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Outline 

•  Locks 
•  Semaphores  
•  Mutexes and object locking 
•  Getting good performance with locking 
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Our Synchronization Choices 

•  To repeat: 
1.  Don’t share resources 
2.  Turn off interrupts to prevent concurrency 
3.  Always access resources with atomic instructions 
4.  Use locks to synchronize access to resources 

•  If we use locks, 
1.  Use spin loops when your resource is locked 
2.  Use primitives that block you when your 

resource is locked and wake you later 
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Concentrating on Locking 

•  Locks are necessary for many synchronization 
problems 

•  How do we implement locks? 
–  It had better be correct, always 

•  How do we ensure that locks are used in ways 
that don’t kill performance? 
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Basic Locking Operations 

•  When possible concurrency problems, 
1.  Obtain a lock related to the shared resource 

•  Block or spin if you don’t get it 
2.  Once you have the lock, use the shared resource 
3.  Release the lock 

•  Whoever implements the locks ensures no 
concurrency problems in the lock itself 

–  Using atomic instructions 
–  Or disabling interrupts 
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Semaphores 

•  A theoretically sound way to implement locks 
– With important extra functionality critical to use in 

computer synchronization problems 
•  Thoroughly studied and precisely specified 

– Not necessarily so usable, however 

•  Like any theoretically sound mechanism, could 
be gaps between theory and implementation 
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Semaphores – A Historical  
Perspective 

When direct communication was not an option 
E.g., between villages, ships, trains 
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The Semaphores We’re Studying 

•  Concept introduced in 1968 by Edsger Dijkstra 
– Cooperating sequential processes 

•  THE classic synchronization mechanism 
– Behavior is well specified and universally accepted  
– A foundation for most synchronization studies 
– A standard reference for all other mechanisms 

•  More powerful than simple locks 
– They incorporate a FIFO waiting queue 
– They have a counter rather than a binary flag 



Lecture 9 
Page 9 

CS 111 
Summer 2017  

Semaphores - Operations 
•  Semaphore has two parts: 

– An integer counter (initial value unspecified) 
– A FIFO waiting queue 

•  P (proberen/test) ... “wait” 
– Decrement counter, if count >= 0, return 
–  If counter < 0, add process to waiting queue 

•  V (verhogen/raise) ... “post” or “signal” 
–  Increment counter 
–  If counter >= 0 & queue non-empty, wake 1st 

process 
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Using Semaphores for Exclusion 

•  Initialize semaphore count to one 
– Count reflects # threads allowed to hold lock 

•  Use P/wait operation to take the lock 
– The first will succeed 
– Subsequent attempts will block 

•  Use V/post operation to release the lock 
– Restore semaphore count to non-negative 
–  If any threads are waiting, unblock the first in line 
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Using Semaphores for 
Notifications 

•  Initialize semaphore count to zero 
– Count reflects # of completed events 

•  Use P/wait operation to await completion 
–  If already posted, it will return immediately 
– Else all callers will block until V/post is called 

•  Use V/post operation to signal completion 
–  Increment the count 
–  If any threads are waiting, unblock the first in line 

•  One signal per wait: no broadcasts 
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Counting Semaphores 
•  Initialize semaphore count to ... 

– Count reflects # of available resources 

•  Use P/wait operation to consume a resource 
–  If available, it will return immediately 
– Else all callers will block until V/post is called 

•  Use V/post operation to produce a resource 
–  Increment the count 
–  If any threads are waiting, unblock the first in line 

•  One signal per wait: no broadcasts 
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Semaphores For Mutual 
Exclusion 

struct account { 
 struct semaphore s;  /* initialize count to 1, queue empty, lock 0  */ 
 int balance; 
 … 

}; 

int write_check( struct account *a, int amount ) { 
 int ret; 
 wait( &a->semaphore );   /* get exclusive access to the account   */ 

   if ( a->balance >= amount ) { /* check for adequate funds   */ 
    amount -= balance; 
    ret = amount; 
   } else { 
    ret = -1; 
     
 post( &a->semaphore );   /* release access to the account    */ 
 return( ret ); 

