V@Edison |

Intel® Edison Tutorial:
SPI, PWM, and More GPIO

Intel® Edison Tutorial: SPI, PWM, and More
GPIO



5 (inlel') Edison

E' What will you make?
v SR g

Table of Contents

Lo T 11T o 3
List of Required Materials and EqUipment............coo i 3
£ o 10
GPIO - Interaction Without libmraa............ccceviiiiniiiiisssssssssssseeesnrsr s e 17
Shield Pin Configuration............ccommiiiiiiimnr e 20
=] (=T =T g o 22

Version Date Comment

1.0 1/11/2015 Initial release

Intel® Edison Tutorial: SPI, PWM, and More
GPIO 2



- @sl') Edison

2,;" What will you make?
i. -

Introduction

This tutorial will build on the document labelled Intel Edison Tutorial - GPIO and 12C
Interfaces by building systems that use more interfaces and what is beneath the abstractions of
I/O programming. In this tutorial, you will learn to:

Control the brightness of an LED using a PWM signal.

Control a servo using a PWM signal.

Establish an SPI communication between the Intel Edison and the Arduino Uno.
Access the GPIO pins without MRAA.

Configure the shield pins.

MRS

List of Required Materials and Equipment
1. 1x Intel Edison Kit

2x USB 2.0 A-Male to Micro B Cable (micro USB cable)

Ix powered USB hub OR an external power supply

1x Grove — Starter Kit for Arduino

Ix Personal Computer

bl

Intel® Edison Tutorial: SPI, PWM, and More
GPIO



= 7 @ Edison

3_;_'.' What will you make?
t
L = =

PWM - LED Control

Pulse-width modulation (PWM) is a modulation technique used to encode messages into a
pulsing signal. The key metrics for a PWM signal are the duty cycle and the period or
frequency. These are illustrated in the figure below.

Signal
N
t1 / t2 \
Period Duty cycle = t1/Period * 100%
= t1+t2

Figure 1: Key metrics for a PWM signal

PWM signals are typically used to approximate the generation of an analog signal. They are
mainly used to control power supplied to electronic devices.

For more information about PWM, please refer to the below link:

https://en.wikipedia.org/wiki/Pulse-width modulation

Follow the below steps in order to control the brightness of a LED by writing software on the
Intel Edison.

1. Insert the Grove Base shield into the breakout.

2. Connect an LED to D6 (pin 6) using an LED socket, which has a current-limiting resistor
to protect the LED from high current. (Note: digital pins with “~” before the number are
available for PWM)

Figure 2: Hardware configuration for operation of LED via PWM signal
Intel® Edison Tutorial: SPI, PWM, and More
GPIO 4



(intel') Edison

g_g_"' What will you make?

3. Power on the system with either a powered USB hub (connect it to your computer to

supply more power to the Edison) or an external power supply.

4. Access the shell on your Intel Edison. For more information, please refer to the document
labelled Intel Edison Tutorial — Introduction, Shell Access and SFTP.
5. Navigate to /home/root/tutorialS_examples directory.

6. $vipwm_led.c

7. Type the following code.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include
#include

b

b

<signal.h>
<mraa/pwm.h>

#define MAXBUFSIZ 1024

int main(){
float brightness;
char user_input [MAXBUFSIZ];
mraa_pwm_context pwm;
pwm = mraa_pwm_init(6);

if (pwm == NULL) {

fprintf(stderr, "Failed to initialize.\n");
return 1;

mraa_pwm_period_us(pwm,200);
mraa_pwm_enable(pwm, 1);

while(1){

printf("Enter brightness value (0-100): ");
scanf("%s", user_input);

brightness = atof(user_input);

if (brightness > 100 || brightness < 0)

printf("Error: Choose between @ and 100\n");

else {
brightness = brightness/100;
mraa_pwm_write(pwm, brightness);

}

return 0;

Figure 3: Contents of C code source file pwm_led.c

1. $gcc-lmraa-o pwm_led pwm_led.c
2. $./pwm_led

As previously mentioned PWM signals are typically used to approximate the generation of an
analog signal. Consider the scenario where you wish to have the Intel Edison supply a 2.5V LED
driving signal such that the attached LED is emitting light, but not at full intensity. However, the
GPIO pins can only supply either GND voltage or VDD voltage. For the case of the Intel Edison,
the VDD voltage is typically 5V. To resolve this issue, we can use PWM to switch the output
voltage of a digital pin between OV and 5V. The ratio of how long the PWM signal is high to

Intel® Edison Tutorial: SPI, PWM, and More

GPIO



- @gl') Edison

3_;_' What will you make?
t
i 3 =

how long it is low is called the duty cycle.

thign _ 1

D = f =
thigh T tiow thigh T tiow

The brightness is determined by duty cycle (how long the LED is on for a given period). Now,

look at pwm_led.c and see how PWM is used to control the brightness. Please note that the full
range of the LED brightness is not available with this program in order to prevent any damages
to the devices.

