

 978-1-4244-3304-9/09/$25.00 ©2009 IEEE

Distributed Policy Resolution Through Negotiation in
Ubiquitous Computing Environments

Venkatraman Ramakrishna
Computer Science Department

University of California, Los Angeles
Los Angeles, California

vrama@cs.ucla.edu

Peter Reiher
Computer Science Department

University of California, Los Angeles
Los Angeles, California

reiher@cs.ucla.edu

Leonard Kleinrock
Computer Science Department

University of California, Los Angeles
Los Angeles, California

lk@cs.ucla.edu

Abstract—Ensuring spontaneous ad hoc interoperation in
decentralized ubiquitous computing environments is challenging,
because of heterogeneous resources and divergent policies.
Centralized cross-domain service access agreements can be made
with a priori knowledge of the interacting entities’ policies, but
privacy concerns make this approach impractical. Environments
should not be too rigid nor too open in their interactions, and
should support varying contexts and scenarios. We describe the
modeling, design, and implementation of a general purpose
negotiation protocol for cross-domain service access agreements
between entities that do not share trust agreements or application
level protocols. This protocol resolves the constraints and needs
of the participants, described in the form of declarative logical
policies, in a fully distributed manner, avoiding the need for a
third party. We describe how we tested the system and show how
negotiation performance was evaluated against an optimal case
computed by a centralized oracle.

Keywords-interoperation; middleware; negotiation; policy

I. INTRODUCTION AND MOTIVATION
Spontaneous interoperation is one of the key unmet

requirements of ubiquitous computing [17]. More thought is
required to handle security and privacy, and to balance security
with automation. Future environments are likely to consist of
autonomous domains with defined security and administrative
boundaries, accessing services across such boundaries to the
extent that their security policies permit. A global centralized
interoperation solution is neither scalable nor enforceable.

Though de facto standards such as TCP/IP and 802.11-
based MAC protocols enable mobile devices to connect and
obtain services for their users, true ubiquitous interoperation
requires intelligent mechanisms in the application layer, such
as the ability to communicate information about objects, pose
queries, request action performance, offer services, and access
external resources. These mechanisms should be highly
automated, limiting or eliminating manual intervention. In
today’s systems, automation is possible if all the interaction
constraints are known beforehand. Yet inventing a new
mechanism for each possible combination of parameters that
define a scenario is infeasible. The huge variety of interaction
contexts, the large number of interacting partners of highly
varying trustworthiness, and the heterogeneity of resources and
services offered, would result in a combinatorial explosion of
separate protocols for each scenario. Another roadblock is that

the security and resource usage policies of interacting domains
differ, and any service access agreement must be compliant
with both sets of policies. Existing solutions for cross-domain
interoperation in the face of divergent policies are insufficient.
Ensuring proper static configuration for seamless service
access in all possible contexts is impractical, but existing
solutions for dynamic interactions are limiting. Some allow
free service discovery and access, making them vulnerable to
abuse; others have inflexible security models, preventing
interactions that should be feasible. A more flexible solution
would balance the needs of service access and security.

Most interactions follow a client-server model, but also
involve give-and-take by both parties, blurring the service
producer/consumer distinction. Consider a scenario where
interoperation fails without prior configuration. An ACM-
conducted conference is being held in a room with a wireless
network, a display device, a projector and a printer. To access
conference room services, an attendee would have to manually
configure his device. Many attendees have ACM credentials
which should ideally permit automated configuration. All that
is needed is an effective procedure for the network to ask for
proof of satisfactory accreditation, verify it and grant access;
the user’s device is then ready to provide private information in
return for needed services after ensuring that the conference
room can be trusted. The network could impose constraints on
the requesting device, such as an audio-silent request during the
conference, and grant service access only upon compliance.
These tasks can be achieved through a step-by-step process of
trading information and making agreement decisions.

Our goal is to help domains reach policy-compliant service
access agreements. A centralized solution (using a third party)
could achieve this task if it had complete knowledge of the
domains’ goals, state, and policy constraints. But this solution
has a serious disadvantage: the participants must surrender their
privacy to the third party by exposing their policies, opening
themselves to potential abuse. Worse, one of the participants
may take over the role of the third party, forcing the other
participant to reveal its private information, thereby gaining an
advantage. A privacy-preserving procedure would be better.

This paper describes a simple automated negotiation
protocol that generates dynamic cross-domain service access
agreements compliant with the negotiators’ policies. We show
how the protocol is generic and applicable to a wide range of
ubicomp scenarios, being based on illocutionary speech acts

21

[22]. The minimum domain-dependent variable necessary for
application of our protocol is domain policy, describing state,
invariants, and constraints, written in a declarative logical
language. This protocol avoids the scalability issues of having a
large number of scenario-dependent protocols. We demonstrate
that the application of this protocol results in flexible
agreements in a typical scenario. Much of the paper is devoted
to the analysis of the protocol as a distributed, privacy-
preserving policy resolution procedure. We show that this
protocol generates one among a set of best results (except
under certain conditions), and is equivalent to a centralized
policy resolver. Though the protocol is sub-optimal, we show
that it performs sufficiently well to be feasible in real-world
scenarios. In most scenarios, the privacy and distributed nature
of the solution outweigh the potential performance loss.

II. NEGOTIATION PROTOCOL AND PANOPLY
Our model of ubiquitous computing consists of autonomous

domains that offer services, have goals requiring access to
other domains and their services, and have policies expressing
their constraints. Each domain’s policies are described in a
declarative language built on logical semantics, with Prolog
syntax [20]. This policy model is expressive, non-application-
specific, and captures interdependencies between policies [21].
A logic-based policy language also lends itself to theoretical
analysis of mechanisms built on top of it (Section IV). Some
example statements in this language (with associated semantic
meaning) are given in Table I. Each domain possesses a
collection of facts and rules in a policy database. Individual
statements could be related to each other through shared
predicates. The database offers a consistent (no contradictory
statements) view through a Prolog-based query API.

TABLE I. POLICY LANGUAGE EXAMPLES

Formally, each domain has a triple <S, P, G>, where S is its

set of possessed services and resources, G is its set of goals
(services it needs from external sources) and P is the set of
policy rules that describe its current state, its possessions,
invariants, and security and resource usage policies. Interaction
between two domains D1<S1, P1, G1> and D2<S2, P2, G2>
involves a negotiation resulting in D1 getting access to a set of
services Q1 ⊆ G1 ∩ S2 and D2 getting access to a set of services
Q2 ⊆ G2 ∩ S1. The remainder of this section describes the
negotiation mechanism and algorithms, its implementation in a
ubiquitous policy manager and a demonstrative application.

