
Lecture 9
Page 1

CS 111
Summer 2017

Operating System Principles:
Semaphores and Locks for

Synchronization
CS 111

Operating Systems
Peter Reiher

Lecture 9
Page 2

CS 111
Summer 2017

Outline

•  Locks
•  Semaphores
•  Mutexes and object locking
•  Getting good performance with locking

Lecture 9
Page 3

CS 111
Summer 2017

Our Synchronization Choices

•  To repeat:
1.  Don’t share resources
2.  Turn off interrupts to prevent concurrency
3.  Always access resources with atomic instructions
4.  Use locks to synchronize access to resources

•  If we use locks,
1.  Use spin loops when your resource is locked
2.  Use primitives that block you when your

resource is locked and wake you later

Lecture 9
Page 4

CS 111
Summer 2017

Concentrating on Locking

•  Locks are necessary for many synchronization
problems

•  How do we implement locks?
–  It had better be correct, always

•  How do we ensure that locks are used in ways
that don’t kill performance?

Lecture 9
Page 5

CS 111
Summer 2017

Basic Locking Operations

•  When possible concurrency problems,
1.  Obtain a lock related to the shared resource

•  Block or spin if you don’t get it
2.  Once you have the lock, use the shared resource
3.  Release the lock

•  Whoever implements the locks ensures no
concurrency problems in the lock itself

–  Using atomic instructions
–  Or disabling interrupts

Lecture 9
Page 6

CS 111
Summer 2017

Semaphores

•  A theoretically sound way to implement locks
– With important extra functionality critical to use in

computer synchronization problems
•  Thoroughly studied and precisely specified

– Not necessarily so usable, however

•  Like any theoretically sound mechanism, could
be gaps between theory and implementation

Lecture 9
Page 7

CS 111
Summer 2017

Semaphores – A Historical
Perspective

When direct communication was not an option
E.g., between villages, ships, trains

Lecture 9
Page 8

CS 111
Summer 2017

The Semaphores We’re Studying

•  Concept introduced in 1968 by Edsger Dijkstra
– Cooperating sequential processes

•  THE classic synchronization mechanism
– Behavior is well specified and universally accepted
– A foundation for most synchronization studies
– A standard reference for all other mechanisms

•  More powerful than simple locks
– They incorporate a FIFO waiting queue
– They have a counter rather than a binary flag

Lecture 9
Page 9

CS 111
Summer 2017

Semaphores - Operations
•  Semaphore has two parts:

– An integer counter (initial value unspecified)
– A FIFO waiting queue

•  P (proberen/test) ... “wait”
– Decrement counter, if count >= 0, return
–  If counter < 0, add process to waiting queue

•  V (verhogen/raise) ... “post” or “signal”
–  Increment counter
–  If counter >= 0 & queue non-empty, wake 1st

process

Lecture 9
Page 10

CS 111
Summer 2017

Using Semaphores for Exclusion

•  Initialize semaphore count to one
– Count reflects # threads allowed to hold lock

•  Use P/wait operation to take the lock
– The first will succeed
– Subsequent attempts will block

•  Use V/post operation to release the lock
– Restore semaphore count to non-negative
–  If any threads are waiting, unblock the first in line

Lecture 9
Page 11

CS 111
Summer 2017

Using Semaphores for
Notifications

•  Initialize semaphore count to zero
– Count reflects # of completed events

•  Use P/wait operation to await completion
–  If already posted, it will return immediately
– Else all callers will block until V/post is called

•  Use V/post operation to signal completion
–  Increment the count
–  If any threads are waiting, unblock the first in line

•  One signal per wait: no broadcasts

Lecture 9
Page 12

CS 111
Summer 2017

Counting Semaphores
•  Initialize semaphore count to ...

