain
C7 NfwarkNJ O
Ci6 Ci15
Asybukva C36 PhiladglphiaPA
MilitasQA
c10
5 Cé

McLeaVA SterlingVA Q)

O O C4

c2 c3

Fig. 5. Merging of the NTT America AS topology (red nodes) with two copies of the edge network (blue nodes) and two clones per candidate

AS-node (yellow nodes).

and routing is set accordingly. We assign multiple
addresses to clone nodes to generate sufficient
source address diversity at the target — this is
an important feature for some DDoS defenses that
model entropy of source IP addresses.

Figure 5 illustrates merging of the NTT America’s AS
topology with two copies of the edge network shown in
Figure 4 and with two clones per each candidate AS-
node. The outcome of the merging is an ns file that
can be used to create a new experiment on the DETER
testbed, either manually or via the Workbench GUI.

We produce the Perl scripts for experimentation by
feeding the topology file, the legitimate traffic and the at-
tack traffic specifications into the CreateScenario script.
The script identifies clone nodes in the topology and
randomly chooses some to play the role of legitimate
subnets. After parsing the legitimate traffic models,
commands are generated to set up traffic generators at
selected clone nodes. The remaining clone nodes are
called free clones. For each attack description the script
iterates through the following steps:

1) Print the standard Perl script preamble and legiti-
mate traffic setup commands to a new output file.

2) Calculate attack rate in packets per second, taking
into account the packet size. Small-packet attacks
target CPU resources, while large-packet attacks
target bandwidth. Since we know hardware capac-
ities in DETER we can easily calculate the attack
rate that exhausts CPU or bandwidth in our target
topology.

3) Calculate the maximum capacity of an individual
attacker (in packets or bytes per second) and,
by dividing attack rate with capacity, obtain the
minimum number of attackers.

4) For very aggressive attackers, the minimum num-
ber of attackers will be deployed. For non-
aggressive attackers, all free clones become attack
nodes. The number of attack nodes for moderately
aggressive attackers lies in between these two
cases, and is roughly one half of all free clones.

5) Select clone nodes to act as attackers according to
the attacker distribution. This option only makes
sense for very and moderately aggressive attackers,
since non-aggressive attackers use each free clone
node. For the uniform distribution, attack locations
are selected at random among free clones. At the
same time, to maximize path sharing, the script
ensures that each AS-node that has a legitimate
clone also has an attacker clone. For the clustered
distribution, the first attack node is deployed at
random. The remaining nodes are deployed itera-
tively: (a) Assign a probability to each free clone
to be selected, with higher probabilities given to
clones in the neighborhood of attack nodes, and
(b) Flip a coin for each free clone biased by its
selection probability and deploy new attack nodes
on clones favored by the coin flip.

6) Generate attack setup commands for selected

nodes, attack type, attack rate, attack dynamics and

spoofing strategy.

Generate commands for starting and stopping le-

gitimate traffic generators, attack traffic generators

and traffic statistics collection.

7

The result of the CreateScenario script is a set of
Perl scripts that a user can run manually or via the
Workbench’s GUIL. We are also working on automated
batch testing where the Workbench will run multiple
selected scripts and store results for later user’s review.

V. RELATED WORK

For space reasons we provide a brief overview of work
related to automated testing and benchmarking. In [11]
Sommers et al. propose a framework for malicious work-
load generation called MACE. MACE provides an exten-
sible environment for construction of various malicious
traffic, such as intrusions, worms and DDoS attacks, but
only a few attack generators are implemented. In DDoS
realm, MACE only produces SYN flood and fragment
flood attacks, with optional spoofing. Our generation
tools provide a wider variety of attacks. Similarly, Vigna
et al. propose automatic generation of exploits in [15],
for testing of intrusion detection systems. Our work
focuses on DDoS attacks.

In [12], Sommers et al. propose a traffic generation
method for online Intrusion Detection System evaluation.
This work relies solely on Harpoon for traffic generation,
and contains a limited number of simple DoS attacks. We
use a wider variety of traffic generators and attacks.

The Center for Internet Security has developed bench-
marks for evaluation of operating system security [2],
and large security bodies such as CERT and SANS
maintain checklists of known vulnerabilities that can
be used by software developers to test the security of
their code. However, much remains to be done to define
rigorous and representative tests for various security
threats, and we tackle this problem for DDoS attacks.