A. Negotiation Protocol
We designed a negotiation protocol that is generic in

application, allowing the transaction of information, objects,
commands and obligations. Such negotiation is a policy-guided
operation where the parties satisfy each other’s service access
goals to the extent permissible within policy constraints.

TABLE II. SUPPORTED SPEECH ACTS IN THE NEGOTIATION PROTOCOL

Speech Acts Directive Commissive Assertive Declarative

Message Type REQUEST OFFER POLICY TERMINATE

To make the protocol generic, its units (negotiation

messages) and vocabulary are based on illocutionary speech
acts [22]; a speech act expresses intent to perform an action. A
negotiation is an illocutionary conversation, or a sequence of
speech acts that begins with goals and end with declarations.
Individual negotiation messages could be REQUEST,
POLICY, or OFFER messages. Table II lists the speech acts
that can be expressed through negotiation messages in our
protocol. This fairly small set can express transactions in a
large range of ubiquitous interoperation scenarios. In practice,
requests in our framework are made for: {possessions, actions,
state changes, data/information queries}. Almost all scenarios
we envisioned consisted of goals that could be modeled as
combinations of these request types. For example, a
REQUEST for access to a printer could be framed logically as
'possess(Printer_ID)', and a command to close a network port
as 'action(closePort, Port#)'. OFFERs, which are replies to
REQUESTs, are framed as logical affirmatives and negatives,
with substantiating proofs (e.g., a printer access certificate)
appended to affirmative messages. An example of a POLICY
obligation is a prohibition of sound emission during certain
hours. Combined with logical reasoning mechanisms, the
negotiation protocol as a sequence of such speech acts provides
a powerful mechanism for service access across domains.

Figure 1. Negotiation Protocol State Machine (High-Level)

Our protocol state machine exchanges REQUEST (includes
POLICY) and OFFER messages (Figure 1). Negotiation
assumes that policies of a domain are private and not known to
others. Without this assumption, our protocol could not be

 Requests
• Action <Do A>
• Action <Allow me to do A>
• Possession <Give me P>
• State <Let me change to state S>
• Question <Tell me …>

 Policies
• Obligation <Promise to abide by condition O>

 Offers
• Agreement <Yes, I agree to do what you ask>
• Refusal <No, I will not do what you ask>
• Rejection <I cannot accept your offer>
• Answer <Here is what you asked/inquired about>

1) fileType(‘song.mp3’,audio). [‘song.mp3’ is an audio file]
2) certificate(‘UCLA’).possess(john,’UCLA’). [‘UCLA’ is a

certificate, and is possessed by ‘john’]
3) access(S,V) :- candidate(S), teamMember(S), voucher(location,V).

[entity S can be granted access to voucher V if S is a ‘candidate’
and a team member, and if V is a ‘location’ voucher]

START

EXPECT

INITIATE

SERVICE
PROCESS

STOP

Trigger/Event to
Start Negotiation

Send REQUESTS /
POLICIES / OFFERS

Receive
REQUESTS / POLICIES

Receive
REQUESTS / POLICIES

Send REQUESTS /
POLICIES / OFFERS

Send REQUESTS /
OFFERS / POLICIES

Receive OFFERS

Send
TERMINATE

Receive
OFFERS

Receive
TERMINATE / TIMEOUT

Send
TERMINATE

22

applied to scenarios with stringent privacy concerns. Also,
though one domain initiates negotiation by posing requests, the
remainder of the protocol is peer-to-peer and bi-directional, as
requests and offers may be sent by either side (Figure 1). We
also assume that negotiators are aware of each other’s presence
and that they can establish a secure communication channel.

B. Protocol Engineering and Semantics
In a negotiation, entities express queries and intents to each

other, the contents of each message depending on the prior
message received and the current context. The protocol starts
with one entity deriving requests from its goals and sending
these requests to the other. In response, the other may send
definitive offers (indicating acceptance or refusal) or counter-
requests and policies. The protocol is driven by logical policy;
i.e., if a received request R does not violate local policy, a
negotiator (say N1) immediately sends an affirmative offer. On
the other hand, non-compliance of a request with local policy
does not result in an outright refusal or rejection. All attempts
are made by N1, now in the service state (see Figure 1), to infer
unsatisfied constraints that can be sent as counter-requests (see
Section C). These counter-requests, if satisfied, would result in
R being compliant with N1’s local policy. Many alternative
counter-requests may be possible. If a counter-request is
refused, an alternative counter-request is sent. An alternative
may have less utility than the one attempted earlier (Section
III.C.3). Attempts at different alternatives introduce flexibility
in negotiation, but the protocol state machine by itself is
agnostic of the relative importance of requests (as these may
vary with scenario). Any concessions that N1 is willing to make
must be encoded in the form of logical policy statements, from
which feasible counter-requests and alternatives that might lead
to agreement are determined through a logical constraint-
extraction algorithm (described in Section C).

Each negotiator maintains two lists, one of directives
(requests and policies) posed to the other, and the second
containing directives received from the other. Sending counter-
requests grows the lists. A received request can be ‘satisfied’
by sending an affirmative or a negative offer (both of which are
definitive, indicating whether the posed request can be obeyed
in current circumstances), either of which results in removing
the corresponding request from the posed requests list at the
other end. If an acceptance OFFER is received, the policy
database is suitably updated, reflecting changed state. Actions
resulting from a negative OFFER could be: (i) trying an
alternative counter-request, (ii) rollback (popping of requests
from the posed request list), or (iii) a declaration of failure
(termination). The protocol terminates when both request lists
at both ends are empty.

C. Policy-Guided Reasoning Mechanisms
We describe the counter-request generation algorithm

through an example. Let N1 negotiate for access to a printer
possessed by N2. N2 receives N1’s request in the form
{possess(F), printer(F)} and converts it to {possess(F),
printer(F), access(S,F)} to check whether N1 should be
allowed access. Facts and rules relevant to N2’s counter-request
generation are listed in Table III.