– Count reflects # of available resources

•  Use P/wait operation to consume a resource
–  If available, it will return immediately
– Else all callers will block until V/post is called

•  Use V/post operation to produce a resource
–  Increment the count
–  If any threads are waiting, unblock the first in line

•  One signal per wait: no broadcasts

Lecture 9
Page 13

CS 111
Summer 2017

Semaphores For Mutual
Exclusion

struct account {
 struct semaphore s; /* initialize count to 1, queue empty, lock 0 */
 int balance;
 …

};

int write_check(struct account *a, int amount) {
 int ret;
 wait(&a->semaphore); /* get exclusive access to the account */

 if (a->balance >= amount) { /* check for adequate funds */
 amount -= balance;
 ret = amount;
 } else {
 ret = -1;

 post(&a->semaphore); /* release access to the account */
 return(ret);

}

Lecture 9
Page 14

CS 111
Summer 2017

Semaphores for Completion Events
struct semaphore pipe_semaphore = { 0, 0, 0 }; /* count = 0; pipe empty */
char buffer[BUFSIZE]; int read_ptr = 0, write_ptr = 0;

char pipe_read_char() {
 wait (&pipe_semaphore); /* wait for input available */
 c = buffer[read_ptr++]; /* get next input character */
 if (read_ptr >= BUFSIZE) /* circular buffer wrap */
 read_ptr -= BUFSIZE;

 return(c);
}

void pipe_write_string(char *buf, int count) {
 while(count-- > 0) {
 buffer[write_ptr++] = *buf++; /* store next character */
 if (write_ptr >= BUFSIZE) /* circular buffer wrap */
 write_ptr -= BUFSIZE;
 post(&pipe_semaphore); /* signal char available */
 }

}

Lecture 9
Page 15

CS 111
Summer 2017

Implementing Semaphores
void sem_wait(sem_t *s) {

 pthread_mutex_lock(&s->lock);
 while (s->value <= 0)
 pthread_cond_wait(&s->cond, &s->lock);
 s->value--;
 pthread_mutex_unlock(&s->lock);

}
void sem_post(sem_t *s) {

 pthread_mutex_lock(&s->lock);
 s->value++;
 pthread_cond_signal(&s->cond);
 pthread_mutex_unlock(&s->lock)

}

Lecture 9
Page 16

CS 111
Summer 2017

Implementing Semaphores in OS

void sem_post(struct sem_t *s) {
 struct proc_desc *p = 0;
 save = intr_enable(ALL_DISABLE);
 while (TestAndSet(&s->lock));
 s->value++;
 if (p = get_from_queue(&s->queue)) {
 p->runstate &= ~PROC_BLOCKED;
 }
 s->lock = 0;
 intr_enable(save);
 if (p)
 reschedule(p);

}

void sem_wait(sem_t *s) {
 for (;;) {
 save = intr_enable(ALL_DISABLE);
 while(TestAndSet(&s->lock));
 if (s->value > 0) {
 s->value--;
 s->sem_lock = 0;
 intr_enable(save);
 return;
 }
 add_to_queue(&s->queue, myproc);
 myproc->runstate |= PROC_BLOCKED;
 s->lock = 0;
 intr_enable(save);
 yield();
 }

}

Lecture 9
Page 17

CS 111
Summer 2017

Limitations of Semaphores
•  Semaphores are a very spartan mechanism

– They are simple, and have few features
– More designed for proofs than synchronization

•  They lack many practical synchronization features
–  It is easy to deadlock with semaphores
– One cannot check the lock without blocking
– They do not support reader/writer shared access
– No way to recover from a wedged V operation
– No way to deal with priority inheritance

•  Nonetheless, most OSs support them

Lecture 9
Page 18

CS 111
Summer 2017

Locking to Solve High Level
Synchronization Problems

•  Mutexes and object level locking
•  Problems with locking
•  Solving the problems

Lecture 9
Page 19

CS 111
Summer 2017

Mutexes

•  A Linux/Unix locking mechanism
•  Intended to lock sections of code

– Locks expected to be held briefly

•  Typically for multiple threads of the same
process

•  Low overhead and very general

Lecture 9
Page 20

CS 111
Summer 2017

Object Level Locking
•  Mutexes protect code critical sections

– Brief durations (e.g. nanoseconds, milliseconds)
– Other threads operating on the same data
– All operating in a single address space

•  Persistent objects (e.g., files) are more difficult
– Critical sections are likely to last much longer
– Many different programs can operate on them
– May not even be running on a single computer

•  Solution: lock objects (rather than code)
– Typically somewhat specific to object type

Lecture 9
Page 21

CS 111
Summer 2017

Linux File Descriptor Locking
int flock(fd, operation)
•  Supported operations:

–  LOCK_SH … shared lock (multiple allowed)
–  LOCK_EX … exclusive lock (one at a time)
–  LOCK_UN … release a lock

•  Lock applies to open instances of same fd
–  Lock passes with the relevant fd
–  Distinct opens are not affected

•  Locking with flock() is purely advisory
–  Does not prevent reads, writes, unlinks

Lecture 9
Page 22

CS 111
Summer 2017

Advisory vs Enforced Locking

•  Enforced locking
– Done within the implementation of object methods
– Guaranteed to happen, whether or not user wants it
– May sometimes be too conservative

•  Advisory locking
– A convention that “good guys” are expected to follow
– Users expected to lock object before calling methods
– Gives users flexibility in what to lock, when
– Gives users more freedom to do it wrong (or not at all)
– Mutexes and flocks() are advisory locks

Lecture 9
Page 23

CS 111
Summer 2017

Linux Ranged File Locking

int lockf(fd, cmd, offset, len)
•  Supported cmds:

–  F_LOCK … get/wait for an exclusive lock
–  F_ULOCK … release a lock
–  F_TEST/F_TLOCK … test, or non-blocking request
–  offset/len specifies portion of file to be locked

•  Lock applies to file (not the open instance)
–  Process specific
–  Closing any fd for the file releases for all of a process’ fds for that file

•  Locking may be enforced
–  Depending on the underlying file system

Lecture 9
Page 24

CS 111
Summer 2017

Locking Problems

•  Performance and overhead
•  Contention

– Convoy formation
– Priority inversion

Lecture 9
Page 25

CS 111
Summer 2017

Performance of Locking

•  Locking often performed as an OS system call
– Particularly for enforced locking

•  Typical system call overheads for lock
operations

•  If they are called frequently, high overheads
•  Even if not in OS, extra instructions run to

lock and unlock

Lecture 9
Page 26

CS 111
Summer 2017

Locking Costs
•  Locking called when you need to protect

critical sections to ensure correctness
•  Many critical sections are very brief

–  In and out in a matter of nano-seconds
•  Overhead of the locking operation may be

much higher than time spent in critical section

Lecture 9
Page 27

CS 111
Summer 2017

What If You Don’t Get Your Lock?

•  Then you block
•  Blocking is much more expensive than getting

a lock
– E.g., 1000x
– Micro-seconds to yield and context switch
– Milliseconds if swapped-out or a queue forms

•  Performance depends on conflict probability
Cexpected = (Cblock * Pconflict) + (Cget * (1 – Pconflict))

Lecture 9
Page 28

CS 111
Summer 2017

The Riddle of Parallelism

•  Parallelism allows better overall performance
–  If one task is blocked, CPU runs another
–  So you must be able to run another

•  But concurrent use of shared resources is difficult
–  So we protect critical sections for those resources by

locking
•  But critical sections serialize tasks

– Meaning other tasks are blocked
•  Which eliminates parallelism

Lecture 9
Page 29

CS 111
Summer 2017

What If Everyone Needs One
Resource?

•  One process gets the resource
•  Other processes get in line behind him

–  Forming a convoy
–  Processes in a convoy are all blocked waiting for the

resource

•  Parallelism is eliminated
–  B runs after A finishes
–  C after B
–  And so on, with only one running at a time

•  That resource becomes a bottleneck

Lecture 9
Page 30

CS 111
Summer 2017

Probability of Conflict

Lecture 9
Page 31

CS 111
Summer 2017

Convoy Formation

•  In general
Pconflict = 1 – (1 – (Tcritical / Ttotal))threads
(nobody else in critical section at the same time)

•  Unless a FIFO queue forms
Pconflict = 1 – (1 – ((Twait+ Tcritical)/ Ttotal))threads
Newcomers have to get into line
And an (already huge) Twait gets even longer

•  If Twait reaches the mean inter-arrival time
The line becomes permanent, parallelism ceases

Lecture 9
Page 32

CS 111
Summer 2017

Performance: Resource Convoys

throughput

offered load

ideal

convoy

Lecture 9
Page 33

CS 111
Summer 2017

Priority Inversion

•  Priority inversion can happen in priority
scheduling systems that use locks
– A low priority process P1 has mutex M1 and is

preempted
– A high priority process P2 blocks for mutex M1
– Process P2 is effectively reduced to priority of P1