Controlling the brightness on LED with PWM is possible because LEDs have very fast response.
On the other hand, fluorescent light bulbs have slow response. Controlling the brightness of a
fluorescent light bulb by providing a PWM signal without additional hardware may be
challenging. Another device with very fast response is a servo. To build a system that controls a
servo, please proceed to the next section labelled PWM — Servo Control.

Intel® Edison Tutorial: SPI, PWM, and More
GPIO 6



7 @ Edison

3_;_'.' What will you make?
t
L = =

PWM - Servo Control

A servo motor is a device that contains gears that control the rotation of a shaft. Typical hobby
servo motors have shafts which can be positioned at various angles (usually between 0 and 180
degrees). By providing an encoded PWM signal to the input of the servo motor, this angle can be
precisely controlled.

For more information, please refer to the below links:
e http://www.seattlerobotics.org/guide/servos.html
e https://en.wikipedia.org/wiki/Servo (radio control)

The servo motor provided in the Grove — Starter Kit for Arduino responds to the width of a pulse
(ie: t; from rigure 1 above). For most servos, a 0.5ms pulse width (t,) results in the full left
position and 2.5ms results (t;) in the full right position. The servo also expects the period (ie:

T =t, + t, from Figure 9 above) of the PWM signal to be approximately 20ms. Follow the
steps below to implement a servo control system.

1. To ensure that PWM is not enabled, power down the Intel Edison. Remove all power
supplies and cables from the Intel Edison once it is powered down.

Wait 10 seconds, reconnect all cables, and access the shell on your Intel Edison.

2. Insert the Grove Base shield into the breakout.

3. Connect a servo to D6 and a rotary angle sensor to AO. Ensure that you have a power
supply. If you do not have a power supply, the Intel Edison may get caught in a reboot
loop as the USB interface does not provide sufficient current to the servo.

.......

‘ @sdison

. What will you make?

[

Figure 4: Hardware configuration to enable servo control via user interaction with rotary angle sensor

Intel® Edison Tutorial: SPI, PWM, and More
GPIO 7



(intel') Edison

%mf.' What will you make?

4. 1If the Edison reboots as soon as you connect a servo, your system is not supplied with
enough power. Make sure to use a powered USB hub or an external power supply that
can supply enough power.

5. Navigate to the directory named ~/futorial5_examples.

$ vi pwm_servo.c

7. Type the following code.

a

#include <stdio.h>
#include <signal.h>
#include <mraa/pwm.h>
#include <mraa/aio.h>

sig_atomic_t volatile isrunning = 1;

void sig_handler(int sig) {
if (sig == SIGINT)
isrunning = 0;

}

int main(){
signal(SIGINT, &sig_handler);

uintl6_t rotary_value = 0;
float value = 0.0f;
mraa_pwm_context pwm;
mraa_aio_context rotary;

pwm = mraa_pwm_init(6);
rotary = mraa_aio_init(9);

if (pwm == NULL || rotary == NULL) {
return 1;
}

mraa_pwm_period_ms(pwm,20);
mraa_pwm_enable(pwm, 1);

while(isrunning){
rotary_value = mraa_aio_read(rotary);
//convert to 0.00 to 1.00 scale.
value = ((float)rotary_value)/1023;

//convert to 0.025 to ~@.1 scale (avoid rattle).
value = value/13.33;
value = value + 0.025;

printf("%f\n", value);
mraa_pwm_write(pwm, value);
usleep(50000);

}

mraa_pwm_write(pwm, 0.025f);

return 0;

}

Figure 5: Contents of C code source file to actuate servo based on user interaction with rotary angle sensor.
8. $ gcce -lmraa -o PWIn_Servo pwim_servo.c

Intel® Edison Tutorial: SPI, PWM, and More
GPIO



V @ Edison |

?f" What will you make?
i - =

@

9. $.pwm_servo
10. Turn the rotary angle sensor to control the servo.
Note: If your Edison reboots, it needs a more powerful power supply.

