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Abstract—Testing security systems is challenging because a system’s authors have to play the double role of attackers and
defenders. Red Team/Blue Team exercises are an invaluable mechanism for security testing. They partition researchers into two

competing teams of attackers and defenders, enabling them to create challenging and realistic test scenarios. While such exercises
provide valuable insight into the vulnerabilities of security systems, they are very expensive and thus rarely performed. In this paper,

we describe a Red Team/Blue Team exercise, sponsored by DARPA’s FTN program, and performed October 2002 to May 2003. The
goal of the exercise was to evaluate a collaborative DDoS defense, comprised of a distributed system, COSSACK, and a stand-alone

defense, D-WARD. The role of the Blue Team was played by developers of the tested systems from USC/ISI and UCLA, the Red
Team included researchers from Sandia National Laboratories, and all of the coordination, experiment execution, result collection, and

analysis were performed by the White Team from BBN Technologies. This exercise was of immense value to all involved—it
uncovered significant vulnerabilities in tested systems, pointed out desirable characteristics in DDoS defense systems (e.g., avoiding

reliance on timing mechanisms), and taught us many lessons about testing of DDoS defenses.

Index Terms—DDoS, collaborative defense, red team testing, denial of service.
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1 INTRODUCTION

TESTING of security systems is very challenging. The goal
of the testing process is twofold: 1) It must prove that

the system protects against some target threat, in various
settings, with satisfactory performance and 2) it must prove
that the system cannot be circumvented by an attackerwho is
familiar with the design. In most cases, the testing is
performed by system designers who alternate between the
attacker’s role to design test scenarios and the defender’s role
to improve the deficiencies revealed by the testing. Besides
being psychologically challenging, this testing approach
results in simple and incomplete tests because system
designers are naturally biased toward proving that their
system works. Therefore, they design scenarios that meet
only the first goal of the testing process. Further, defense
designers often make tacit assumptions about their system’s
behavior or working environment. These assumptions can

develop into research “blind spots,” where potential
security flaws can lurk unseen. Because security systems
in real deployment are challenged by motivated and
skilled attackers, evaluating a system’s robustness in
realistic complex scenarios is of paramount importance.

Red Team testing formally separates researchers into
teams taking on the attacker (Red Team) and the defender
(Blue Team) roles [1], [2], which leads to more realistic test
scenarios. Blue Team members are defense designers who
provide extensive design documentation and live support
to the Red Team before and during the testing process. The
Red Team members study the security systems using
documentation and small-scale experiments and then
leverage the information gathered on the system’s design
to develop tests that aim at circumventing or disabling its
operation. Naturally, the Blue Team and the Red Team
strive for a different testing outcome. Blue Team members
hope that the security system will prove resilient to all
attacks, while Red Team members hope to find any security
holes that have been overlooked by designers. To keep the
testing process objective, sometimes a White Team is
formed from a neutral third party and they are responsible
for setting the rules of engagement, devising appropriate
success measures, collecting statistics, and evaluating
results. Red Team/Blue Team exercises are invaluable to
system designers—they frequently result in discovery of
deficiencies that are later fixed, thus leading to more robust
systems. However, they are quite costly because they
require the engagement and close synchronization of many
people for a considerable time.

From October 2002 to May 2003, we participated in a Red
Team/Blue Team exercise, sponsored by DARPA’s Fault
Tolerant Networking (FTN) program. The goal of the
exercise was to first combine two related security systems—
COSSACK [3], developed by the Information Sciences

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008 1

. J. Mirkovic is with the USC Information Sciences Institute, 4676
Admiralty Way, Suite 1001, Marina del Rey, CA 90292.
E-mail: sunshine@isi.edu.

. P. Reiher is with the University of California Los Angeles, 3564 Boelter Hall,
405 Hilgard Ave., Los Angeles, CA 90095. E-mail: reiher@cs.ucla.edu.

. C. Papadopoulos is with the Department of Computer Science, USC 228,
Colorado State University, 1873 Campus Delivery, Ft. Collins, CO 80523-
1873. E-mail: christos@cs.colostate.edu.

. A. Hussain is with Sparta, Inc., 2401 E. El Segundo Blvd., El Segundo, CA
90245. E-mail: Alefiya.Hussain@sparta.com.

. M. Shepard is with BBN Technologies, 10 Moulton Street, Cambridge, MA
02138. E-mail: mshepard@bbn.com.

. M. Berg and R. Jung are with Sandia National Laboratories, PO Box 5800,
Albuquerque, NM 87189-0672. E-mail: {mjberg, rajung}@sandia.gov.

Manuscript received 26 Nov. 2006; revised 10 Oct. 2007; accepted 14 Nov.
2007; published online 11 Mar. 2008.
Recommended for acceptance by F. Lombardi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0446-1106.
Digital Object Identifier no. 10.1109/TC.2008.42.

0018-9340/08/$25.00 ! 2008 IEEE Published by the IEEE Computer Society



Institute (USC/ISI), and D-WARD [4], developed by
UCLA—into a single defense and then to evaluate this
defense in a variety of scenarios. The Blue Team members
were researchers from USC/ISI and UCLA who have
developed the COSSACK and the D-WARD systems, the
Red Team consisted of researchers from Sandia National
Laboratories, and the White Team consisted of researchers
from BBN Technologies. The overall exercise lasted eight
months and yielded many interesting insights about the
tested systems, leading to improvements in their design. In
this paper, we document our experiences from this exercise
and summarize lessons learned.

This paper focuses on the Red Team/Blue Team exercise,
not on the tested defenses. Specifically, we do not claim that
our defenses are superior to other systems or that their
combination is superior to each defense deployed individu-
ally. Instead, we describe how the testing process was
designed and customized to the defenses, how the tests were
run, and what we learned from them about defenses and
about testing security systems on a large scale. Since Red
Team testing is rare in the academic community,wehope this
paper will help others who engage in such endeavors to
replicate our successes and learn from our mistakes. We
further note that tests presented in this paper are nowold, but
were representative of DDoS trends during the exercise.
Further, some tests were designed specifically to stress-test
the defense software, as is the goal during Red Team/Blue
Team exercises, and do not reflect real-world attacks.

Both COSSACK and D-WARD are defenses against
DDoS attacks, developed in DARPA’s FTN program.
During a DDoS attack, an attacker launches coordinated
high-volume traffic from many compromised machines
toward a common victim. The traffic interferes with the
victim’s operation and its legitimate users experience
prohibitively slow replies or a complete service disruption.
In addition to the challenges of security systems’ testing
discussed above, DDoS defense testing must overcome the
challenge of scale. DDoS attacks involve anywhere from a
few hundred to half a million attack machines, distributed
all over the Internet. To realistically test a DDoS defense, we
would need an Internet-scale testbed—an impossible goal.
Instead, testers must select important characteristics of an
attack scenario, such as traffic aggregation, attack dynamics,
legitimate traffic mix, and similar, to faithfully reconstruct
in a testbed. The selected features are then scaled down
carefully to fit the testbed at the available size.

In Section 2, we describe the testing methodology used in
the exercise. We provide a brief overview of the two defense
systems and their integrated version in Section 3, sufficient
to understand testing decisions and attack strategies.
Section 4 provides more details about the experimental
setup; the performance metrics for the defense evaluation
are defined in Section 5. We provide results of the executed
tests in Section 6 and recount lessons learned in Section 7.