The policies governing access are selected; in this case, rule
R1 is selected and parsed. This rule says that any domain may

have access to a printer if it reveals its location, closes port 25
for security reasons, and possesses a valid voucher from a
trusted domain (like ‘ACM’ or ‘UCLA’). Conjuncts in the body
of each such policy statement are evaluated; unsatisfiable
predicates represent objects or actions that can be requested.
{location(S,L), closedPort(S,25), possess(S,V)} are added to a
queue, with extra support predicates that add semantic meaning
to the request predicate (voucher(V,M) is a support predicate
for possess(S,V) because it shares variable V). If an unsatisfied
predicate in the body is not part of the shared global vocabulary
(e.g.,closedPort(S,25)), the algorithm recursively examines all
policies having that predicate as the head until leaves (or facts)
are reached. Here, recursion results in the examination of rule
R2, which returns the request predicate action(closePort, 25).
Finally, the following set of counter-requests is generated:

• Set 1: {location(S,L); action(S,order,closePort,25);
possess(S,V), voucher(V,’ACM’)}

• Set 2: {location(S,L); action(S,order,closePort,25);
possess(S,V), voucher(V,’UCLA’)}

TABLE III. RELEVANT PORTION OF N2’S POLICY DATABASE

This procedure generates multiple alternative sets of

counter-requests, one of which is selected and returned in a
reply message. The remaining sets are saved and tried only if
the original set of counter-requests cannot be satisfied by the
opposite party. If no counter-requests exist for a received
request, an alternative offer generation procedure finds the
closest matching satisfiable predicates to the one requested.
Our protocol analysis (Section IV) and measurements (Section
V) only consider the counter-request generation procedure. In
Section III, we will see that our negotiation protocol, which
runs this logical counter-request generation procedure,
effectively performs distributed policy resolution. It could
therefore be visualized in the form of a tree (see Figure 2). The
root of the tree consists of the initial goals that negotiators
begin with, and every request node has children in the form of
offers or counter-requests. In some respects, the tree is
structurally similar to a two-player game tree.

D. Negotiation Protocol State Maintenance
During a negotiation, acceptance and refusal of requests

(OFFER messages) cause state changes, which are recorded in
the local policy database of each negotiator. The decisions
made in the remaining negotiation steps use the updated policy
databases. Every negotiation step is determined on the basis of
the immediate state of the policy database, which consists of a
set of statements that are true in a first-order logical sense.
Changes are made through logical assertions and retractions of
statements. For example, if a request for access to a printer is
granted, both the sender and recipient will record a logical
predicate in their respective databases indicating that the
recipient is in possession of a printer access certificate (or a
voucher). When a new request is received, it is evaluated
against the updated database. Thus each negotiator

trustedDomain(‘ACM’), trustedDomain(‘UCLA’). (Facts)
access(S,F) :- printer(F), location(S,L), closedPort(S,25), possess(S,V),

voucher(V,M), trustedDomain(M). (R1)
closedPort(S,P) :- pred1, pred2, pred3, action(S, order, closePort, P). (R2)

23

‘remembers’ what has occurred thus far, or equivalently, what
portion of the tree has been examined up to that instant.

E. System Design and Applications
The utility of our negotiation system is best demonstrated

within a larger framework for managing policies within
domains. Our implementation used the Panoply middleware
[10][11] as a platform, with our notion of domains mapped to
the spheres of influence concept. Negotiation is used in
Panoply to mediate interactions between spheres (groups of
devices characterized by location or social affiliations) and to
enable context-sensitive access control through content filtering
[20] [21]. A detailed description of Panoply or the policy
manager design is beyond the scope of this paper.

A number of scenarios were designed and implemented,
whereby two Panoply spheres could negotiate to reach
agreements [21]. Table IV illustrates one example here: a
ubiquitous conference room (C) and an attendee’s device (D)
negotiating to reach an agreement (see Section I). We omit
mention of the policy rules due to space constraints.

TABLE IV. CONFERENCE ROOM NEGOTIATION INSTANCE

III. NEGOTIATION MODELING AND PROTOCOL PROPERTIES
The purpose of interaction between two domains is the

satisfaction (partial or full) of their goals within the bounds of
their collective policy constraints. This process requires the
resolution of one domain’s goals and its’ policies against the
other’s goals and policies. We do not refer to the standard AI
resolution procedure here. In ubiquitous interoperation, policy
resolution is the process of determining whether, and to what
extent, goals are satisfiable; this is done by evaluating logical
consistency of the policy and goal sets of interacting domains.

A. Centralized vs. Distributed Policy Resolution
An oracle with complete information about the

requirements and policies of the two negotiators can infer a set
of feasible solutions. Such an oracle knows both D1<S1, P1,

G1> and D2<S2, P2, G2>. It can then combine the policy sets P1
and P2; i.e., it merges the compatible policies and disregards
the contradictory policies for querying purposes. Then it
formats the given goals (sets G1 and G2) into suitable logical
predicates and runs a query through the combined database.
Backward-chaining in Prolog is the basis of this query (and of
our negotiation algorithms); the policy database is examined
and all possible solutions are found. This procedure is known
to be logically correct and exhaustive.

Negotiation generates similar results, but in a different
manner. Since there is no oracle, both negotiators have partial
knowledge, which is not good enough to generate a non-trivial
agreement. Mapping from the oracle to the negotiating parties,
we can imagine the combined database to be distributed among
the two parties. Whereas the oracle could make recursive
queries (as part of the search through the centralized database,
a negotiator will find itself in situations where it cannot get full
information from its database. These are the points where it
infers unsatisfied constraints through the counter-request
procedure, formats them and sends them to the other end; in
effect, this is a remote query. The protocol is therefore identical
to a policy resolution tree (see Figure 2), the difference being
that nodes in the tree are distributed among the negotiators.

Figure 2. Negotiation Protocol Viewed as a Distributed Policy Resolution

Intermediate steps in a negotiation may result in failure.
That is why alternative sets of counter-requests are generated
and tried. In a policy resolution tree (see Figure 2), this is
equivalent to backtracking. Structurally, this is an AND-OR
tree. If negotiator N1 sends a set of counter-requests in response
to received request R, then the conjunction (AND) of the
counter-requests represents the satisfaction of R. But if
multiple alternative counter-requests are attempted, the
satisfaction of R is represented by the disjunction (OR) of the
conjunction of requests in each alternative set.

B. Properties of the Negotiation Protocol
To analyze the negotiation protocol, we make certain

reasonable assumptions about policy statements and databases.

I) There are no cycles in the policy database; i.e.,
predicates are not self-referential either directly or
through transitive links.