Intel® Edison Tutorial: SPI, PWM, and More
GPIO



5
D

SPI

The Serial Peripheral Interface (SPI) bus is a synchronous serial communication between one
master device and one or more slave devices for a short distance. Along with 12C, SPI is
primarily used in embedded systems. The motivation of the development of these buses is
reducing the number of wires. A common way to connect peripherals to a CPU/microcontroller
is connecting through parallel address and data busses. This way, a bus can result in a lot of
wires on PCB (printed circuit board). A bus with many wires is not desirable for embedded
systems. In comparison to parallel buses, SPI operates with only four wires. A figure below
illustrates a single master to a single slave SPI bus.

Figure 6: SPI between a single master and a single slave
SCLK (serial clock) is the clock line. The master device sends the clock signal to its slave

devices through SCLK, which synchronizes the data communication. MOSI (master out, slave
in) and MISO (master in, slave out) are the data lines. The reason why there are two data lines in
SPI is to have full duplex communication (i.e. simultaneous communication in both directions).
Every clock cycle, the master device sends a bit to the slave via MOSI and the slave device sends
a bit to the master via MISO. SS (slave select) is the line, which the master device uses to select
the slave device for data transmission/request by pulling down (i.e. making the signal to logic
level 0).

There are four different transmission modes, which depend on the master devices configuration
of the clock phase (CPHA) and the clock polarity (CPOL). The details of the modes, clock
phase, and clock polarity are out of the scope of this tutorial. However, you are encouraged to
learn about them.

In this tutorial, we will implement SPI in mode 0 (CPHA = 0 and CPOL = 0) between an Intel
Edison and an Arduino Uno.

Intel® Edison Tutorial: SPI, PWM, and More
GPIO 10



: (inlel') Edison

' What will you make?

First, we need to configure the wire connection between these devices as shown in Figure 1. The
Edison’s Arduino-compatible breakout and the Arduino Uno have the same pinout as shown in
Figure 2 below.

THE
DEFINITIVE

ARDUINO

53

SExXakRal

ATMEGA328

UERUES NN
ATMEGARU2/ATMEGAIGU2 ICSP

PINOUT DIAGRAM

A\ Absolute max per pin dema
reccomended JomA

5 Absolute max 200mA
for entire package

PCINT13H S(L 0 i
~n M)—vcuwu— o
- \_AREF

PCINTS Sex H,ﬁ,‘
1a pea—_ 12 PCINTA _MISO |

17 pe3{ 11 M ocaa Hecints - " moSI |
=
s e 10 H 0C18  PCINT2 —{UPWM-  SS
15 P81 "o _OC1A_~ PCINTI PN

&R =i g "CLKO H PCINT®
7 AN HPCINT23

6 amve —pcint22-{NBNME- OCoA §
5 M T1 HPCINT21-RIN i

RESET

ONINaYY

(5
Sl (e \E
g <) B 4 o -pciNt2er
oS R =
22 (% 3+ InT1_-pciwmao-{BNNI- Oc28
; U b+ INT@ ~PCINTIS
E 2 [ - TXD -PCINT17-
L~ 2 - RXD -PCINT16

Pes{_13 } { PCINTS | {_Sex
@ RESET PCINTIA nvu—ll PB4 12 | PCINTA MISO

2 # :
18 FEB 2013 = ]

pe3_ 11 H ocaa ~pcinta I MoST €8 source Total 150

Figure 7: Pinout of the Arduino Uno board
Figure 2 shows that SCLK, MISO, MOSI, and SS are Pin 13, Pin 12, Pin 11, and Pin 10
respectively on both the Edison and the Arduino Uno. The Edison can only be the master device.
Thus, we will configure the Edison as the master device and the Uno as the slave device. Please
follow the steps below.

1. Connect the Edison and the Uno with four wires as described below.
e Edison’s Pin 13 to Uno’s Pin 13 (SCLK)
e Edison’s Pin 12 to Uno’s Pin 12 (MISO)
e Edison’s Pin 11 to Uno’s Pin 11 (MOSI)
e Edison’s Pin 10 to Uno’s Pin 10 (SS)
Serial connect or SSH into the Edison.
$ mkdir ~/tutorialS_examples
$ cd ~/tutorial5_examples
$ vi spi.c
Type the following C code.