2 TESTING METHODOLOGY

DARPA regularly encourages systematic testing efforts for
the research projects that it currently funds and it has funded
numerous Red Team/Blue Team exercises. To keep the cost
of these exercises reasonable, defense tuning, attack devel-
opment, and defense evaluation sometimes occur sequen-
tially in separate phases. In the first phase, the Blue Team
develops and tunes the tested system’s code. Once devel-
oped, the code is frozen (further changes are forbidden) and

handed over, with all supporting documentation, to the Red
Team. In the second phase, the Red Team analyzes the
system code, designs attacks to stress the system and
exploit vulnerabilities, and tests them in small-scale
scenarios. Sometimes the final tests are automated so that
they can be run by the White Team in the third phase. The
White Team also organizes and coordinates the entire
exercise, which includes testing infrastructure design and
implementation, experiment planning, equipment setup,
execution of experiments, and data analysis. While there is
extensive communication between teams during the entire
exercise, the separation of tasks into sequential phases
reduces costs because it minimizes the need for simulta-
neous live engagement of all three teams.

The COSSACK/D-WARD Red Team/Blue Team exer-
cise involved three teams from four organizations. The Blue
Team consisted of COSSACK authors Christos Papadopou-
los, Bob Lindell, John Mehringer, and Alefiya Hussain from
the University of Southern California Information Sciences
Institute and of D-WARD authors Jelena Mirkovic and Peter
Reiher from the University of California Los Angeles. The
Red Team members were Tom Obenauf, Michael Berg,
Robert Jung, and Dino Dai Zovi from Sandia National
Laboratories. All have participated in numerous Red Team
exercises prior to this one and had rich experience in system
testing. The White Team members were William Nelson,
Ken Theriault, Wilson Farrell, Lyle Sudin, Conor Sibley,
Marla Shepard, and Pam Helinek from BBN Technologies.

The Red Team/Blue Team exercise employed a single
large topology consisting of nine disjoint edge networks
containing a mix of routers, clients, and servers. Some
networks deployed the modified COSSACK/D-WARD
system. The evaluation consisted of presenting various
mixes of benign (a result of normal network operation) and
malign (attack) traffic to the instrumented edge networks
and assessing the protection offered by the combined
actions of COSSACK/D-WARD systems.

The central metric employed in the exercise was the
availability of service to legitimate traffic: If this metric was
significantly below the value observed in the absence of
attacks, the attacks were considered to have succeeded.
Since a complete assessment must also characterize the
operational cost of employing COSSACK/D-WARD, statis-
tics such as the rate of false positives and false negatives,
the speed of response in detecting and responding to an
attack, and any loss in bandwidth of a defended network
were also collected.

2.1 Rules of Engagement
At the experiment planning phase, it was agreed that the Red
Team would observe the following rules of engagement:

1. Because some security aspects of the existing
COSSACK and D-WARD software, which are not
relevant to their ability to detect and respond to
DDoS attacks, were not yet implemented (such as
protecting themselves from attack), those capabil-
ities were assumed for the duration of the experi-
ment. Attacks intended to directly disable the
defensive technology (e.g., crash it by presenting it
with malformed network traffic, kill processes on a
machine, etc.) were off limits. Attacks intended to
defeat the defensive technology through means
other than its normal operating environment and
conditions (e.g., by modifying its configuration files
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that contain detection parameters) were also off
limits. This means that the main goal of Red Team
attacks was to evade detection or response by
COSSACK/D-WARD while still creating a signifi-
cant denial of service (DoS) on legitimate traffic,
rather than to directly attack the defense system.

2. Attacks targeting routers were off limits as they were
not protected by the defense.

3. Since D-WARD functionality encompasses ingress
filtering [5], random spoofing from COSSACK/D-
WARD deploying networks could easily be de-
tected. For this reason, the Red Team was allowed
to perform only subnet spoofing from defended
networks. Any spoofing from nondefended net-
works was permitted.

4. The Red Team was not allowed to attack unpro-
tected subnets (not containing a defensive technol-
ogy) or to launch intrasubnet attacks; both of these
attack categories cannot be eliminated by the tested
defense because they do not traverse it.

5. Application-level attacks (aka “flash crowds”),
where an attack consists of fully legitimate service
requests, were forbidden as defenses were not
designed to protect against them.

To summarize: all attacks employed in this experiment
were required to be of a DDoS nature, to be launched over
network links observed by either COSSACK or D-WARD,
and to be subject to D-WARD responses.

There were no limits on the reconnaissance and attack
tools that could be employed and the Red Team had full
knowledge of the entire system. The Blue Team was not
permitted to manually change the underlying software,
configuration, or defensive strategy once experimentation
had started, to avoid the problem of any changes nullifying
previous results.

3 DEFENSE SYSTEMS

In this section, we provide high-level details about the
COSSACK and the D-WARD systems and their integration.
Readers interested in learning more about COSSACK and
D-WARD should refer to publications [3] and [4].

3.1 COSSACK
COSSACK is a DDoS detection and response system.
COSSACK components, called watchdogs, are located at
the edge networks. Each watchdog monitors its own
network and it shares information and coordinates actions
with other watchdogs via a multicast framework yoid [6] to
collectively combat DDoS attacks. Localized information
can be gleaned using a variety of collection tools, such as
SNMP statistics, Cisco NetFlow [7], and IDS tools such as
Snort [8]. The tested implementation of COSSACK uses
Snort with a custom-developed plug-in which can be
controlled by the watchdog dynamically during attacks.

When a DoS attack is launched against a COSSACK-
protected network the following operations take place:

1. The watchdog at the victim edge network detects the
attack at the ingress point.

2. The watchdog instructs the IDS (Snort) to compile
source address information and attack signature
data (rates, type of attack, etc.) into a message.

3. The watchdog multicasts this message to other
watchdogs in the network. It also advertises an
attack-specific multicast group.

4. Watchdogs representing the implicated source net-
works join the attack-specific multicast group and
perform in-depth analysis of their outgoing flows to
determine if attack machines exist within their
infrastructure.

5. Source networks that identify attack machines
deploy countermeasures to stop attack flows.

Local responses will be dictated by the local policy and the
information received from the victim network’s watchdog.

COSSACK watchdogs rely on an existing intrusion
detection system to detect attacks. In the tested system, a
Snort [8] plug-in has been implemented for attack detection.
Packets captured by Snort are guided through a series of
processing steps, one of which is filtering against a rule
database containing known attack patterns that are matched
against the header and payload information. In the tested
system, this rule base was static and was a reason behind
COSSACK’s failure to detect some simple attacks, such as
TCP data flood with spoofed packets (see Section 6.2),
whose traffic did not match the rules.

3.2 D-WARD
D-WARD is a source-end defense, installed at a gateway
router between the deploying network (source network)
and the rest of the Internet. D-WARD’s goal is to detect
outgoing attacks and to rate limit attack streams. At the
same time, legitimate traffic must proceed undisturbed
even when its destination is the alleged victim of the attack.

D-WARD monitors all packets passing through the
gateway router and gathers statistics on two-way commu-
nication between the source network and the rest of the
Internet. These statistics are mainly counts of packets and
bytes going in each direction, in four traffic categories: TCP,
UDP, ICMP, and other. Statistics are collected at the
granularity of an aggregate flow and a connection, where the
aggregate flow represents all traffic exchanged between a
source network and a foreign host and the connection
represents all traffic between two hosts and port numbers,
where one host is within a source network and the other is a
foreign host. Periodically, statistics are compared to models
of normal traffic that mainly test if the amount and context
of the reverse traffic match the amount and context of the
outgoing traffic.

D-WARD classifies TCP and ICMP flows or connections
as part of an attack if the ratio of packets sent to packets
received, smoothed over a suitable period, is higher than a
specified threshold. Otherwise, such flows and connections
are classified as “good.” For UDP flows, several criteria are
used to determine if the flow is an attack. These include the
number of connections to a given destination, the number of
packets per connection, and the maximum sending rate.
The values of these are compared to thresholds to
determine if the flow is an attack. At the time the testing
was performed, D-WARD only classified UDP flows, not
UDP connections. If an attack was detected, all UDP
connections were rate limited.