II) The policy database is of finite length; i.e., the number
of statements (facts and rules/clauses) is bounded.

III) Each policy rule is of finite length; i.e., the number of
predicates in the body of a clause is bounded.

REQUEST (C→D)
<membership; printer access; display access>

 REQUEST (D→C)
<Show me ACM accreditation (for membership and printer access);
Show me ACM Official accreditation (for display access); Agree to turn
off sound between 1700 and 1800 hours>

 OFFER (C→D)
<No ACM accreditation; No ACM Official accreditation; Can I instead
turn off sound between 0 to 1200 hours?>

 OFFER<REJECT> (D→C)
<No, I will not accept your alternative sound turn-off offer>

 OFFER (C→D)
<Can I instead turn off sound between 1720 and 2400 hours?>
[D accepts this offer]

 REQUEST (D→C)
<Show me UCLA (ACM-affiliated institution) accreditation>

 REQUEST (C→D)
<Show me valid NSF accreditation>

 OFFER (D→C)
<NSF credential>

 OFFER (C→D)
<UCLA credential>

 OFFER (D→C)
<Membership granted; Printer access granted; Display access denied>

 TERMINATE (C→D)

access(S,F) :- printer(F),
location(S,L), closedPort(S,25),
possess(S,V), voucher(V,M), ….

voucher(‘NSF’)

obey(S,closePort,P):- true

Processed by Negotiator N2

closedPort(S,P):- pred21, pred22,
action(S,order,closePort, P), ….

access(S,V):- voucher(V), …

Processed by Negotiator N1

access(S,V):- voucher(V), …

Requests (N1 → N2)

.....

voucher(‘UCLA’)
voucher(‘ACM’) ?

Backtrack
OFFER
ACCEPT

true
OFFER
REJECT

action(closePort,P)

……………………….….…..

OFFER
ACCEPT

OFFER
ACCEPT

Requests (N2 → N1)

24

IV) A policy rule is examined for the purpose of generating
counter-requests at most once in a negotiation.

Properties derived from these assumptions and the
algorithms used by the negotiation protocol are listed below.
We use the fact that a reply MUST be sent whenever a non-
TERMINATE message is received, requests MUST be popped
out when an OFFER is sent and received and that a
TERMINATE message is sent whenever the posed and
received request lists get empty at both ends. Due to lack of
space, we do not provide proofs of these assertions; detailed
proofs can be obtained from [21].

• Termination: the counter-request generation algorithm
terminates, and both request lists become empty after a
finite number of steps. Consequently, the negotiation
protocol terminates within a finite number of steps

• The negotiation protocol is deadlock-free.

• The negotiation protocol is livelock-free. This assertion
holds only if property IV is enforced. Checking for
duplicate policy rules is expensive in practice, so we
omit that in our performance measurements. We
anticipate that livelocks will occur rarely in practice.

C. Analysis of the Negotiation Protocol
These properties listed in Section B enable us to prove

formal logical properties about the protocol, and to determine
how good it is compared to the ideal. We evaluate the
negotiation protocol based on metrics defined below.

1) Qualitative Metrics
• Correctness: A negotiation protocol is correct if the

result, which is a mapping from the goal set to the level
of satisfaction (either modal: true/false, or an
alternative of lower utility compared to the original
goal), is an improper subset of the oracular result, and
is also consistent with the policies of the negotiators.

• Completeness: A negotiation protocol is complete if it
always generates a result that is qualitatively
comparable or identical to the oracular result.

• Optimality: A negotiation protocol is optimal if it
always generates a result that is identical or
comparable to the oracular result in the minimum
number of steps (using the least number of messages).

By definition, a complete protocol will always be correct
and an optimal negotiation protocol will always be complete.
These metrics are related to each other through the inequality
‘Correctness < Completeness < Optimality’. (The relation A <
B indicates that metric A is less stringent than metric B; i.e., a
protocol that satisfies B must satisfy A).

2) Protocol Effectiveness and Exceptions
A negotiation result is consistent with, and does not violate,

the collective policies of the negotiators. It is also guaranteed to
terminate. Therefore, it is trivially correct. But the procedure,
by inferring alternative sets of counter requests, also
exhaustively examines the search space. If a solution exists, it
will be eventually found. Multiple invalid alternatives may be
examined before a satisfactory one is obtained, but if such an

alternative exists, it is guaranteed to be examined and a correct
result generated. By virtue of exhaustively examining the
search tree, a negotiation will generate one among a set of best
solutions, and the one encountered first is returned. Therefore,
negotiation in such cases is both correct and complete. But it is
not guaranteed to be theoretically optimal. Decentralized policy
resolution, or negotiation, is a best-effort procedure, and the
number of steps depends on the alternative selection heuristic.
The best we can do is measure the statistical efficiency of the
protocol, and we show the performance results in Section V.

Exception: Our above analysis considered policies only
from a logical perspective. In practice, invocation of helper
functions result in side effects (when requests are processed.)
These could involve operating system calls and transfer of
objects, which are non-logical. The ordering of alternatives and
their selection impacts the final result in these cases, preventing
the protocol from being correct in the non-trivial case (and by
implication, complete). For example, an operation involving
disk space allocation could result in both alternatives C1 and C2
failing when C1 is tried before C2, whereas if C2 had been
attempted first, it would have succeeded. Even here, if such
non-logical actions are revocable, our protocol could keep track
of such intermediate operations, and revoke them upon failure,
thereby maintaining logical consistency and completeness.
Unfortunately, not all possible actions are revocable, and our
protocol would be correct though incomplete in those cases. In
our performance analysis in the following section, we restrict
our analysis to scenarios that do not involve non-logical
operations, thereby ensuring the completeness of the protocol.

3) Other Protocol Aspects and Extensions
Heuristics and Strategies: Whereas many negotiation

protocols are modeled on games or utilitarian economic
transactions, ours is primarily a logical policy resolution
scheme. Yet it leaves ample room for strategizing and
incorporating utility-based heuristics. We have mentioned that
our request types are drawn from the set {possessions, actions,
state requests, queries}. Based on the degree of irrevocability
and the risk involved in granting requests, we may conclude
that query requests are safer to grant than action requests,
which are safer to grant than possession requests (this is true in
many, though not all, scenarios). Available alternatives could
be ordered based on perceived risk, which is inversely related
to utility. Utility could also guide negotiation strategy (the
decision function involved in selecting the next step). In
scenarios having real-time constraints, utility would vary
inversely with the expected time to finish; multiple alternatives
may be sent in a bunch to enable a quicker termination (though
at a higher privacy cost). Other systems, including trust
negotiation [24], have dealt with such issues. Discussing
utility-based heuristics is beyond the scope of this paper, and
we would just like to impress upon the reader that our protocol
lends itself easily to strategizing.