AT e

Intel® Edison Tutorial: SPI, PWM, and More
GPIO 11



#include <unistd.h>
#include <stdint.h>
#include <mraa/spi.h>

int main()

mraa_spi_context spi;
spi = mraa_spi_init(0);
uint8_t data;

int recv_int;

int 1i;
while (1) {
for (1 =0; 1< 10; i++) {
data = i;
//send data and receive
recv_int = mraa_spi_write(spi, data);
printf("Received: %d\n", recv_int);
usleep(200000);
}
}
return 0;

Figure 8: Sending data using the mraa library and the SPI protocol, spi.c
7. $ gce -lmraa -o spi spi.c

(intel') Edison

2,;" What will you make?

8. As shown in the code above, MRAA library abstracts the hardware configuration of SPI.
However, there is no library for the Arduino Uno to be set up as a slave device. It is

important to understand the hardware of the Uno’s microcontroller (ATmega328). We

will come back to the details of this.
9. Connect the Uno to your computer and open Arduino IDE.
10. Select the right board and the port for the Uno.
11. Upload the following sketch to the Uno.

Intel® Edison Tutorial: SPI, PWM, and More
GPIO

12



3

i
i

\"

}

\"

}

\"

}
/

i

}

include <SPI.h>

nt recv;
nt i;

oid setup() {
spi_slave_init();
Serial.begin(9600);
i=10;

oid loop() {
recv = spi_transfer(i);

if (1 == 0) {
i=10;

}

i-—;

Serial.print("Received: ");
Serial.println(recv);

oid spi_slave_init() {
//set the directions of the pins
pinMode(SCK, INPUT);
pinMode(MOSI, INPUT);
pinMode(MISO, OUTPUT);
pinMode(SS, INPUT);

SPCR = 0x00;
//enable SPI
SPCR |= (1 << SPE);

/Receive and Send data
nt spi_transfer(int send_data) {
//This part is for reception
int recv_data;
while (!(SPSR & (1 << SPIF))) {
//wait for complete transfer
HH
recv_data = SPDR;
//This part is for transmission
SPDR = send_data;
while (!(SPSR & (1 << SPIF))) {
//wait for complete transfer

};

return recv_data;

Figure 9: Arduino sketch to receive SPI data

12. Open serial monitor on Arduino IDE.
13. Go back to the SSH session (or serial console).
14. $ ./spi

Intel® Edison Tutorial: SPI, PWM, and More

GPIO

V @ Edison |

?f" What will you make?

13



(inlel') Edison

' What will you make?

15. Now, you should see that the Edison receives decrementing integer data while the
Arduino receives incrementing integer data.
The C code for the Edison is very straightforward. “spi” is initialized with the
“mraa_spi_init(0)” function. Let’s consider how this is done. Pins 10,11,12,13 (numbered 1010,
1011, 1012, and IO13) can have different signals as shown in the table below.

Shield pin GPIO (Linux) PWM (Linux) Muxed functions Notes
100 130 UART1_RXD
101 131 UART1_TXD
102 128 UART1_CTS Note 1.
103 12 0 PWMO Note 2.
104 129 UART1_RTS Note 1.
105 13 1 PWM1 Note 2.
106 182 2 PWM2 Note 2.
107 48 —
108 49 -
109 183 3 PWM3 Note 2.
1010 41 7 SPI_2_SS1
125_2_FS Note 1.
PWM4_OUT Note 2.
1011 43 7 SPI_2_TXD
125_2_TXD Note 1.
PWM5_OUT Note 2.
1012 42 SPI_2_RXD
125_2_RXD Note 1.
1013 40 SPI_2_CLK
125_2_CLK Note 1.
1014 44 AINO
1015 45 AIN1
1016 46 AIN2
1017 47 AIN3
1018 14 AIN4
12C_6_SDA
1019 165 AIN5S
12C_6_SCL

1  Some additional functions are available on certain SoC pins, such as 125 and UART flow control, but they are not currently
supported by the Arduino library. However, it may be possible to use these from Linux.
2 Depends on PWM swizzler. The SoC offers only four PWM pins. A jumper pin matrix labeled "PWM swizzler” on the baseboard
allows these four pins to be connected to any subset of the six shield-header pins normally used for PWM. From the factory,
103, 105, 106, and 109 will be connected to the four available SoC PWM pins as described above. You can manually alter
these to connect /010 or IO11.
Figure 10 GPIO Mapping (Source: Intel)

The “mraa_spi_init” function sets the multiplexers to map the pins so that pins 13, 12, 11, 10
are SCLK, MISO, MOSI, SS. Then, it selects SPI mode 0 and sets transfer in most significant bit
first mode. Later in the code, we use “mraa_spi_write(spi, data)” to transmit “data” to the
slave device and this functions returns the received data from the slave.