} 
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Semaphores for Completion Events 
struct semaphore pipe_semaphore = { 0, 0, 0 }; /* count = 0; pipe empty */ 
char buffer[BUFSIZE]; int read_ptr = 0, write_ptr = 0; 

char pipe_read_char() { 
 wait (&pipe_semaphore );    /* wait for input available  */ 
 c = buffer[read_ptr++];    /* get next input character  */ 
 if (read_ptr >= BUFSIZE)    /* circular buffer wrap  */ 
  read_ptr -= BUFSIZE; 

  return(c);  
} 

void pipe_write_string( char *buf, int count ) { 
 while( count-- > 0 ) { 
  buffer[write_ptr++] = *buf++;  /* store next character  */ 
  if (write_ptr >= BUFSIZE)  /* circular buffer wrap  */ 
   write_ptr -= BUFSIZE; 
  post( &pipe_semaphore );   /* signal char available  */ 
 } 

}      
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Implementing Semaphores 
void sem_wait(sem_t *s) { 

 pthread_mutex_lock(&s->lock); 
 while (s->value <= 0) 
  pthread_cond_wait(&s->cond, &s->lock); 
 s->value--; 
 pthread_mutex_unlock(&s->lock); 

} 
void sem_post(sem_t *s) { 

 pthread_mutex_lock(&s->lock); 
 s->value++; 
 pthread_cond_signal(&s->cond); 
 pthread_mutex_unlock(&s->lock) 

} 
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Implementing Semaphores in OS  

void sem_post(struct sem_t *s) { 
 struct proc_desc *p = 0; 
 save = intr_enable( ALL_DISABLE ); 
 while ( TestAndSet( &s->lock ) ); 
 s->value++; 
 if (p = get_from_queue( &s->queue )) { 
  p->runstate &= ~PROC_BLOCKED; 
 } 
 s->lock = 0; 
 intr_enable( save ); 
 if (p) 
  reschedule( p ); 

} 

void sem_wait(sem_t *s ) { 
 for (;;) { 
  save = intr_enable( ALL_DISABLE ); 
  while( TestAndSet( &s->lock ) ); 
  if (s->value > 0) { 
   s->value--; 
   s->sem_lock = 0; 
   intr_enable( save ); 
   return; 
  }  
  add_to_queue( &s->queue, myproc ); 
  myproc->runstate |= PROC_BLOCKED; 
  s->lock = 0; 
  intr_enable( save ); 
  yield(); 
 } 

} 
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Limitations of Semaphores 
•  Semaphores are a very spartan mechanism 

– They are simple, and have few features 
– More designed for proofs than synchronization 

•  They lack many practical synchronization features 
–  It is easy to deadlock with semaphores 
– One cannot check the lock without blocking 
– They do not support reader/writer shared access 
– No way to recover from a wedged V operation 
– No way to deal with priority inheritance 

•  Nonetheless, most OSs support them 
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Locking to Solve High Level 
Synchronization Problems 

•  Mutexes and object level locking 
•  Problems with locking 
•  Solving the problems 
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Mutexes 

•  A Linux/Unix locking mechanism 
•  Intended to lock sections of code 

– Locks expected to be held briefly 

•  Typically for multiple threads of the same 
process 

•  Low overhead and very general 
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Object Level Locking 
•  Mutexes protect code critical sections 

– Brief durations (e.g. nanoseconds, milliseconds) 
– Other threads operating on the same data 
– All operating in a single address space 

•  Persistent objects (e.g., files) are more difficult 
– Critical sections are likely to last much longer 
– Many different programs can operate on them 
– May not even be running on a single computer 

•  Solution: lock objects (rather than code) 
– Typically somewhat specific to object type 
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Linux File Descriptor Locking 
int flock(fd, operation) 
•  Supported operations: 