The rate limit is set for flows that do not match normal
traffic models and it is based on their past behavior and
aggressiveness. D-WARD forwards outgoing packets to
their destination if one of the following three conditions
hold: 1) They do not belong to a rate-limited flow, 2) they
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belong to a rate-limited flow but are part of a good
connection, and 3) they belong to a rate-limited flow and
there is sufficient available bandwidth.

3.3 COSSACK/D-WARD Combined
In the combined operation, COSSACK and D-WARD both
perform detection of DDoS attacks, but only D-WARD
deploys responses to those attacks. Each edge network in
the exercise runs both a COSSACK watchdog and a
D-WARD system. When the local watchdog near the victim
detects an attack, it sends alerts to remote watchdogs using
COSSACK’s multicast mechanisms.

The COSSACK message carries information about the
type of the attack, the IP of the machine under attack, IP
ranges of networks that COSSACK believes are sources of
the attack, a suggested rate limit for D-WARD to impose,
and a flag showing whether this is a message concerning a
new, ongoing, or aborted attack. If a local watchdog
determines that the network it covers is on the list of
suspect source networks, it will forward the message to its
collocated D-WARD system.

The D-WARD’s response to a COSSACK message de-
pends on the type of themessage and any existing knowledge
of the attack specified in the message. In the case of newly
detected UDP attacks, D-WARD regards COSSACK’s detec-
tion signal as authoritative andwill impose the requested rate
limit on the attack. This rate limit will be regulated only
through COSSACK’s messages, i.e., it will be removed
instantly when COSSACK detects the end of the UDP attack.
In the case of a newlydetectedTCPor ICMPattack,D-WARD
accepts the attack signal but invokes its own rate-limiting
algorithm to calculate the appropriate rate limits. Similarly,
messages about the attack’s end are regarded as a signal that
the rate limits should be slowly lifted. This difference in
handling TCP/ICMP and UDP attacks was engineered
because our preliminary tests indicated that D-WARD’s
detection of TCP/ICMP attacks was more accurate than
COSSACK’s, while COSSACK was more accurate in detect-
ing UDP attacks. Our experimental results have shown,
however, that D-WARD was overall more accurate in
detecting attacks and did not benefit from being integrated
with COSSACK.

4 EXPERIMENT SETUP AND SCENARIOS

4.1 Topology
The experimental topology consisted of nine edge networks
connected by a core network, which was simulated by a
multiported Cisco router. The topology is shown in Fig. 1
and hardware specifics of nodes in the topology are given in
Table 1. The system had three types of components:
1) clients (F 1-20) and servers (S 1-6) residing on different
edge networks, 2) edge network border routers deploying
COSSACK and D-WARD (C 1-9 and D 1-9), and 3) a core
network consisting of a router only. Each edge network’s
clients and servers exchanged legitimate traffic, consisting
of TCP, UDP, and ICMP packets, over the core network,
with the clients and servers on the other edge networks.
During attacks, some clients were subverted and played the
role of attackers.

This topology consisted of more real machines than was
typical in DDoS testing at the time, but still far fewer
machines than are involved in real-world DDoS attacks. It is
worth considering if experiment results would be any
different if a larger, more realistic testbed were available. In

a larger network, an attacker (or, in our case, the Red Team)
could send at a higher rate, distributing the attack so that
smaller numbers of packets would be sent from larger
numbers of sites. Rolling floods (Section 6.3) could also
cycle through larger numbers of nodes. COSSACK’s attack
detection was rule-based and would likely be as effective in
a large network as in a smaller one. COSSACK’s multicast
mechanism would be challenged if it supported large-scale
communication. In D-WARD experiments described in [4],
it was shown that the defense successfully detects and
controls low-rate attacks if they inflict DoS effect at the
victim. Rolling floods, however, would be successful
because they exploit timing in D-WARD’s design. We are
not aware of any existing DDoS defenses that can handle
large-scale distributed rolling floods. The administrative
challenges of running this exercise with our current
topology were significant. Even if a much larger testbed
were available, it would likely be hard to organize a Red
Team/Blue Team exercise of such scale.

4.2 Legitimate Traffic
The Skaion traffic generation system [9] was utilized in this
exercise to provide legitimate traffic. The traffic was
generated using semiautonomous software agents or bots.
Bots are deployed on a set of traffic generation machines
and they can interact with each other or with live hosts
during experimentation. Bots are driven by a broad
stochastic representation of a desired traffic mix they work
to recreate and use real applications for traffic generation,
such as Telnet, SSH, and Web applications.

A single traffic generation machine can run multiple
bots, each acting as a virtual host and having a dedicated IP
address. Multiple traffic generation machines can be
orchestrated to generate traffic from thousands of virtual
hosts by running a slave module on each machine and
coordinating all slave activities via a single master module
run on a separate control machine.
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TABLE 1
Configurations of Machines Involved in the Exercise



In our exercise, there were three traffic generators (TG 1-3
in Fig. 1), each running multiple bots. These hosts were
connected together via the out-of-band network (denoted
with bold lines in Fig. 1) that was off-limits to both
legitimate message traffic and attack by the Red Team. All
network links had 10 Mbps bandwidth, with the exception
of the traffic generation network, which was configured to
run at 100 Mbps speed.

4.3 Attacks
The task of the Red Team was to design attacks that
measurably degrade or deny availability of network resources
on one or more edge-networks. Degradation implies a
decrease in the throughput of traffic to and from an edge-
network, relative to the throughput observed in the absence
of an attack. Denial implies that the services of an edge-
network are no longer available despite the actions of
COSSACK/D-WARD. The Red Team focused on attacks that
stress or bypass defenses; thus tests did not include partial
deployment scenarios or scenarios that test scalability of
defenses. Specifically, for partial deployment scenarios, both
COSSACK and D-WARD deploy a response close to the
sources of attack. If some attackers reside in networks that do
not run D-WARD or COSSACK, their traffic will reach the
victim unhindered and, if its volume suffices, it will create
DoS. Since all links in our experiment were 10 Mbps, they
could be flooded by a single attack machine generating large
packets (1,200 byte packets map into ! 1; 042 packets per
second that can easily be generated by a single machine). In
the real Internet, larger link capacity in networks hosting
servers (frequently > 1 Gbps), and a smaller link capacity of
bots (according to [10], an average bot can generate at most
100Kbps)map into the requirement of at least 10,000 bots that
need tobe located in legacynetworks for a successful flooding
attack. Additionally, a host under TCP SYN flood attack that
does not deploy syncookies can be brought down by roughly
100 packets per second, which can be generated by a single
attack machine.

Special care was taken to ensure that attack code cannot
“escape” the experimental environment, either accidentally
or by real attackers compromising experimental hosts and
stealing the code to reuse it later in real attacks. All of the
executable codes for attacks were uploaded to the experi-
mental network via SSH over VPN. The attack code had no
inherent propagation capabilities of its own and, thus, could
not self-propagate if it were accidentally released. Further,
all attack codes that generate IP packets contained algo-
rithms to filter all outgoing packets with addresses other
than those used in the exercise. All hosts in the exercise
were assigned globally nonroutable addresses.

Attack Strategy Development. Chronologically, the attack
strategy was developed in the following manner:

1. Attacks were postulated and categorized into gen-
eral classes.

2. Attacks were either discarded because the teams
agreed that they were off limits or chosen for full
development and testing on standalone systems and
lightweight networks.

3. Reconnaissance was performed on a live network.
This reconnaissance did not use the final network
that was utilized for the experiment, but instead a
smaller network located at the Red Team’s institu-
tion. The consequences of different implementation
platforms later created much difficulty because some

developed attack strategies were not as effective in
the real experiment as they were in the reconnais-
sance phase.