Now, let’s look at the Arduino sketch. First thing to consider is that there are no library functions
available for an Arduino used as a slave device. For instance, a library function, “SPLbegin()”,
configures the directions of SCLK, MOSI, MISO, and SS as a master device. Since there is no
Intel® Edison Tutorial: SPI, PWM, and More

GPIO 14



@ Edison

3_;_'.' What will you make?
t
L = =

available function to initialize the Uno as a slave device, we have to write our own function, such
as “spi_slave_init()” in the sketch above. The function configures the directions of SCLK,
MOSI, MISO, and SS as a slave device.

The next line of the code includes “SPCR”, which refers to SPI Control Register. A register is an
8-bit memory in a microcontroller. Three registers are used by the Uno for the SPI interface.
Other two registers are SPI Status Register (SPSR) and SPI Data Register (SPDR). SPCR
controls the SPI settings as described below. Each column represents each bit of the register.

7 6 5 4 3 2 1 0
SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO

Figure 11 SPCR

SPIE (SPI Interrupt Enable): when 1, enable SPI interrupt.
SPE (SPI Enable): when 1, enable SPI.
DORD: when 1, send the least significant bit (LSB) first;

when 0, send the most significant bit (MSB) first.
MSTR: when 1, set the device as a master;

when 0, set the device as a slave.
CPOL: Setting the Clock Polarity as 0 or 1.
CPHA: Setting the Clock Phase as 0 or 1.
SPR1 and SPRO - Sets the SPI speed to maximum when 00 or minimum when 11.

In the sketch, we set all of these eight bits to 0 and doing so results in MSB first mode, slave
mode, and mode 0 (CPOL = 0 and CPHA = 0). This setting adheres to the setting of the SPI
connection’s other end. The C code for the Edison initializes the Edison as a master with also
MSB first mode and mode 0. Now, SPI needs to be enabled, so SPCR is bit-masked to set SPE as
1.

SPDR holds the data to be sent or received. We can use this register to read the received data and
transmit data. However, we need to be careful because it is a serial-in shift register. In other
words, one bit of data is transmitted/received at a time. Therefore, we need to wait until the
whole 8-bit data is in the register. This is illustrated in the figure below. If the data to be received
is 10101110,, two least significant bits have not yet received in the sixth clock cycles.

6thclockcycle x x 1 0 1 0 1 1

8thclockcycle 1 o0 1 o0 1 1 1 0
Figure 12 SPDR

Intel® Edison Tutorial: SPI, PWM, and More
GPIO 15



= V@Edison |

?f" What will you make?

In the Arduino sketch, while (!(SPSR & (1 << SPIF))) { } loop will make sure all eight bits are
received. When the transmission of data is completed, SPI Interrupt Flag (SPIF) is set to 1. SPIF
is a bit in SPI Status Register (SPSR).

Optional Practice

SD cards are SPI devices. Design and implement an SD card reader on the Edison using its SPI
interface.

Hint:

1. As shown in the picture below, an SD card adapter’s pins can be solder to header pins and
then plugged into a breadboard.

2. There are example Arduino sketches on Arduino IDE.

bl S S S R
R EEEE Y OYOYOYOY

Figure 13 SD Card Reader

Intel® Edison Tutorial: SPI, PWM, and More
GPIO 16



@ Edison

3_;_'.' What will you make?
t

GPIO - Interaction Without libmraa

While the mraa library is convenient, there may be situations where you do not have access to it.
To address this issue, this section will cover accessing the GPIO pins without the mraa library.
Before going into the details, try the following demonstration.

el

= X

Insert the Grove Base shield into the Edison.
Connect an LED to D7 (pin 7) using the LED socket.
Access the shell on the Intel Edison.

$ echo 48 > /sys/class/gpio/export

The error message Device or resource busy indicates that the value 48 is already in the
file.

$ echo 48 > /sys/class/gpio/unexport

$ echo 48 > /sys/class/gpio/export

$ echo 255 > /sys/class/gpio/export

The error message Device or resource busy indicates that the value 48 is already in the
file.