Security: Though confidentiality is easy to achieve by
ensuring that negotiation takes place over secure TLS sockets,
avoiding denial-of-service (DoS) attacks is hard. As neither
negotiator has prior knowledge of the other's policies, one party
could execute a DoS attack on the other simply by sending an
endless sequence of requests. Though such an attack would
result in a waste of the victim's resources, it would hardly cause

25

catastrophic failures that a ping flood (for example) would
cause, as messages are exchanged synchronously. In fact, all
protocols of this nature are susceptible to such an attack. Yet,
the design of our framework allows for mitigating solutions.
The negotiation heuristic (logically separate from the protocol
state machine) could be changed so that the utility of a
goal/request decreases with the number of steps taken thus far,
thereby steering the negotiation to a timely (albeit failed) end.

Multi-Party Collective Negotiation: Could our protocol be
used as a basis for negotiation among multiple domains, the kth
domain represented by Dk<Sk, Pk, Gk>? It could, though real
scenarios would involve more variables than our model
incorporates. A simple form of negotiation would proceed in
lock-step, one negotiator allowed to send messages to some of
the others in every round. Though offers are unicast to the
original requesters, counter-requests may be communicated to
multiple negotiators. Multiple offers could be received for the
same request; one will be selected based on some criterion that
our bilateral negotiation model does not incorporate. Designing
such a protocol would be challenging, as would be ensuring its
correctness and completeness. Our counter-request generation
procedure would also have to be adapted to compute
unsatisfied constraints for more than one recipient.

Examination of heuristics, avoidance of DoS attacks, and
enabling multi-party negotiations are not the goals of this
paper, though we do provide a sound basis for the development
of these aspects. A primary aim was to show that our protocol
could be feasibly used to resolve policies in a distributed
manner; we will show this through our results in Section IV.

IV. PERFORMANCE: CENTRALIZED VS. DISTRIBUTED
POLICY RESOLUTION

As the negotiation protocol is agnostic of the nature of the
policy rules and the goals, the nature of the agreement is not a
meaningful basis for measuring its success. Negotiation finds
one among a number of equivalent goal assignments; i.e., if an
oracle can find a way to satisfy a set of goals, a complete
negotiation protocol must do so as well. A different but equally
“good” agreement is acceptable within this definition. For
example, in our ubiquitous conference room, any one among a
set of printers may be offered, since the guest device simply
requested a printing service. To a user, a color printer may be
qualitatively superior to a black-and-white printer. But the
negotiation protocol cannot distinguish between them unless
the user explicitly expresses a preference in his goals.
Therefore, the number of steps is the yardstick by which we
measure negotiation efficiency. For every scenario, a
theoretically optimal negotiation exists whereby negotiators
can reach one among a number of qualitatively equivalent
agreements in the least number of steps. The number of steps in
an actual negotiation depends on the heuristic used to select an
alternative counter-request at any step. In an optimal
negotiation, the first alternative selected always succeeds,
whereas multiple “false leads” are followed in real
negotiations, resulting in increase in the number of steps.

A. Oracle: Centralized Policy Resolution
We designed and implemented an oracle that gains full

knowledge of negotiators’ policies by merging the two policy

databases. Facts and rules in both databases are rewritten in
terms of the negotiators’ identities and asserted in a new
database. E.g., if N1 possesses resource R, this fact being
asserted in its database, the new database contains the assertion
“N1 possesses resource R”. Facts and rules now reflect globally
consistent knowledge from the point of view of the oracle.

The oracle takes a goal as input and outputs the full policy
derivation tree, the total processing time, and the minimum
number of steps within which a negotiation could terminate.
This minimum number of steps is linear in the depth of the tree.
In an optimal tree, every node evaluation succeeds, every
downward arrow maps to a REQUEST message, and every
upward arrow maps to an OFFER message, and all requests
and offers in a given level are bunched into a single message.

B. Performance Metrics
We compared the performance of the negotiation protocol

against the oracle by three metrics: number of steps, size
(number of nodes) of the policy resolution tree, and
processing time. A fourth metric (fraction of the tree explored)
compared the number of alternatives examined with the total
number generated. This metric indicates the extent of tree
exploration, and the alternative selection heuristic efficacy.

C. Generation of Test Cases
We generated a large number of random test cases for

measurement of these metrics. Each case consists of a pair of
policy databases and an initial goal. Each database consists of a
set of facts and rules. First we generated the databases and then
obtained candidate goals by examining the heads of clauses.

One way of characterizing a database is by observing its
size, which is the total number of facts and rules. Another
characteristic is the total size of all policy rules. But these
parameters, though relevant, may have little or no correlation
with the actual performance of policy resolution (either
centralized or decentralized) as reflected by our metrics. This is
because not all facts and rules are relevant to a particular
negotiation goal. Indeed, it is hard to characterize a policy
database (or pair of databases given as inputs) quantitatively in
an exact manner. Therefore we used the next best option, or the
expected size of a derivation tree (the number of tree nodes)
that results when a goal is resolved against the collective
policies of the participants. We implicitly assume uniform
processing time per node; as we do not use helper functions in
these tests, this assumption is valid. To generate non-trivial
database pairs, we set bounds on the maximum size of derived
trees, which can be controlled using the following parameters.

• Maximum Branching Factor (bmax): This sets a bound
on the number of immediate descendants (children of a
node) in any tree generated from the database pair.

• Maximum Depth (dmax): This sets a bound on the
distance from the root node to a leaf node in any tree
generated from the database pair.

A database can only be characterized using bounds (or
averages). Exact b and d values are characteristic only of a tree
and not of a database. In a test case, a random request will
result in the generation of a proof tree with branching factor at
most bmax and depth at most dmax, with many requests resulting

26

in trees with lower breadth and depth. Each case was generated
by specifying as parameters bmax, dmax, and the initial number of
rules. The final database may contain more statements.
Predicates and constants were drawn from our policy language
ontology (describing possession, action, membership,
information, objects, etc.). First, facts describing the state of
each negotiator were generated. Rules were generated next,
first with one predicate in the body, and then augmented in a
loop to the extent that the branching factor and depth
parameters permitted. The full procedure is described in [21].