4. Attacks were tested and refined on the reconnais-
sance network.

5. Attacks were turned over to the White Team for
execution, data collection, and analysis.

Classes of Postulated Attacks. 1) Timing attacks, which
capitalized on temporal interdependencies between soft-
ware components, network timing characteristics, etc. Since
the nature of the defensive technology—and the underlying
DDoS problem itself—is highly temporal in nature, the
majority of attack strategies had either a basis in, or at least
an important component of, timing strategy. 2) Commu-
nicating attack threads (Smart Mobs)—the Red Team con-
jectured that attacks which implemented an intelligent
communication strategy to coordinate their activities would
be more successful than brute-force attacks. 3) Synergies
achieved through simultaneous attacks—attacks were hypothe-
sized in which the combined effects, and, hence, likelihood
of success, of multiple attacks would be greater than the
effects of any of the individual attacks. Since the defensive
technologies were assumed to detect and respond to brute-
force attacks, the synergies sought resulted in subtler,
stealthier attack behavior.

Discarded Attacks. A variety of existing attacks and “out-
of-the-box” tools were considered. Ultimately, the Red
Team developed its customized attack tools that combined
useful attack strategies from out-of-the-box tools, but were
more easily manipulated and customized during exercise.

Attack Packet “Labeling”. To enable analysis of the
network traffic captured during experiment runs, the Red
Team agreed to “label” packets that its tools were
generating. This packet labeling allowed categorization of
packets as either normal or attack traffic by the White Team
instrumentation that collected the experiment’s statistics.
The marks were used for statistics collection purposes only.
Both COSSACK and D-WARD ignored the packet labels.

Several techniques were explored to achieve packet
labeling. Eventually, a technique was selected by which
the IP timestamp option bit was added to the attack packet
IP headers and all attacks were developed using this
labeling. Later, when attack scripts were ported from the
Red Team’s network to the experimental network, which
used a Cisco router, it was discovered that the Cisco 3600-
family routers exercised different processing paths for
normal packets (which did not contain the IP timestamp
option) than for attack packets. These different processing
paths affected both the priority of packets passing through
the routers and the speed with which packets were
processed. To address this problem, the Red Team attack
tools were eventually modified to use the Type of Service
(TOS) field in the IP headers for labeling. This technique
allowed positive identification of attack traffic packets.

4.4 Experiment Control
Experiment control and data collection was coordinated
from the experiment control host (labeled Access in Fig. 1).
This host executed the BBN experimentation framework.

5 PERFORMANCE METRICS

This experiment employed two principal performance
metrics: 1) a fraction of the legitimate traffic throughput
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maintained, measured as percentages of different kinds of
legitimate traffic maintained at the preattack levels by the
defensive system and 2) whether the DDoS attack was
detected and responded to. Several additional submetrics
wereuseful for characterizingvarious aspects of thedefenses:

1. the rate of false-positive and false-negativedetections,
2. the time to detection, measured as the amount of

time from the attack launch until the system decides
it is indeed an attack,

3. the time to respond, measured as the amount of time
from attack detection until the legitimate traffic
returns to a baseline level, and

4. the severity of the attack—the damage inflicted on
legitimate traffic in an undefended system.

These performance metrics were chosen at the time and
agreed upon by all team members. Several years later, team
members Reiher, Hussain, and Mirkovic worked with
collaborators from SPARTA and Purdue University to
develop novel, more accurate metrics for measuring DoS
in experiments. That work is described in [11], but, since
detailed packet traces from our Red Team/Blue Team
exercise were not preserved, we cannot apply new metrics
to the experiments described in this paper.

Further, the experiment methodology did not permit us
to analyze higher level effects of attacks. Thus, we do not
know and cannot determine if defense actions tended to
cause some connections be dropped completely or all
connections to receive degraded service. Based on our
understanding of D-WARD’s functionality, we believe the
latter was the case.

5.1 Data Validation
Data validation was performed by repeatedly executing
runs to ensure that the results obtained were consistent.
Each experiment was run five times. The first four iterations
used four different seed values for random number
generation needed for traffic generators and the fifth
iteration repeated the initial seed value. The different seed
values provided for statistical variation of the data.
Unfortunately, only results from single test runs were kept
after the exercise and used for the final report and for this
paper. Thus, our graphs reflect results from single runs and
lack confidence intervals.

6 RESULTS

In this section,we showselected experimental results fromall
tested attacks and discuss defense performance in detail. All
attacks generate packets with random contents except for
HTTP flood attacks which generate valid HTTP requests.

6.1 Baseline—No Attack
The baseline runs have no attacks present and consist of only
legitimate traffic. Therewere three different legitimate traffic
levels that were used to test false positives introduced by the
defense systems—low, high, and mixed. The high traffic
pattern used approximately 10 percent of the available
bandwidth, the low traffic pattern used approximately
2 percent of the available bandwidth, and the mixed traffic
pattern started at the low level and, after 10min, increased to
the high level to simulate a sudden change in traffic behavior.
Each baseline was run for 20 minutes.

Each traffic mix was run without any defense, with
D-WARD only, with COSSACK only, and with the
integrated COSSACK/D-WARD system. The behavior of
the system with only COSSACK running is equivalent to
the behavior of the system with neither defensive system
running as only D-WARD can implement responses.

Table 3 summarizes the average baseline behavior in
each configuration. In each case, 99.8 percent to 100 percent
of the traffic sent was received. In the low traffic pattern
runs, there was essentially no difference in the average
number of packets received with or without defenses.
Under the mixed and the high traffic pattern, slightly lower
average numbers of packets were received with defenses,
indicating packet loss due to false detections.

Figs. 2a, 2b, and 2c show packet counts received at
subnet 1 over the duration of the experimental run, in
30 seconds intervals. The time is shown on the x-axis,
relative to the start of the run. The majority of the traffic is
TCP and the number of UDP packets is generally fairly
consistent for the duration of the run. The low traffic
pattern sends about 15 percent and the mixed traffic pattern
sends about 45 percent of the traffic sent with the high
traffic pattern.

Table 4 summarizes the average number of false positive
detections, actions, and classifications from the attack-free
baseline runs when both defensive configurations were
running. COSSACK did not have any false positive
detections during the baseline runs, while D-WARD had
some false positives. Therefore, runs with only COSSACK
deployed are false positive-free, while runs when only
D-WARD is deployed have identical results with runs when
both systems are active. The “detections” field in the table
shows the number of false attack detections per run and the
“actions” field shows the duration of rate-limiting, calculated
from the moment when a rate limit is imposed on the flow to
the moment it is removed. Since the rate limit is changing
dynamically, a flow may not experience drops even if it is
rate-limited. The fields “TCP/UDP misclassified” show the
average percentage of TCP and UDP connections that were
not classified as “good” and, therefore, could experience
packet loss due to defensive actions if any actions are
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triggered. In a case when no false-positive detections
occur, no packets will be dropped from these connections.

The overall frequency of false positive detections was
very low: We have, at most, four false attack detections
during the experiment. Also, we observed that higher traffic
loads caused the false detection rate to increase significantly
(0 with low traffic load, 2 with mixed, and 4 with high
traffic load). Falsely triggered defensive actions lasted for
about half a minute. Misclassifications fluctuated in the
range 0.47 percent to 0.79 percent and there was no clear
correlation between the number of misclassifications and
the traffic rate. Since, overall, less than 0.2 percent of traffic
was dropped by the defenses during baseline tests, we
conclude that the defense actions did not have a large
negative impact on the performance and that they were able
to effectively handle changes in the average network load.
In the rest of this paper, we show the results of experiments
performed with the combined COSSACK/D-WARD de-
fense and the high traffic baseline mix.