$ echo 255 > /sys/class/gpio/unexport

$ echo 255 > /sys/class/gpio/export

$ echo 223 > /sys/class/gpio/export

The error message Device or resource busy indicates that the value 48 is already in the
file.

$ echo 255 > /sys/class/gpio/unexport

$ echo 255 > /sys/class/gpio/export

$ echo high > /sys/class/gpio/gpio255/direction
$ echo in > /sys/class/gpio/gpio223/direction
$ echo out > /sys/class/gpio/gpio48/direction

. $ echo 1 > /sys/class/gpio/gpio48/value

Now the LED should turn on.

. $ echo 0 > /sys/class/gpio/gpio48/value

Now the LED should turn off.

First, we need to understand what “48”, “255”, and “223” are. The pin number we refer to, such
as D7, is the Arduino shield pin number, which is not the same as the pin number understood by
the embedded Linux. Go back to page 8 of this tutorial and take a look at the table. IO7 (digital

pin 7) is mapped to GPIO 48 (Linux), which is a SoC (System-on-Chip) pin rather than a shield

pin.

There are level-shifters between the SoC GPIO pins and the shield pins as shown in Figure 16 on
the next page. These level-shifters must be configured for input/output direction before

Intel® Edison Tutorial: SPI, PWM, and More

GPIO

17



V@Edison |

?f" What will you make?

configuring the SoC pin direction. The I/O direction of a level-shifter is set via controlling a port
expander as shown in the picture. In Linux, this hardware configuration can be done by changing
values in directories such as /sys/class/gpio/gpio255. For each shield pin, there is a dedicated
directory with user space interfaces to control the hardware. Figure 17 on the next page shows
which shield pin is associated with which directory in Linux. For instance, 107 is associated with
/sys/class/gpio/gpio255.

~ ISP
N\ =
{ JOREF Jumper i
A slecs 33 or5V 102110 02 sv 79‘:;? :u::;:yk
o \sheld Opertion 1013(3 O O 4 ~012
%) Sl \»_/ RESET|5 O () § GND
IOREF2 le) -
RESET3 ( 4Oj—"‘—b 3.3V
E| 3awucC
E L0 3 - » 5V
GND&
GNDJ7 C
VINg O |«¢— VIN (7 to 15V)

ANALOG IN

"“i\\v

g
B
107 ;
~106 =
~105
104
~103
102
™
e
~ 4 or &PU.LUP
P . UART 2

A
< D ﬁ
V%\)‘\ ° / c
05.\ s g Micro SD g UM;[I;'USB
Connector 1 3v< >SVLA

y Tvansal jon provided |

on board between '

= \ #llEdison /O and /
= NS
Clent Client
Host USH
use usa

F
‘"'_:‘: Micro Micro
»w Typed Typed

Figure 14 Intel Edison for Arduino Block Diagram (Source: Intel)
In steps 4, 6 and 8, we exported gpio48, gpio255, and gpio223. Exporting these means that we
are making them available to use. You can enter “Is” to see all available GPI1Os. “echo 48 >/
sys/class/gpio/export” will add gpio48 to the list and “echo 48 > /sys/class/gpio/unexport” will
delete gpio48 from the list. In the demonstration, we deleted the GP1IOs and then made them
available so that the GPIOs will have default configurations.

The right side of the table on the next page implies that we can enable/disable an external 47k
ohm pull-up resistor. The pull-up resistor is disabled by default. You can make sure that it is
disabled by entering “echo in /sys/class/gpio/gpio223/direction”. You can enable it by setting it
to “high”. However, the details on pull-up/pull-down resistors are out of this tutorial’s scope.

Intel® Edison Tutorial: SPI, PWM, and More
GPIO 18



(¥192 311A-10H SALY

Ee %
el K
Ge . :

(inlel') Edison

' What will you make?