D. Measurement Inputs
A test input consisted of the IDs of the negotiators, two

policy databases, and an initial goal posed by one negotiator to
another. These inputs were provided to both the oracle and the
Panoply negotiation framework; least cardinality of a counter-
request set was used as the alternative selection heuristic. We
chose to have exactly one initial goal/request for simplicity, as
our metrics can be measured using single-request negotiations.
Though some multiple request negotiations will shed some
light on the solution quality, the vast majority of negotiations
will only tell us how processing overhead increases with more
requests. Also the time taken to run our tests was quite large for
single request negotiations, and the running time would have
been prohibitively high for multiple request negotiations.

E. Performance Results
The experiments were conducted on an Intel P4 (2.53 GHz,

512MB RAM) desktop. We were interested in the performance
of the negotiators and their processing times, which are
independent of network latency; therefore we ran both
negotiating spheres on the same computer, which yielded
quicker results. Since each negotiator process waits for a
response while the other is running, and these processing times
don’t overlap, we were able to record accurate readings. Test
cases were generated for these parameter values: (1 ≤ bmax ≤
10, 1 ≤ dmax ≤ 20, and initial number of rules = 28). For
each <bmax, dmax> tuple, 40 test cases (database pairs) were
generated. Therefore, a total of 200*40 = 8000 database pairs
were generated. The total number of policy statements in all
these databases was equal to 988263, or an average of ~62
statements per database. A variable number of initial requests
were generated for each test case. A total of 194953 scenarios
(<database-pair, initial-request>) were generated, or an
average of ~24 requests per database pair. To make sense of the
results, we aggregated them based on certain parameters and
ran statistical measurements, which are detailed below. All
confidence intervals in the graphs are 99%. Every negotiation
consists of an odd number of steps, since every request is
matched by a corresponding offer, and a single termination
message is sent by one negotiator at the end. Also, since the
test cases were generated randomly, a large number of the
negotiations resulted in failure.

1) Length of Optimal Negotiation (lmin)
Failed negotiations are indicated in the graphs in this sub-

section by lmin = -1. The confidence intervals for higher values
of lmin are large because our test case generator produced few
test cases at those values. As expected, the number of nodes
(see Figure 3) seems to vary roughly exponentially with the
number of optimal steps (a measure of tree depth). The tree

generated by the oracle does not contain any nodes that lie
along failed paths, and therefore contains many fewer nodes
than the tree generated by the negotiation protocol. Figure 4
indicates actual processing times, and gives a better idea of the
comparative performance. These times also vary exponentially,
though negotiation does not perform much worse than the
oracle, even for higher values of lmin. But the time taken per
negotiation step is comparable to the corresponding time taken
per unit step by an oracle (see Figure 5); at higher values of
lmin, the negotiation time per step is actually lower, an
encouraging result. This may be because an oracle has to
examine a large number of tree paths that eventually fail, even
for short negotiations; whereas the negotiation protocol runs
standard logical procedures and manages lists, resulting in a
proportional increase in processing time with additional steps.
Therefore, developing better heuristics to decrease the number
of negotiation steps could also end up improving system
processing time significantly.

-200

0

200

400

600

800

1000

1200

1400

1600

-2 0 2 4 6 8 10 12 14 16 18
Length of Optimal Negotiation (l min)

N
um

be
r o

f N
od

es

Oracular Tree
Negotiation Tree

Figure 3. lmin: Number of Nodes in the Policy Resolution Tree

-20000

0

20000

40000

60000

80000

100000

120000

140000

-5 0 5 10 15 20
Length of Optimal Negotiation (l min)

Ti
m

e
in

 M
ill

is
ec

on
ds

Oracular Tree
Negotiation Tree

Figure 4. lmin: Total Processing Time for Policy Resolution

The most interesting result is the almost perfectly linear
variation of the number of steps taken by an actual negotiation
with lmin (see Figure 6). A linear regression on the mean curve
yields an R2 value of 0.99, and a slope of 2.11. The special case
of lmin = -1 is also interesting. More than half of our negotiation
scenarios (~55%) resulted in failure, so we obtained a very
large number of data points. Still, both mean and median were
very close to 3 (actually 3.74), which is the shortest negotiation
we could hope for even if the original goal remains unsatisfied.

27

-1000

0

1000

2000

3000

4000

5000

6000

-5 0 5 10 15 20
Length of Optimal Negotiation (l min)

Ti
m

e
in

 M
ill

is
ec

on
ds

Oracular Tree
Negotiation Tree

Figure 5. lmin: Average Processing Time for Policy Resolution per

Negotiation Step

0

5

10

15

20

25

30

35

40

-5 0 5 10 15 20
Length of Optimal Negotiation (l min)

N
um

be
r o

f N
eg

ot
ia

tio
n

S
te

ps

Mean
Median

Figure 6. Comparison of Actual and Optimal Negotiation Steps

0

0.2

0.4

0.6

0.8

1

1.2

-2 0 2 4 6 8 10 12 14 16 18
Length of Optimal Negotiation (l min)

Fr
ac

tio
n

of
 A

lte
rn

at
iv

es
 E

xa
m

in
ed

Figure 7. lmin: Average Fraction of Alternatives Examined

From Figure 7, we can see that the fraction of alternatives
examined (indicating how much of the complete tree was
explored) increases roughly linearly with increase in lmin. Fewer
alternatives exist at lower values of lmin, and the correct
alternative apparently gets examined earlier, leading to a
smaller fraction value. Almost all fraction values are equal to 1
for failed negotiations, since the negotiation protocol engine
attempts an exhaustive search. It is not exactly equal to -1
because alternatives at some intermediate steps may succeed;
these successes are not sufficient for the overall negotiation
(for the original goal) to succeed though.

2) Database Branching Factor Bound (bmax)
Processing times are significantly affected by increase in

the branching factor bound, and we can observe a sharp
increase for bmax > 6 (see Figure 8); our conjecture is that this
increase is polynomial rather than exponential, as tree sizes are
polynomial in terms of their branching factors. But realistic
scenarios (bmax ≤ 6) have significantly lower processing times
on average, for both oracular and distributed policy resolution.