6.2 Spoofing Floods
In spoofing floods, attack machines spoof source addresses
from the /24 subnet where the machine is located. In each of

the spoofing flood attacks, the attackers were on subnets 4, 5,
6, and 7 and one server host on subnet 1 was being attacked.
There were four tested attacks: Spoofing Flood TCP, Spoofing
Flood UDP, Spoofing Flood ICMP, and Spoofing Flood All. The
first three attacks generate TCP, UDP, and ICMP flood,
respectively. The fourth attack generates a random mix of
traffic using these three protocols. The goal of these attacks
is to consume network bandwidth at the victim, so they
generate 1,200 byte packets to target the bandwidth with a
few packets per second. This packet size was chosen
arbitrarily. It is close to the maximum packet size of
1,500 bytes for the Ethernet medium used in the experi-
ment. The TCP flood uses TCP data packets. We test a TCP
SYN flood in Section 6.6. Each attack machine sends packets
as quickly as its Ethernet device allows. In each attack
scenario, four attack machines flood one server machine.

Expected outcome. From the defense system specifications,
the Red Team expected that these attacks will be effectively
detected and controlled. They were included in the tests for
completeness and to demonstrate the system’s operation
under simple floods.

Summary of results. Table 2 summarizes the results of test
runs with spoofing attacks, showing the effect on legitimate
traffic as a percentage of the baseline case. In the table, the
reduction in the rate at which the victim receives legitimate
traffic in the presence of an attack is subdivided into two
categories: 1) The reduction in network transport rate refers to
the amount of good traffic that was erroneously dropped by
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the defenses and not received by the victim subnet. 2) The
reduction in source generation rate refers to the drop in the
quantity of good traffic the traffic generator was able to send,
as compared to the baseline case, due to network congestion
slowing down good TCP traffic generation. The rate of
legitimate traffic at thevictim is theproduct of these tworates.

Fig. 3a compares the amount of legitimate traffic
received at victim subnet 1 against the amount of legitimate
traffic sent to subnet 1 for a Spoofing Flood UDP attack with a
defended system. After the attack starts, this percentage
drops sharply for several seconds while the attack is being
detected and the defense system is calibrating a response.
After this initial disruption, legitimate traffic is being well
protected by the defense and the percentage returns to
values close to 100 percent. As Table 2 shows, approxi-
mately 97 percent of the legitimate traffic sent during the
attack was received at the victim. The traffic generators sent
90 percent of the baseline traffic level. Thus, in this run, the
amount of traffic received by subnet 1 was 87 percent of
what it received in the baseline case, yielding a 13 percent
net loss. The defended system showed a significant
improvement over the undefended system, where the
transport rate was 38 percent, the source rate was 13 percent
of the baseline, and the victim network only received
5 percent of the baseline traffic as a result of the congestion
in the network, yielding a 95 percent net loss. D-WARD
detected and responded to this attack since the attack
created sufficient disturbance in the sent-to-received packet
ratio needed for D-WARD’s attack detection and separation
of legitimate from attack connections. COSSACK did not
detect this attack because static Snort rules did not match
the attack traffic. The defenses were able to throttle the
attack within 10 seconds.

Fig. 4 shows results for the Spoofing Flood ICMP attack. In
addition to the initial service disruption while the attack
was being detected, there was another period of poor
service at about 550 seconds. This occurred because the
defense erroneously detected the end of the attack and

initiated the rate limit increase, allowing the attack to
disrupt legitimate traffic’s service when the rate limit
became sufficiently high. Afterward, the defense detected
the attack for the second time and reestablished the rate
limit, restoring good service to legitimate traffic.

For space reasons, we do not show figures for the
Spoofing Flood TCP and Spoofing Flood All attacks. The
defense responded to Spoofing Flood TCP in a way similar to
its response to Spoofing Flood UDP. The response to Spoofing
Flood All was very similar to the response to Spoofing Flood
ICMP.

The Red Team’s commentary on the results. The defenses
were very effective against the baseline spoofing attacks, as
expected. In all four attacks, the baseline traffic was reduced
to about 5 percent of its original volume in the presence of
an attack without the defensive software, but to about
80 percent with the defensive software operational. Over
the duration of the experiment runs, these percentages
remained fairly consistent, indicating the network as a
whole reached a steady state reasonably quickly.

6.3 Rolling Floods
These attacks take advantage of the timing involved in the
COSSACK/D-WARD system. Red Team experiments in-
dicated that it took approximately 5 seconds for attack
traffic to be completely throttled by D-WARD and it took
approximately 60 seconds without attack for COSSACK to
clear a machine’s “bad” reputation. Rolling flood attacks
coordinate several flooding agents to take advantage of
these timing characteristics. Each agent cycles through its
targets, flooding them for 5-6 seconds, and then lies
dormant for a 60 seconds period. These attacks are similar
to pulsing floods [12].

The rolling flood attack was split into several attacks to
test the following hypotheses separately: 1) A target can be
flooded continuously throughout the entire time window.
2) A target’s services can be effectively degraded for most of
the time window. The rolling attacks each generate TCP,
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Fig. 3. Results for the Spoofing Flood UDP attack. (a) Received/sent packet ratio. (b) Traffic levels in the defended network. (c) Traffic levels in the

undefended network.

Fig. 4. Results for the Spoofing Flood ICMP attack. (a) Received/sent packet ratio. (b) Traffic levels in the defended network. (c) Traffic levels in the

undefended network.



UDP, or ICMP packets in a random mix and use subnet
spoofing. Each attack machine floods as quickly as its
Ethernet device allows. In general, there were seven to eight
attackers targeting one to two servers throughout the attack.

Expected outcome. Since these attacks rely on timing to
trick defense systems, spoofing and shifting between
subnets, it was expected that they should be successful
most of the time.

Summary of results. Table 2 summarizes the results of the
rolling attacks. The attacks have a severity rating of medium
because they did not have as large an impact on the
undefended system as did the spoofing flood attacks.

In the Roll-1 attack, there was one attacker in each
subnet, 3 through 9, each attacking in sequence, one at a
time, for 5 seconds. Attack packets had a random payload
size between 500 and 1,000 bytes, not including protocol
headers. Fig. 5a compares the amount of legitimate traffic
received at subnet 1 against the amount of legitimate traffic
sent to subnet 1 for a defended system. As with the spoofing
flood attacks, this percentage is close to 1 most of the time,
but the variance is larger, indicating that the protection is
sporadic rather than stable. According to Table 2, the source
generated 91 percent of the baseline traffic level and the
network transport rate was 96 percent during the attack,
resulting in the victim receiving 87 percent as much
legitimate traffic as in the baseline case (for a loss of 13
percent). In the undefended system, the source generated 56
percent of the baseline traffic level and the network
transport rate was 91 percent during the attack, resulting
in the victim receiving 51 percent as much legitimate traffic
as in the baseline case (for a loss of 49 percent). This attack
had a smaller impact against the undefended system than
the spoofing flood attacks because it did not send as much
traffic to the victim. The defense needed 145 seconds to
fully throttle the attack. Both D-WARD and COSSACK
detected this attack since both sent-to-received packet ratios
were abnormal and Snort rules were matched.

The Roll-1-Large attack is a modified Roll-1 attack with an
increased payload size of 1,200 bytes. Fig. 6a compares the

amount of legitimate traffic received at victim network 1
against the amount of legitimate traffic sent to network 1 for a
defended system. Some legitimate traffic was dropped
during thedefensestabilizationperiodataround270seconds.
According to Table 2, the source generated 91 percent of the
baseline traffic level and the network transport rate was
94 percent during the attack, resulting in the victim receiving
85 percent as much legitimate traffic as in the baseline case
(for a loss of 15percent). In theundefended system, the source
generated 50 percent of the baseline traffic level and the
network transport rate was 90 percent during the attack,
resulting in thevictimreceiving45percent asmuch legitimate
traffic as in the baseline case (for a loss of 55 percent). The
impact of this attack was somewhat larger than the impact of
the Roll-1 attack because of a larger packet size. The defense
needed 223 seconds to fully throttle the attack. D-WARD
detected this attack, while COSSACK did not. Again,
D-WARD’s success can be attributed to abnormal sent-to-
receivedpacket ratios created by this attack,whileCOSSACK
failed to detect the attack because it did not match its static
Snort rules.