–  LOCK_SH … shared lock (multiple allowed) 
–  LOCK_EX … exclusive lock (one at a time) 
–  LOCK_UN … release a lock 

•  Lock applies to open instances of same fd 
–  Lock passes with the relevant fd 
–  Distinct opens are not affected 

•  Locking with flock() is purely advisory 
–  Does not prevent reads, writes, unlinks 
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Advisory vs Enforced Locking 

•  Enforced locking 
– Done within the implementation of object methods 
– Guaranteed to happen, whether or not user wants it 
– May sometimes be too conservative 

•  Advisory locking 
– A convention that “good guys” are expected to follow 
– Users expected to lock object before calling methods 
– Gives users flexibility in what to lock, when 
– Gives users more freedom to do it wrong (or not at all) 
– Mutexes and flocks() are advisory locks 
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Linux Ranged File Locking 

int lockf(fd, cmd, offset, len) 
•  Supported cmds: 

–  F_LOCK … get/wait for an exclusive lock 
–  F_ULOCK … release a lock 
–  F_TEST/F_TLOCK … test, or non-blocking request 
–  offset/len specifies portion of file to be locked 

•  Lock applies to file (not the open instance) 
–  Process specific 
–  Closing any fd for the file releases for all of a process’ fds for that file 

•  Locking may be enforced 
–  Depending on the underlying file system 
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Locking Problems 

•  Performance and overhead 
•  Contention 

– Convoy formation 
– Priority inversion 
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Performance of Locking 

•  Locking often performed as an OS system call 
– Particularly for enforced locking 

•  Typical system call overheads for lock 
operations 

•  If they are called frequently, high overheads 
•  Even if not in OS, extra instructions run to 

lock and unlock 
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Locking Costs 
•  Locking called when you need to protect 

critical sections to ensure correctness 
•  Many critical sections are very brief 

–  In and out in a matter of nano-seconds 
•  Overhead of the locking operation may be 

much higher than time spent in critical section 
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What If You Don’t Get Your Lock? 

•  Then you block 
•  Blocking is much more expensive than getting 

a lock 
– E.g., 1000x 
– Micro-seconds to yield and context switch 
– Milliseconds if swapped-out or a queue forms 

•  Performance depends on conflict probability 
Cexpected = (Cblock * Pconflict) + (Cget * (1 – Pconflict)) 
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The Riddle of Parallelism 

•  Parallelism allows better overall performance 
–  If one task is blocked, CPU runs another 
–  So you must be able to run another 

•  But concurrent use of shared resources is difficult 
–  So we protect critical sections for those resources by 

locking 
•  But critical sections serialize tasks 

– Meaning other tasks are blocked 
•  Which eliminates parallelism 



Lecture 9 
Page 29 

CS 111 
Summer 2017  

What If Everyone Needs One 
Resource? 

•  One process gets the resource 
•  Other processes get in line behind him  

–  Forming a convoy 
–  Processes in a convoy are all blocked waiting for the 

resource 

•  Parallelism is eliminated 
–  B runs after A finishes 
–  C after B 
–  And so on, with only one running at a time 

•  That resource becomes a bottleneck 
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Probability of Conflict 
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Convoy Formation 

•  In general 
Pconflict = 1 – (1 – (Tcritical / Ttotal))threads 
(nobody else in critical section at the same time) 

•  Unless a FIFO queue forms 
Pconflict = 1 – (1 – ((Twait+ Tcritical)/ Ttotal))threads 
Newcomers have to get into line 
And an (already huge) Twait gets even longer 

•  If Twait reaches the mean inter-arrival time 
The line becomes permanent, parallelism ceases 
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Performance: Resource Convoys 

throughput  

offered load 

ideal 

convoy 
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Priority Inversion 

•  Priority inversion can happen in priority 
scheduling systems that use locks 
– A low priority process P1 has mutex M1 and is 

preempted 
– A high priority process P2 blocks for mutex M1  
– Process P2 is effectively reduced to priority of P1 