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12
Database Branching Factor Bound (bmax)

Ti
m

e
in

 M
ill

is
ec

on
ds

Oracle
Negotiation

Figure 8. bmax: Processing Time

2

2.5

3

3.5

4

4.5

5

5.5

6

0 2 4 6 8 10 12
Database Branching Factor Bound (b max)

N
um

be
r o

f S
te

ps

Oracle
Negotiation

Figure 9. bmax: Average Number of Policy Resolution Steps

On the other hand, the number of steps in both kinds of
policy resolution increases roughly linearly with bmax (Figure
9): (R2 = 0.98, slope = 0.11) for optimal negotiations, and (R2 =
0.99, slope = 0.3), for actual negotiations. Still, the actual
number of negotiation steps does dominate the optimal number
of steps and the curves diverge at higher values of bmax.

3) Database Depth Bound (dmax)
The processing time for a test scenario increases roughly

linearly for lower depth bound values (see Figure 10) and
remains roughly constant for higher depth bound values
(though with significant noise). This is probably because the
parameter is an upper bound rather than a tight characteristic of
the database pairs. As we increase dmax, a relatively low
fraction of really deep trees are generated, resulting in the
averages being almost constant. The depth parameter is
therefore less meaningful than lmin, with which the processing
time has an exponential relation. The numbers of steps vary in
similar ways to processing times (compare Figures 11 and 10),
being more pronounced at lower values of dmax (less than 10)

28

and flattening out at higher values. In the worst case, the
number of steps taken for a negotiation appears to be 1.3 times
the optimal (least) number of steps possible on average. Since
the test cases at higher values of dmax probably involve a large
number of shorter negotiations, only the parts of the curves for
dmax <= 10 should be considered meaningful.

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25
Database Depth Bound (dmax)

Ti
m

e
in

 M
ill

is
ec

on
ds

Oracle
Negotiation

Figure 10. dmax: Processing Time

2

2.5

3

3.5

4

4.5

5

5.5

0 5 10 15 20 25
Database Depth Bound (dmax)

N
um

be
r o

f S
te

ps

Oracle
Negotiation

Figure 11. dmax: Average Number of Policy Resolution Steps

F. Conclusions
As we have seen, the length (number of steps) of an actual

negotiation increases linearly with the length of an optimal
negotiation for the same test scenario on average (implies
scalability); failed negotiations are remarkably efficient, taking
less than 4 steps on average. And though total processing times
for negotiations dominate total oracular processing times, the
picture is reversed when we consider the average time per step.
Scenarios with realistic branching factor bound (bmax) values
performed within the tolerable range, but increase in bmax
significantly affects processing times. Based on our results, the
branching factor bound appears to be a more significant
performance indicator and bottleneck than the depth bound.

We also gain some insights into the way real ubicomp
environments behave, and how they ought to be administered.
It is feasible for small, self-governing domains to interoperate
through negotiations. There is no vital need to delegate the
responsibility of facilitating interactions to third parties, with
the loss of privacy that centralized solutions entail. The organic
growth of decentralized domains is not a threat to the
ubiquitous computing vision that must be countered by
standardization at all levels. In fact, ad hoc negotiation for

external services is quite fast when the domains are small and
possess relatively few resources and policies that are not very
complex. Users’ mobile device collections, coffee shops,
homes and offices, which comprise a large majority of
domains, will benefit from technology like our protocol.

V. RELATED WORK
Automated trust negotiation [24], through which entities

can establish trust on the web, is closely related to our research.
It is a flexible way of doing access control, where entities can
control what private information is released at fine
granularities, though it is only a special case of the general kind
of negotiation that we achieve. Protune (Provisional Trust
Negotiation) [4], which builds on older trust negotiation
frameworks like PeerTrust [13], is the closest working system
to our own. Both the language, based on declarative logic
program-based policy rules, and the protocol, consisting of
requests and counter-requests, are similar to ours in many
ways. But our negotiation protocol supports a wider range of
information and action requests. It also handles multiple goals,
supports alternatives, and determines compromises through
alternate offer generation. Protune does not provide these
features yet, though it could conceivably be extended to
support these functions. We also have extensive practical test
results comparing centralized and distributed policy resolution.
Protune has not been modeled as a distributed policy resolution
nor have its designers conducted such tests.

Negotiation and service-level agreement protocols have
been developed for a number of areas, though they fall short of
our goals in many respects. The WS-Agreement [1] standard
enables universal negotiation for web services, and has the
advantage of being based on the widely adopted SOAP and
XML standards. On the other hand, it ignores the actual
negotiation mechanism and protocol engineering. Dang and
Huhns have designed a protocol for concurrent negotiations
among multiple service providers and consumers [9]. Their
protocol is based on utility functions that must be reconciled,
whereas our framework is based on logical security and
resource usage policies. A negotiation protocol proposed by
Andreoli and Castellani views negotiation as a distributed proof
tree [2], but uses a centralized coordinator. Interest-based
negotiation [19] facilitates collaboration to achieve goals, and
is application-independent, but does not consider policies to be
private. Neither is the procedure modeled as a distributed
policy resolution, nor have its theoretical properties been
studied as ours has. Other speech acts-based negotiation
protocols have been developed [5], but they do not leverage
negotiators’ policies, nor do they consider security and privacy.

Using policies as a flexible way of controlling systems and
managing security is not new [23]. Languages like Rei [16] and
ASL [15] have adopted a logic-based approach, thereby being
applicable to distributed policy resolution. Our language was
inspired by Rei, which is targeted towards ubicomp and the
Semantic Web. It is based on logical domain-independent
semantics, and supports specification of actions, speech acts,
and modality. Other significant general purpose policy
languages are Ponder [8] and PSPL [3], which have restrictive
semantics. IBM’s TPL [14] and WS-Policy [6] (a widely
accepted standard), are based on XML, a non-logical language.

29

Our negotiation framework can also be viewed as a process
of finding feasible ways of providing access to services.
Advanced role-based access control systems, such as GRBAC
[7] and dRBAC [12] provide more expressive and flexible
policy-based access control than traditional ACLs and
capabilities, but do not consider disagreements and private
policies, where negotiation would be required. Minami’s and
Kotz’s secure context sensitive authorization, [18] is much
closer to our distributed policy resolution model. Access
control in their framework results in a distributed proof tree
spanning multiple entities possessing logically-framed policies.
On the other hand, their system provides no scope for
negotiation, and they assume that policies are public, which
facilitates selection of suitable hosts for building the distributed
proof tree. Yet we have gained valuable conceptual insights
from these models, and obtained pointers for protocol
performance evaluation from Minami’s and Kotz’s research.