Shield Output enable GPIO (high = output) Pullup enable GPIO
pin Pin Linux Power-on default ' Pin Linux | Power-on default ?
100 U34_100.0 248 Pulled-down input U39_100.0 216 Pulled up input
101 U34_100.1 249 Pulled-down input U39_100.0 217 Pulled up input
102 U34_100.2 250 Pulled-down input U39_100.0 218 Pulled up input
103 U34_100.3 251 Pulled-down input U39_100.0 219 Pulled up input
104 U34_100.4 252 Pulled-down input U39_100.0 220 Pulled up input
105 U34_100.5 253 Pulled-down input U39_100.0 221 Pulled up input
106 U34_100.6 254 Pulled-down input U39_100.0 222 Pulled up input
107 U34_100.7 255 Pulled-down input U39_100.7 223 Pulled up input
108 U34_101.0 256 Pulled-down input U39_100.7 224 Pulled up input
109 U34_1011 257 Pulled-down input U39_100.7 225 Pulled up input
1010 U34_101.2 258 Pulled-down input U39_100.7 226 Pulled up input
1011 U34_101.3 259 Pulled-down input U39_100.7 227 Pulled up input
1012 U34_101.4 260 Pulled-down input U39_100.7 228 Pulled up input
1013 U34_101.5 261 Pulled-down input U39_100.7 229 Pulled up input
1014 U16_100.0 232 Pulled-down input U17_101.0 208 Pulled up input
1015 U16_100.1 233 Pulled-down input U17_101.1 209 Pulled up input
1016 U16_100.2 234 Pulled-down input U17_101.2 210 Pulled up input
1017 U16_100.3 235 Pulled-down input uU17_101.3 211 Pulled up input
1018 U16_100.4 236 Pulled-down input U17_101.4 212 Pulled up input
1019 U16_100.5 237 Pulled-down input U17_101.5 213 Pulled up input

1  These pins are externally pulled down inputs at power-on. This effectively selects input direction for level shifters.
2  These pins are internally pulled up inputs at power-on. This effectively enables pullups (as 100 kohm + 47 kohm in series).

Figure 15 Pin Direction and Pull-up Control (Source: Intel)

We set the I/O directions on gpio255 (level-shifter) and gpio48 (SoC) as output by entering
commands, “echo high > /sys/class/gpio/gpio255/direction” and “echo out > /sys/class/
gpio/gpio48/direction”. Then, we can set the output as logical level 1 or logic level 0 by
entering “echo 1 > /sys/class/gpio/gpio48/value” or “echo 0 > /sys/class/gpio/gpio48/value”.

Optional practice
Repeat this demonstration for 108.
Write a C program that blinks an LED without using the MRAA library or making a

1.
2.

system call to run the commands presented above.

Hint: you can open these interfaces and read/write to them.

Intel® Edison Tutorial: SPI, PWM, and More

GPIO

19




V @ Edison |

?f" What will you make?

Shield Pin Configuration
This section is an extension to the previous section. The table on page 8 shows that IO7 is
available for GPIO only and “Muxed functions” column is blank for I07. Let’s look at IO10.
Unlike 107, 1010 is available for GPIO, SPI, I12C, and PWM. In this demonstration, we will set
up 1010 as a GPIO input. Try the following steps.
1. Connect to a button sensor to the breakout as shown below.

1) Yellow —Pin 10

2) Red - VCC (5V)

3) Black — GND

. ¥ i R e ol
Figure 16 H;fd’\'al'e Setup fc:r‘Shield Pin —Cc;.r:figurationDem
2. Export GPIOs.
1) $ echo 41 > /sys/class/gpio/export
* SoC pin number for Linux
2) $ echo 263 > /sys/class/gpio/export
* GPIO for multiplexing control.
» Let’s look at the block diagram on page 17. I010 is connected to a level-shifter,
which is connected to a multiplexer (MUX). With multiplexing control, we can set
1010 as a GPIO pin.
» The table on page 21 shows the multiplexing control for pin configuration. The
GPIO pin mux for I010 can be accessed as GPIO 263 and GPIO 240. First, we
need to set GPIO 263 as high to select GPIO/SPI (Step 4 below). Then, we need to
set GPIO 240 as low to select GPIO (Step 5 below).
3) $ echo 240 > /sys/class/gpio/export
* GPIO for multiplexing control.
4) $ echo 258 > /sys/class/gpio/export
* GPIO for pin direction

Intel® Edison Tutorial: SPI, PWM, and More
GPIO 20



10.

11.
12.

13.