•  Depending on specifics, results could be 
anywhere from inconvenient to fatal  
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Priority Inversion on Mars 

•  A real priority inversion problem occurred on 
the Mars Pathfinder rover 

•  Caused serious problems with system resets 
•  Difficult to find 
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The Pathfinder Priority Inversion 

•  Special purpose hardware running VxWorks 
real time OS 

•  Used preemptive priority scheduling  
– So a high priority task should get the processor  

•  Multiple components shared an “information 
bus” 
– Used to communicate between components 
– Essentially a shared memory region 
– Protected by a mutex 
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A Tale of Three Tasks 
•  A high priority bus management task (at P1) needed 

to run frequently 
–  For brief periods, during which it locked the bus 

•  A low priority meteorological task (at P3) ran 
occasionally 
–  Also for brief periods, during which it locked the bus 

•  A medium priority communications task (at P2) ran 
rarely 
–  But for a long time when it ran 
–  But it didn’t use the bus, so it didn’t need the lock 

•  P1>P2>P3 
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What Went Wrong? 
•  Rarely, the following happened: 

– The meteorological task ran and acquired the lock 
– And then the bus management task would run 
–  It would block waiting for the lock 

•  Don’t pre-empt low priority if you’re blocked anyway 

•  Since meteorological task was short, usually 
not a problem 

•  But if the long communications task woke up 
in that short interval, what would happen? 
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The Priority Inversion at Work 

M 

B 

C 

Pr
ior
i
ty 

Time 

Lock Bus 

Lock Bus 

B 

M 

C is running, at P2 

M can’t interrupt C, since it only has priority P3 

B’s priority of P1 is higher than C’s, but B can’t 
run because it’s waiting on a lock held by M 

M won’t release the lock until it runs again 

But M won’t run again until C completes 

RESULT? A HIGH PRIORITY TASK DOESN’T RUN 
AND A LOW PRIORITY TASK DOES 
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The Ultimate Effect 
•  A watchdog timer would go off every so often 

– At a high priority 
–  It didn’t need the bus 
– A health monitoring mechanism 

•  If the bus management task hadn’t run for a 
long time, something was wrong 

•  So the watchdog code reset the system 
•  Every so often, the system would reboot 
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Handling Priority  
Inversion Problems 

•  In a priority inversion, lower priority task runs 
because of a lock held elsewhere 
–  Preventing the higher priority task from running 

•  In the Mars Rover case, the meteorological task held 
a lock 
–  A higher priority bus management task couldn’t get the 

lock 
–  A medium priority, but long, communications task 

preempted the meteorological task 
–  So the medium priority communications task ran instead of 

the high priority bus management task  
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Solving Priority Inversion 

•  Temporarily increase the priority of the 
meteorological task 
– While the high priority bus management task was 

blocked by it 
– So the communications task wouldn’t preempt it 
– When lock is released, drop meteorological task’s 

priority back to normal 
•  Priority inheritance: a general solution to this 

kind of problem 
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B 

The Fix in Action 

Pr
ior
i
ty 

Time 

B 

Lock Bus 

M 

C C 

When M releases the 
lock it loses high 

priority 

B now gets the lock 
and unblocks 

Tasks run in proper priority order and 
Pathfinder can keep looking around! 
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Solving Locking Problems 

•  Reducing overhead 
•  Reducing contention 



Lecture 9 
Page 44 

CS 111 
Summer 2017  

Reducing Overhead of Locking 

•  Not much more to be done here 
•  Locking code in operating systems is usually 

highly optimized 
•  Certainly typical users can’t do better 
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Reducing Contention 
•  Eliminate the critical section entirely 

– Eliminate shared resource, use atomic instructions 
•  Eliminate preemption during critical section 
•  Reduce time spent in critical section 
•  Reduce frequency of entering critical section 
•  Reduce exclusive use of the serialized resource 
•  Spread requests out over more resources 
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Eliminating Critical Sections 