Figs. 5b, 5c, 6b, and 6c compare the levels of legitimate
and attack traffic received at the victim network in the
defended and the undefended configurations for Roll-1 and
Roll-1-Large attacks. In the defended network, the legitimate
traffic level was comparable to the baseline case, while it
was about 50 percent lower in the undefended network.

In the Roll-2 attack, there was one attacker in each
subnet, 3 through 9, with two attackers always simulta-
neously attacking for five consecutive seconds. This attack
is thus a modified Roll-1 attack with a doubled rate. Fig. 7a
shows the percentage of the legitimate traffic received at
subnet 1 for a defended system. The defense stabilization
period, at the onset of the attack, lasted for about 65 seconds,
with heavy drops inflicted on legitimate traffic. Afterward,
the defense delivered a high percentage of legitimate traffic
to the victim. The source generated 92 percent of the
baseline traffic level and the network transport rate was
93 percent during the attack, resulting in the victim
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Fig. 5. Results for the Roll-1 attack. (a) Received/sent packet ratio. (b) Traffic levels in the defended network. (c) Traffic levels in the undefended

network.

Fig. 6. Results for the Roll-1-Large attack. (a) Received/sent packet ratio. (b) Traffic levels in the defended network. (c) Traffic levels in the

undefended network.



receiving 85 percent as much legitimate traffic as in the
baseline case (for a loss of 15 percent). In the undefended
system, the source generated 35 percent of the baseline
traffic level and the network transport rate was 79 percent
during the attack, resulting in the victim receiving
28 percent as much legitimate traffic as in the baseline case
(for a loss of 72 percent). The Roll-2 had a greater impact
against an undefended system than the Roll-1 attack
because it sent more traffic to the victim. The defenses
needed 65 s to throttle the attack. D-WARD detected this
attack, while COSSACK did not.

The Roll-2-Large attack modifies the Roll-2 attack by
increasing the payload size to 1,200 bytes, so this is a Roll-1-
Large attackwith a doubled rate. Fig. 8a shows the percentage
of the legitimate traffic received at subnet 1 for a defended
system. This percentage varied not only during the defense
stabilization period (96 seconds) but also from time 300
seconds continuously until the end of the attack. These
variations indicate that a defense was constantly readjusting
to the changing attack traffic and was inflicting periodic
legitimate drops. The source generated 93 percent of the
baseline and the network transport rate was 93 percent
during the attack, resulting in the victim receiving 86 percent
as much legitimate traffic as in the baseline case. In the
undefended system, the source generated 33 percent of the
baseline traffic level and the network transport rate was
76 percent during the attack, resulting in the victim receiving
25percent asmuch legitimate traffic as in thebaseline case.Of
the rolling attacks, this attack had the greatest impact on the
undefended system. The defense needed 96 seconds to
throttle the attack. D-WARD detected this attack, but
COSSACKdid not. The explanation for defense performance
in the case of Roll-2 and Roll-2-Large is the same as in the
case of the Roll-1-Large attack.

Figs. 7b, 7c, 8b, and 8c compare legitimate and attack
traffic received at the victim network in the defended and
the undefended configurations for Roll-2 and Roll-2-Large.
The legitimate traffic level in the defended system was

comparable to the baseline after the initial stabilization
period. In the undefended system, the service was sig-
nificantly impaired by the attack.

The Roll-3-Large attack modified the Roll-2-Large attack
by also attacking subnet 2 in addition to subnet 1. Figs. 9a
and 9d compare the percentage of legitimate traffic received
at subnet 1 and at subnet 2 for a defended system. After the
initial stabilization period of about 50 seconds, the defenses
managed to keep this percentage high in both networks, but
with a large variance (especially in the case of subnet 2),
which indicates sporadic collateral damage. For the
defended subnet 1, the source generated 94 percent of the
baseline traffic level and the network transport rate was
96 percent during the attack, resulting in the victim
receiving 90 percent as much legitimate traffic as in the
baseline case (for a loss of 10 percent). In the undefended
configuration in subnet 1, the source generated 41 percent
of the baseline traffic level and the network transport rate
was 83 percent during the attack, resulting in the victim
receiving 34 percent as much legitimate traffic as in the
baseline case (for a loss of 66 percent). In the defended
configuration in subnet 2, the source generated 89 percent of
the baseline traffic level and the network transport rate was
95 percent of the baseline traffic level, resulting in the victim
receiving 85 percent as much legitimate traffic as in the
baseline case (for a loss of 15 percent). In the undefended
system in subnet 2, the source generated 33 percent of the
baseline traffic level and the network transport rate was
87 percent of the baseline traffic level, resulting in the victim
receiving 29 percent as much legitimate traffic as in the
baseline case (for a loss of 71 percent).

Figs. 9b, 9c, 9e, and 9f compare the levels of legitimate
and attack traffic received at the victim network 1 and
network 2 in the defended and the undefended configura-
tions. In the defended system, the legitimate traffic level
was comparable to the baseline, while it was much lower in
the undefended system. COSSACK only detected this attack
as originating from subnet 9 because this subnet sent more
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Fig. 7. Results for the Roll-2 attack. (a) Received/sent packet ratio. (b) Traffic levels in the defended network. (c) Traffic levels in the undefended

network.

Fig. 8. Results for the Roll-2-Large attack. (a) Received/sent packet ratio. (b) Traffic levels in the defended network. (c) Traffic levels in the

undefended network.



attack traffic than the others, which triggered COSSACK’s
alarms. D-WARD detected the attack in all involved subnets
because of the consequent increase in the sent-to-received
packet ratio from those subnets to the victim. The defense
took 49 seconds to throttle the attack on subnet 1 and
50 seconds to throttle the attack on subnet 2.

The Red Team’s commentary on the results. The percentage
of legitimate traffic reaching its destination in the presence
of an attack, but without defensive software, was far higher
than either anticipated or observed in the previous spoofing
attacks. In all variations of the rolling attacks, this number
was no less than 25 percent of the original figure (as
opposed to only 5 percent as experienced during the
spoofing attacks). A larger attack rate should have been
generated to achieve higher service denial. With the
defensive technology operational, legitimate traffic loads
returned to the 80-90 percent levels as seen with spoofing
attacks, indicating the technology was not “fooled” by this
attack strategy or the specific timings used for these
particular experiments. This suggests that the attacks were
not optimally orchestrated for the final experiment config-
uration because the reconnaissance network was different
from the one used in the testing phase. The time needed by
defenses to detect and respond to these attacks led the Red
Team to speculate that a more careful orchestration of
rolling attacks could result in sustained service denial.

6.4 HTTP Flood Attacks
These attacks generated a long stream of bogus HTTP
requests that aimed to use up a target’s resources in
generating responses. The Red Team observed that two
attacking machines were sufficient to degrade service from
a single server machine. No traffic was spoofed and these
attacks were not run separately, but in conjunction with
other packet-flooding attacks.

Expected outcome. At a high rate, this attack should
degrade the target’s HTTP service. At a moderate rate, this
attack should provide seemingly legitimate decoy traffic
that should slow down detection or response of a defense
system to another, more potent attack interleaved with the
HTTP flood.