VI. CONCLUSIONS

Various approaches for handling DDoS attacks have
been hard to study and compare because of lack of
a common facility and experimental methodology. The
DETER testbed provides the necessary facility, and the
work described in this paper provides the methodology.
We have built a complete set of tools that will allow
even novices to quickly run standardized experiments
on various DDoS situations. Since the tools are common,
experiments run by different groups will be more directly
comparable than they have been in the past.

Our automation mechanisms are based on realistic
choices of topologies and legitimate traffic patterns. Our
attack tools are highly parameterizable and are based
on observations of properties of real DDoS attacks. We
have included three open source defense mechanisms for
experimenters to work with, and plan to add more as
they become available in sufficiently stable form. Exper-
imenters can easily integrate their own defenses or new
topologies and traffic generators into the Workbench,
which is an open-source tool. We have provided both a
full graphical interface and a powerful scripting capabil-
ity for creating experiments that cover an extremely wide
range of the possibilities. The Workbench is currently
being transformed into the Security Experimentation
EnviRonment (SEER). It is currently available in the

DETER testbed (at http://seer.isi.deterlab.
net /), and is being extended to support experimentation
with other threats such as worms, routing attacks etc. The
Experiment Generator is also integrated with SEER and
we are looking into extending it for other experiments,
beyond DoS.

Our tools will significantly ease the difficult problem
of performing high quality experiments with DDoS at-
tacks. They will be useful not only to researchers, but to
students and educators who need to learn about denial
of service. Our future work will focus on extending our
collections of traffic generators, topologies, defenses and
statistics collection tools, and on applying automation to
experiments with other network security threats.

REFERENCES

[11 T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph,
K. Sklower, R. Ostrenga, and S. Schwab. Experiences With DE-
TER: A Testbed for Security Research. In 2nd IEEE TridentCom,
March 2006.

[2] The Center for Internet Security. CIS Standards Web Page.
http://www.cisecurity.org/.

[3] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Transactions on Computer
Systems, 18(3):263-297, August 2000.

[4] A. Kuzmanovic and E. W. Knightly. Low-Rate TCP-Targeted De-
nial of Service Attacks (The Shrew vs. the Mice and Elephants).
In ACM SIGCOMM 2003, August 2003.

[5] J. Mirkovic. D-WARD: source-end defense against distributed
denial-of-service attacks. PhD thesis, UCLA, 2003.

[6] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P. Reiher,
R. Thomas, W. Yao, and S. Schwab. Towards User-Centric
Metrics for Denial-Of-Service Measurement. In Workshop on
Experimental Computer Science, 2007.

[7]1 P. Oppenheimer. Top-Down Network Design. CISCO Press, 1999.

[8] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, and
R. Govindan. COSSACK: Coordinated Suppression of Simul-
taneous Attacks. In Proceedings of DISCEX, pages 2—13, 2003.

[9]1 EMIST project. Evaluation methods for internet security technol-

ogy. http://www.isi.edu/deter/emist.temp.html.

J. Sommers, H. Kim, and P. Barford. Harpoon: A Flow-Level

Traffic Generator for Router and Network Tests. In ACM

SIGMETRICS, 2004.

J. Sommers, V. Yegneswaran, and P. Barford. A Framework for

Malicious Workload Generation. In ACM Internet Measurement

Conference, 2004.

J. Sommers, V. Yegneswaran, and P. Barford. Toward Compre-

hensive Traffic Generation for Online IDS Evaluation. Technical

report, Dept. of Computer Science, University of Wisconsin,

August 2005.

Sparta, Inc. A Distributed Denial-of-Service Detection

and Response System. http://www.isso.sparta.com/

research/documents/floodwatch.pdf.

N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP

topologies with RocketFuel. In Proceedings of ACM SIGCOMM,

2002.

G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-

based Intrusion Detection Signatures Using Mutant Exploits. In

ACM Conference on Computer and Communication Security,

2004.

Websiteoptimization.com. The Bandwidth Report.

www.websiteoptimization.com/bw/.

R. White, A. Retana, and D. Slice. Optimal Routing Design.

CISCO Press, 2005.

E. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an

Internetwork. In Proc. of IEEE INFOCOM, volume 2, pages 594

—602, March 1996.

[10]

[11]

[12]

[13]

[14]

[15]
[16] http://
[17]

(18]