@ Edison

3_;_'.' What will you make?
t
L = =

5) $ echo 226 > /sys/class/gpio/export
* GPIO to enable/disable pullup resistor
6) $ echo 214 > /sys/class/gpio/export
* GPIO that controls the TRI STATE ALL signal, which is used to
connect/disconnect the shield pins.
$ echo low > /sys/class/gpio/gpio214/direction
» Disconnect the shield pins before making changes.
$ echo high > /sys/class/gpio/gpio263/direction
» Set GPIO 263 as high to select GPIO/SPI.
$ echo low > /sys/class/gpio/gpio240/direction
* Set GPIO 240 as low to select GPIO.
$ echo mode( > /sys/kernel/debug/gpio_debug/gpio41/current_pinmux
* According to the table on the next page, mode 0 will select GPIO.
$ echo low > /sys/class/gpio/gpio258/direction
+ Set the pin direction as input.
$ echo in > /sys/class/gpio/gpio226/direction
+ Disable pull-up resistor
$ echo in > /sys/class/gpio/gpio41/direction
+ Set the pin direction as input.
$ echo high > /sys/class/gpio/gpio214/direction
+ Connect the shield pins.
You can now read digital input on pin 10 by entering “cat /sys/class/gpio/gpio41/value”.
When the button is not pressed and the command in step 11 is entered, the output on the
display is 0.
Enter the same command while the button is pressed. You should get 1.

Optional Practice

1.
2.

Repeat this demonstration for other pins with muxed functions (e.g. [O11).
Write a C code program that reads a button sensor or any other digital sensor without
using the MRAA library or making a system call to run the commands presented above.

Intel® Edison Tutorial: SPI, PWM, and More

GPIO

21



1#192 31 1A-10H S8

- @ Edison |

' What will you make?

Shiel GPIO pin mux SoC pin modes
d pin Pin Linux 0 (low) 1 (high) Power-on default Pin | Linux 0 1 2
100 - GP130| 130 GPIO | UART
101 - GP131 131 GPIO | UART
102 - GP128 | 128 GPIO | UART
103 - GP12 12 GPIO | PWM
104 - GP129 | 129 GPIO | UART
105 - GP13 13 GPIO PWM
106 - GP182 | 182 GPIO | PWM
107 - GP48 48 GPIO
108 - GP49 49 GPIO
109 - GP183 183 GPIO PWM
1010 | U34_101.7 263 PWM4_OUT GP41 Pulled down input | GP41 41 GPIO 12S
SSP5_FS_1
U16_101.0 240 GP41 SSP5_FS_1 Pulled up input’ GP111 111 GPIO SPI
1011 | U34_101.6 262 PWM5_0OUT GP43 Pulled down input | GP43 43 GPIO 12S
SSP5_TXD GP115| 115 GPIO SPI
U16_101.1 | 241 GP43 | SSP5_TXD | Pulled up input’
1012 | U16_101.2 242 GP42 SSP5_RXD Pulled up input’ GP42 42 GPIO 12S
GP114 | 114 GPIO SPI
1013 | U16_101.3 243 GP40 SSP5_CLK Pulled up input’ GP40 40 GPIO 12S
GP109 | 109 GPIO SPI
1014 | U17_100.0 200 GP44 AO Pulled up input’ GP44 44 GPIO
1015 | U17_100.1 201 GP45 A1l Pulled up input’ GP45 45 GPIO
1016 | U17_100.2 202 GP46 A2 Pulled up input’ GP46 46 GPIO
1017 | U17_100.3 203 GP47 A3 Pulled up input’ GP47 47 GPIO
1018 | U17_100.4 204 GP14 A4 Pulled up input’ GP14 14 GPIO | 12C-6 | 12C-8
12C6_SCL GP28 28 GPIO
1019 | U17_100.5 205 GP165 A5 Pulled up input’ |[GP165| 165 GPIO | 12C-6 | I2C-8
12C6_SDA GP27 27 GPIO

1. These pins are pulled up inputs at power-on. This effectively enables the mux switches (i.e. mux function 1 is selected).

References
1.
2.
3.
4,
5.
6.
7.
per.pdf
8.

Intel® Edison Tutorial: SPI, PWM, and More

GPIO

Figure 17 Pin Function Multiplexing Control (Source: Intel)

https://www.arduino.cc/en/Reference/SPI

http://iotdk.intel.com/docs/master/mraa/spi 8h.html

https://github.com/intel-iot-devkit/mraa/blob/master/docs/edison.md

https://www.arduino.cc/en/Tutorial/SPIEEPROM

http://download.intel.com/support/edison/sb/edisonarduino hg 331191007.pdf

http://www.atmel.com/Images/doc2585.pdf

https://software.intel.com/sites/default/files/managed/ed/ec/ICS Using MRAA WhitePa

https://www.arduino.cc/en/Tutoria/PWM

22