6.5 HTTP-Rolling Attacks
This attack is a combination of the rolling flood Roll-1-Large
and the HTTP flood. The rolling flood provides the majority
of the attack traffic, while the HTTP flood (run at a slower
speed) attempts to provide “legitimate” traffic from the
attacking network to redeem it at the defense system. The
attackers are on the same subnets as in theRoll-1-Large attack.

Expected outcome. This attack should degrade service in a
manner similar to the rolling flood, but the use of HTTP
“redeeming” traffic should cause a slowdown in the
defense response.

Summary of results. Table 2 summarizes the results of the
HTTP-Roll attacks. The HTTP-Roll attack has a severity
rating of medium because it did not severely degrade
service to legitimate clients. In the defended configuration,
the source generated 95 percent of the baseline traffic level
and the network transport rate was 96 percent during the
attack, resulting in the victim receiving 91 percent as much
legitimate traffic as in the baseline case (for a loss of
9 percent). In the undefended system, the source generated
56 percent of the baseline traffic level and the network
transport rate was 89 percent during the attack, resulting in
the victim receiving 50 percent as much legitimate traffic as
in the baseline case (for a loss of 50 percent).

Fig. 10a shows the percentage of legitimate traffic
received at network 1 for a defended system. The stabiliza-
tion period was longer than for spoofing and rolling attacks
—around 250 seconds. Afterward, the defense offered
stable and good protection to legitimate traffic. Figs. 10b
and 10c compare the levels of legitimate and attack traffic
received at the victim network 1 in the defended and the
undefended configurations. The legitimate traffic was lower
than the baseline during the defense stabilization period,
but it matched the baseline level afterward. The unde-
fended network had a significantly lower legitimate traffic
level. D-WARD detected this attack everywhere, while
COSSACK did not. D-WARD’s success can be attributed to
the fact that excessive attack traffic created an increase of
the sent-to-received packet ratio, which triggered
D-WARD’s action. COSSACK’s failure to detect can be
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attributed to the failure of the attack traffic to match static
Snort rules. The effective response took around 25 times
longer than for the spoofing flood attacks.

The Red Team’s commentary on the results. This attack was
less effective than Red Team predicted. The defense
mechanisms successfully detected and contained the DDoS
traffic. The Red Team links the partial failure of the HTTP-
Roll attack to the reduced effectiveness of rolling attacks.

6.6 Connection Attacks
Each operating system has a hard limit on the number of
TCP connections that can be simultaneously active because
the state table used by the OS to store connection data is of
limited size. Connection attacks aim to consume the space
in this table by creating half-open TCP connections. The
attack machine sends spoofed TCP SYN packets that lead to
connection record allocation at the target, which replies
with a TCP SYNACK. The attacker ignores these replies
(hence the term “half-open” connection) and the allocated
connection records eventually time out in the absence of
any activity. This attack is known in the literature as a TCP
SYN flood attack [13].

The overall effect of the connection attack is that the target
cannot serve newusers of the applicationwhoseport is under
attack. Although the attack’s effect is limited to new TCP
traffic, this doesnotdiscount its significance as themajority of
network traffic is TCP. The connection attack in this exercise
floodedeachport on the targetmachine.Theattackwas run in
conjunction with other packet-flooding attacks.

Expected outcome. This attack should deny service to new
TCP connections and should not be detected by defenses.

6.7 Connection-Rolling Attacks
These attacks are a combination of the rolling flood and the
connection flood. It was hypothesized that the effectiveness
of the connection flood was limited because only service to
new TCP connections is denied, while existing connections
and non-TCP traffic proceed unharmed. The rolling flood

attack was meant to affect these other kinds of legitimate
traffic to result in a more effective DoS. The connection
attack was combined with two rolling flood attacks, Roll-1-
Large and Roll-2-Large, creating two test scenarios: Conn-
Roll-1 and Conn-Roll-2. The attack was launched from
subnets 2-9 with a total of 11 attacking hosts, targeting a
server in subnet 1.

Expected outcome. This attack should degrade service in a
similar manner to the rolling flood, but with a higher level
of impact on legitimate TCP traffic.

Summary of results. Table 2 summarizes the results of the
Conn-Roll attacks. TheConn-Roll-1 attack has a severity rating
of medium and the Conn-Roll-2 attack has a severity rating of
mild. Both attacks impacted the service moderately.

Fig. 11a shows the percentage of legitimate traffic
received at network 1 for a defended system and Conn-
Roll-1 attack. Figs. 11b and 11c compare the levels of
legitimate and attack traffic received at the victim network 1
in the defended and the undefended configurations. The
Red Team used the nmap tool [14] to determine unused port
numbers (so that the attack could skip these ports) and did
not label the packets sent out by this tool. This accounts for
higher-than-baseline legitimate traffic levels in the first
100 seconds in Figs. 11b and 11c. Much of this unlabeled
traffic was dropped by the defenses and there was a
noticeable drop in the amount of legitimate traffic sent and
received. The defense stabilization period lasted for
300 seconds. Afterward, the defense protected ongoing
TCP connections well, but new connections were still
impaired by the connection flood attack. Approximately
82 percent of the legitimate traffic sent was received at the
victim when the defenses were active. Including the source
generation rate slowdown, the amount of traffic received by
subnet 1 was 80 percent of what it received in the baseline
case. However, these values are skewed as they assume that
the nmap packets are good. Excluding the data from the
first 5 minutes of the run, the source generated 57 percent of
the baseline traffic level and the network transport rate was
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Fig. 10. Results for the HTTP-Roll attack. (a) Received/sent packet ratio. (b) Traffic levels in the defended network. (c) Traffic levels in the

undefended network.

Fig. 11. Results for the Conn-Roll-1 attack. (a) Received/sent packet ratio. (b) Traffic levels in the defended network. (c) Traffic levels in the

undefended network.



92 percent during the attack, resulting in the victim
receiving 52 percent as much legitimate traffic as in the
baseline case. Breaking this down by protocol, 94 percent of
the TCP traffic was received and 80 percent of the UDP
traffic was received during this same time period. Thus,
subnet 1 did exhibit a significant degradation of service as a
result of this attack. In the undefended network, the source
generated 40 percent of the baseline traffic level and the
network transport rate was 91 percent during the attack,
resulting in the victim receiving 36 percent as much
legitimate traffic as in the baseline case.

Although the throughput of the legitimate traffic was
similar in the defended and the undefended cases, the
defenses prevented a majority of the attack traffic from
reaching subnet 1 in the defended case. The defense needed
365 seconds to throttle the attack. D-WARD detected this
attack, while COSSACK did not.

The Conn-Roll-2 attack was detected only by D-WARD at
subnet 7 because that subnet had a slightly increased sent-
to-received packet ratio that triggered D-WARD’s alarm.
Consequently, defenses took very few responses. The
legitimate traffic to subnet 1 was degraded and there was
little difference between the defended and undefended
cases (Figs. 12b and 12c). The percentage of legitimate traffic
received at network 1 for a defended system and the Conn-
Roll-2 attack is shown in Fig. 12a.

The Red Team’s commentary on the results. Connection
floods in combination with the rolling attacks, especially
once they were well underway (beyond 400 seconds into the
experiment), appeared to be quite effective in blocking
normal traffic despite the defensive technologies. In
particular, once the experiment reached steady state, there
was little difference in the throughput of normal traffic with
or without the defense mechanisms running.

6.8 ACK Proxy Attacks
The Red Team decided early on that an interesting test
scenario would include helper machines outside the attack
or the victim networks who act in concert with attack
machines to trick the defense. The idea was to spoof a TCP
ACK for every TCP SYN packet sent to flood a target (this
can be easily generalized to also work for TCP data
packets). Each time an attacking machine sends out a TCP
SYN packet to the target, it makes a request to a helper, who
creates the ACK reply as if it were coming from the target of
the TCP SYN flood. The spoofed ACK packets are meant to
fool D-WARD’s traffic classification mechanism and lead to
classification of attack traffic as legitimate. This attack
makes assumptions that there is no ingress/egress filtering
or COSSACK/D-WARD on helper subnets.