•  Eliminate shared resource 
– Give everyone their own copy 
– Find a way to do your work without it 

•  Use atomic instructions 
– Only possible for simple operations 

•  Great when you can do it 
•  But often you can’t 
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Eliminate Preemption in Critical 
Section 

•  If your critical section cannot be 
preempted, no synchronization problems 

•  May require disabling interrupts 
– As previously discussed, not always an 

option 
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Reducing Time in Critical Section 

•  Eliminate potentially blocking operations 
– Allocate required memory before taking lock 
– Do I/O before taking or after releasing lock 

•  Minimize code inside the critical section 
– Only code that is subject to destructive races 
– Move all other code out of the critical section 
– Especially calls to other routines 

•  Cost: this may complicate the code 
– Unnaturally separating parts of a single operation 
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Reducing Time in Critical Section 
int List_Insert(list_t *l, int key) { 

 pthread_mutex_lock(&l->lock); 
 node_t new = (node_t*) malloc(sizeof(node_t)); 
 if (new == NULL) { 
  perror(“malloc”); 
  pthread_mutex_unlock(&l->lock); 
  return(-1); 
 } 
 new->key = key; 
 new->next = l->head; 
 l->head = new; 
 pthread_mutex_unlock(&l->lock); 
 return 0; 

} 

int List_Insert(list_t *l, int key) { 
 node_t new = (node_t*) malloc(sizeof(node_t)); 
 if (new == NULL) { 
  perror(“malloc”); 
  return(-1); 
 } 
 new->key = key; 
 pthread_mutex_lock(&l->lock); 
 new->next = l->head; 
 l->head = new; 
 pthread_mutex_unlock(&l->lock); 
 return 0; 

} 
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Reduced Frequency of Entering 
Critical Section 

•  Can we use critical section less often? 
– Less use of high-contention resource/operations 
– Batch operations 

•  Consider “sloppy counters” 
– Move most updates to a private resource 
– Costs: 

•  Global counter is not always up-to-date 
•  Thread failure could lose many updates 

– Alternative: 
•  Sum single-writer private counters when needed 
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Remove Requirement for Full 
Exclusivity 

•  Read/write locks  
•  Reads and writes are not equally common 

–  File read/write: reads/writes > 50 
–  Directory search/create: reads/writes > 1000 

•  Only writers require exclusive access 
•  Read/write locks 

–  Allow many readers to share a resource 
–  Only enforce exclusivity when a writer is active 
–  Policy: when are writers allowed in? 

•  Potential starvation if writers must wait for readers 
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Spread Requests Over More Resources 

•  Change lock granularity 
•  Coarse grained - one lock for many objects 

–  Simpler, and more idiot-proof 
–  Greater resource contention (threads/resource) 

•  Fine grained - one lock per object (or sub-pool) 
–  Spreading activity over many locks reduces contention 
–  Dividing resources into pools shortens searches 
–  A few operations may lock multiple objects/pools 

•  TANSTAAFL 
–  Time/space overhead, more locks, more gets/releases 
–  Error-prone: harder to decide what to lock when 
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Lock Granularity – Pools vs. Elements 
•  Consider a pool of objects, each with its own lock 

•  Most operations lock only one buffer within the pool 
•  But some operations require locking the entire pool 

–  Two threads both try to add block AA to the cache 
–  Thread 1 looks for block B while thread 2 is deleting it 

•  The pool lock could become a bottle-neck, so  
–  Minimize its use 
–  Reader/writer locking 
–  Sub-pools ... 

buffer A buffer B buffer C buffer D buffer E ... 
pool of file system cache buffers 
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The Snake in the Garden 

•  Locking is great for preventing improper 
concurrent operations 

•  With careful design, it can usually be made to 
perform well 

•  But that care isn’t enough 
•  If we aren’t even more careful, locking can 

lead to our system freezing forever 
•  Deadlock 