VI. CONCLUSION AND FUTURE WORK
Planned interoperation does not scale, and one cannot

anticipate every possible eventuality and put in place a suitable,
efficient mechanism to deal with it. We have demonstrated
how spontaneous decentralized interactions can be enabled
through a generic policy-guided negotiation protocol running in
the application layer. Negotiation is a form of distributed policy
resolution when the policies are specified using first-order
logical semantics. Our protocol terminates as long as the policy
databases are bounded and cycle-free. It is also provably
correct and complete as long as non-logical external functions
do not irrevocable modify database state. Though sub-optimal,
negotiation times fall within the range of what users will
tolerate in a mobile or ubiquitous computing scenario. The
average negotiation length varies linearly with the optimal
negotiation length, and failed negotiations are short, which
indicates that our protocol is scalable. Database branching
factor bounds affect performance much more than depth
bounds, indicating that scenarios where individual policy rules
are not very complex could feasibly use our protocol.

There is ample scope to extend (and measure) the protocol
with different heuristics incorporating semantic information
associated with the request predicates. Using set cardinality as
the selection heuristic works fairly well on average simply
because the probability of satisfaction of a set of k requests
decreases with increase in k. Instead, alternatives could be
ordered using utility functions that take the benefit and
risk/cost associated with requests into account. Cost metrics
could be determined using measures of privacy loss, trust level,
and even the expected time to termination. We could
experiment with game-theoretic strategies, and examine ways
of thwarting possible denial of service attacks on the protocol.
We could also try to model multi-party negotiation as a
distributed policy resolution, where each party has goals that
could be satisfied by a combination of other parties. Devising a
theoretically complete protocol that also handles failure and
synchronization issues would be a significant challenge.

ACKNOWLEDGMENT
This research would not have been possible without Dr.

Kevin Eustice’s research, which yielded the spheres of
influence concept and the Panoply middleware [11].

REFERENCES
[1] A. Andrieux, et al., “Web Services Agreement Specification (WS-

Agreement),” http://www.ogf.org/documents/GFD.107.pdf, May 2007.
[2] J. M. Andreoli and S. Castellani, “Towards a flexible middleware

negotiation facility for distributed components,” DEXA Workshop on E-
Negotiation, Munich, Germany, 2001.

[3] P. Bonatti and P. Samarati, “Regulating service access and information
release on the web,” CCS 2000, Athens, November 2000.

[4] P. A. Bonatti and D. Olmedilla, “Driving and monitoring provisional
trust negotiation with metapolicies,” 6th IEEE POLICY Workshop
(POLICY 2005), pp. 14—23, Stockholm, Sweden, June 2005.

[5] M. K. Chang and C. C. Woo, “A speech-act-based negotiation
protocol: design, implementation, and test use,” ACM Transactions on
Information Systems (TOIS), vol. 12, Issue 4, pp. 360—382, Oct. 1994.

[6] S. Bajaj et. al., “Web Services Policy 1.2 – Framework (WS-Policy),”
W3C Member Submission, http://www.w3.org/Submission/WS-Policy/,
25th April 2006.

[7] M. J. Covington, M. J. Moyer, and M. Ahamad, “Generalized role-based
access control for securing future applications,” 23rd National
Information Systems Security Conference, Baltimore, MD, Oct. 2000.

[8] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder policy
specification language,” POLICY 2001, Bristol, U.K., January 2001.

[9] J. Dang and M. N. Huhns, “Concurrent multiple-issue negotiation for
internet-based services,” IEEE Internet Computing, vol. 10, no. 6, pp.
42—49, November/December 2006.

[10] K. Eustice et al., “Enabling secure ubiquitous interactions,” 1st Intl.
Workshop on Middleware for Pervasive and Ad-Hoc Computing (at
Middleware 2003), Rio de Janeiro, Brazil, 17 June 2003.

[11] K. F. Eustice, “Panoply: active middleware for managing ubiquitous
computing interactions,” PhD Thesis, Computer Science Department,
UCLA, April 2008.

[12] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti,
“dRBAC: distributed role-based access control for dynamic coalition
environments,” ICDCS 2002, IEEE Computer Society, July 2002.

[13] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M. Winslett,
“No registration needed: how to use declarative policies and negotiation
to access sensitive resources on the Semantic Web,” 1st First European
Semantic Web Symposium, Heraklion, Greece, May 2004.

[14] A. Herzberg, Y. Mass, L. Mihaeli, D. Naor, and Y. Ravid, “Access
control meets Public Key Infrastructure, or: assigning roles to strangers,”
IEEE Symposium on Security and Privacy, pp. 2—14, 2000.

[15] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A logical language for
expressing authorizations,” IEEE Symposium on Security and Privacy,
May 4-7, 1997.

[16] L. Kagal, T. Finin and A. Joshi, “A policy language for a pervasive
computing environment,” 4th IEEE POLICY Workshop (POLICY 2003).

[17] T. Kindberg and A. Fox, "System software for ubiquitous computing,"
IEEE Pervasive Computing, vol. 1, no. 1, pp. 70—81, Jan.-Mar. 2002.

[18] K. Minami and D. Kotz, “Scalability in a secure distributed proof
system,” 4th Intl. Conference on Pervasive Computing, May, 2006.

[19] P. Pasquier, L. Sonenberg, I. Rahwan, F. Dignum, and R. Hollands, “An
empirical study of interest-based negotiation,” 9th Intl. Conf. on
Electronic Commerce (ICEC), Minn., MN, pp. 339—348, Aug. 2007.

[20] V. Ramakrishna, K. Eustice, and P. Reiher, “Negotiating agreements
using policies in ubiquitous computing scenarios,” IEEE SOCA 2007,
Newport Beach, California, June 19-20, 2007.

[21] V. Ramakrishna, “Policy Management and Interoperation Through
Negotiation in Ubiquitous Computing,” PhD Thesis, Computer Science
Department, UCLA, September 2008.

[22] J. R. Searle and D. Vanderveken, “Foundations of Illocutionary Logic,”
Cambridge University Press, Cambridge, UK, 1984.

[23] M. Sloman and E. Lupu, “Security and management policy
specification,” IEEE Network, Special Issue on Policy-Based
Networking, (invited) 16(2), Mar. 2002.

[24] M. Winslett, “An introduction to trust negotiation,” 1st International
Conference on Trust Management, Crete, Greece, May 2003.

30

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