For each ACK Proxy attack, four attack machines flood a
single server. Each attack machine has a dedicated ACK
server. Three ACK Proxy attacks were generated. In the
ACK-Proxy-1 attack, for every malicious connection request,
two SYN packets were sent from the flooding agent to the
target and two spoofed ACK packets were sent from the
ACK Proxy to the flooding agent. In ACK-Proxy-2, similar
dynamics as in ACK-Proxy-1 were deployed, but the attack
and ACK traffic rate were doubled. In the ACK-Proxy-3
attack, the rate was quadrupled compared to ACK-Proxy-1.
In all three ACK Proxy attacks, the helper machines were
located in subnets 3, 7, 8, and 9 that did not run defenses.

Expected outcome. This attack will not be detected and will
generate enough traffic to degrade service.

Summary of results. Table 2 summarizes the results of the
ACK Proxy attacks. The ACK-Proxy-1 attack has a severity
rating of medium because the loss was 46 percent. The
ACK-Proxy-2 and ACK-Proxy-3 attacks are rated as high
severity because the losses were 90 percent and 95 percent,
respectively.

For space reasons, we omitted figures for the ACK-Proxy
attacks. There was essentially no difference in the system
behavior in the defended and undefended cases: both in the
amount of attack traffic and the amount of legitimate traffic
received. In the defended configuration in the ACK-Proxy-1
attack, the source generated 56 percent of the baseline traffic
level and the network transport rate was 97 percent during
the attack, resulting in the victim receiving 54 percent as
much legitimate traffic as in the baseline case (for a loss of
46 percent). In the undefended system, the source generated
56 percent of the baseline traffic level and the network
transport rate was 96 percent during the attack, resulting in
the victim receiving 54 percent as much legitimate traffic as
in the baseline case (for a loss of 46 percent). COSSACK did
detect this attack because it matched Snort rules; however,
the combined system did not take any responses because
D-WARD was fooled by the fake ACK replies and classified
all attack traffic as good. Results for ACK-Proxy-2 and ACK-
Proxy-3 look very similar to the results of ACK-Proxy-1—the
defense detected the attack but did not take any responses.
For space reasons, we omit the corresponding graphs, but
we show the summary of results in Table 2.

The Red Team’s commentary on the results. This set of
attacks was very effective against the defense technologies
and behaved as the Red Team expected.

6.9 Experiment Conclusions
The Red Team’s attacks were carefully designed to stress-
test the COSSACK/D-WARD defense at its performance
boundaries, progressively going from simple to more
sophisticated attacks. The performance of defense de-
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Fig. 12. Results for the Conn-Roll-2 attack. (a) Received/sent packet ratio. (b) Traffic levels in the defended network. (c) Traffic levels in the

undefended network.



creased with attack sophistication. The defense was
successful against simple Spoofing Flood attacks and even
against more sophisticated Rolling attacks. The performance
of the defense degraded somewhat when Rolling attacks
were combined with connection and HTTP traffic in the
HTTP-Roll and Conn-Roll attacks. On the other hand, these
attacks did not severely degrade a victim’s service in the
undefended system because of their small aggregate rate.
This small rate was dictated by the necessity to “roll” the
attack and by the small number of edge hosts (20) in the
experimental network—thus, a few hosts could be active
attackers at any given time. The defense failed completely
to respond to ACK Proxy attacks, although they were
detected by the COSSACK system. This failure is linked to a
D-WARD feature that classifies TCP connections as “good”
if they receive sufficient acknowledgments for their out-
going TCP packets. This feature is tricked by fake ACK
packets sent by helpers and, thus, labels all attack traffics as
good, failing to defend. Overall, the advantages of combin-
ing the COSSACK and D-WARD systems were not as great
as we expected since D-WARD detected all but ACK Proxy
attacks, COSSACK missed a lot of attacks, and the joint
system was driven by D-WARD’s actions.

7 LESSONS LEARNED
This Red Team/Blue Team exercise confirmed that the
defense systems offered effective protection against attacks
they were designed to handle, but it revealed significant
vulnerabilities when sophisticated attacks were deployed.
The Blue Team benefited greatly from these results, which
led to improvement of the defense design in the months
following the exercise. All teams felt that a repetition of the
exercise with improved defenses would be very valuable,
but time and cost did not permit this.

All three experimental teams also made the following
observations with regard to lessons learned:

1. Red Team reconnaissance and attack testing should
occur on the network ultimately used for defense
testing as any hardware changes compromise fine
tuning of the attacks. The dependency of sophisti-
cated DDoS attacks that rely on timing on particular
hardware and network configurations that was
demonstrated in this experiment suggests that
running such attacks in the real Internet might be
harder than we expect.

2. Experimental infrastructure must remain intact after
execution; this is needed for answering questions
raised in the data analysis by running additional
experiments. All measurements taken during the
exercise, and detailed packet traces, should be saved.

3. Attacks should be launched on an isolated network
because it was observed that it was difficult to shut
attacks off at the end of the runs. The Red Team had
to insert a kill timer that would simply kill attack
processes after a desired duration.

4. Scripted attacks are easier for logging and repeat-
ability than live Red Team actions. However, the
Red Team could likely have launched more effective
attacks if it had live control and the ability to tune
the attacks. Such an advantage would be enjoyed by
real attackers.

5. Last-minute surprises should be budgeted for, both
in time and money. Preparation of this exercise

required extensive weekly teleconferences and sev-
eral face-to-face meetings among all teams. Each
phase of the exercise was longer (and thus cost
more) than originally expected because the planned
tasks proved more complex than anticipated.

6. Defense code must be frozen before reconnaissance.
Otherwise, the reconnaissance must be repeated
after each change; this creates the “moving target”
problem for the Red Team.

Additionally, the Red Team observed that any DDoS
defensive strategy that relies upon timing mechanisms or
timing considerations is susceptible to attacks that are
themselves based in timing. Adjusting the defensive timing
values to thwart the specifics of one such attack is not a
generalized response as the attackers are free to observe
new defensive timing parameters and adjust their attacks
accordingly. Similarly, tuning defensive parameters for
responsiveness under one set of network traffic conditions
does not provide a generalized defense against unpredict-
able network conditions. The Red Team believes that
developers of defensive software technologies should work
to remove such tuning requirements from their systems.

All teams agreed that attempting to recreate any sort of
realistic DDoS test environment using only a very limited
number of machines results in a highly artificial test
environment because the limited infrastructure simply does
not have enough nodes to effectively simulate the dynamics
of real-world DDoS attacks. A standalone DDoS testbed,
with several hundred or thousands of nodes and a core
network mirroring today’s Internet architecture of high-
speed backbones bordered by autonomous systems, was
deemed as the only realistic test infrastructure for DDoS
attacks. Such a testbed has since been jointly funded by
DHS and NSF through the DETER project [15].

Finally, all teams felt that if a tighter interaction between
participants were possible and, if all of the teams were
involved in all phases of the exercise, the results could have
been much more rewarding. If the Red Team were allowed
to perform live attacks, they would have likely been much
more effective. If the Blue Team were allowed to retune
their software after a successful attack, there would have
been a rapid improvement in the defense quality. This
refined defense could then be retested to validate that the
detected vulnerabilities were successfully handled and to
look for new problems. Unfortunately, such an interactive
exercise would have required a tremendous expenditure in
time and funding and is an unrealistic goal. All teams felt
that they gained valuable knowledge from this Red Team/
Blue Team exercise that they would not have been able to
obtain otherwise and they are grateful for DARPA’s
support of this endeavor.
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