•  Depending on specifics, results could be
anywhere from inconvenient to fatal

Lecture 9
Page 34

CS 111
Summer 2017

Priority Inversion on Mars

•  A real priority inversion problem occurred on
the Mars Pathfinder rover

•  Caused serious problems with system resets
•  Difficult to find

Lecture 9
Page 35

CS 111
Summer 2017

The Pathfinder Priority Inversion

•  Special purpose hardware running VxWorks
real time OS

•  Used preemptive priority scheduling
– So a high priority task should get the processor

•  Multiple components shared an “information
bus”
– Used to communicate between components
– Essentially a shared memory region
– Protected by a mutex

Lecture 9
Page 36

CS 111
Summer 2017

A Tale of Three Tasks
•  A high priority bus management task (at P1) needed

to run frequently
–  For brief periods, during which it locked the bus

•  A low priority meteorological task (at P3) ran
occasionally
–  Also for brief periods, during which it locked the bus

•  A medium priority communications task (at P2) ran
rarely
–  But for a long time when it ran
–  But it didn’t use the bus, so it didn’t need the lock

•  P1>P2>P3

Lecture 9
Page 37

CS 111
Summer 2017

What Went Wrong?
•  Rarely, the following happened:

– The meteorological task ran and acquired the lock
– And then the bus management task would run
–  It would block waiting for the lock

•  Don’t pre-empt low priority if you’re blocked anyway

•  Since meteorological task was short, usually
not a problem

•  But if the long communications task woke up
in that short interval, what would happen?

Lecture 9
Page 38

CS 111
Summer 2017

The Priority Inversion at Work

M

B

C

Pr
ior
i
ty

Time

Lock Bus

Lock Bus

B

M

C is running, at P2

M can’t interrupt C, since it only has priority P3

B’s priority of P1 is higher than C’s, but B can’t
run because it’s waiting on a lock held by M

M won’t release the lock until it runs again

But M won’t run again until C completes

RESULT? A HIGH PRIORITY TASK DOESN’T RUN
AND A LOW PRIORITY TASK DOES

Lecture 9
Page 39

CS 111
Summer 2017

The Ultimate Effect
•  A watchdog timer would go off every so often

– At a high priority
–  It didn’t need the bus
– A health monitoring mechanism

•  If the bus management task hadn’t run for a
long time, something was wrong

•  So the watchdog code reset the system
•  Every so often, the system would reboot

Lecture 9
Page 40

CS 111
Summer 2017

Handling Priority
Inversion Problems

•  In a priority inversion, lower priority task runs
because of a lock held elsewhere
–  Preventing the higher priority task from running

•  In the Mars Rover case, the meteorological task held
a lock
–  A higher priority bus management task couldn’t get the

lock
–  A medium priority, but long, communications task

preempted the meteorological task
–  So the medium priority communications task ran instead of

the high priority bus management task

Lecture 9
Page 41

CS 111
Summer 2017

Solving Priority Inversion

•  Temporarily increase the priority of the
meteorological task
– While the high priority bus management task was

blocked by it
– So the communications task wouldn’t preempt it
– When lock is released, drop meteorological task’s

priority back to normal
•  Priority inheritance: a general solution to this

kind of problem

Lecture 9
Page 42

CS 111
Summer 2017

B

The Fix in Action

Pr
ior
i
ty

Time

B

Lock Bus

M

C C

When M releases the
lock it loses high

priority

B now gets the lock
and unblocks

Tasks run in proper priority order and
Pathfinder can keep looking around!

Lecture 9
Page 43

CS 111
Summer 2017

Solving Locking Problems

•  Reducing overhead
•  Reducing contention

Lecture 9
Page 44

CS 111
Summer 2017

Reducing Overhead of Locking

•  Not much more to be done here
•  Locking code in operating systems is usually

highly optimized
•  Certainly typical users can’t do better

Lecture 9
Page 45

CS 111
Summer 2017

Reducing Contention
•  Eliminate the critical section entirely

– Eliminate shared resource, use atomic instructions
•  Eliminate preemption during critical section
•  Reduce time spent in critical section
•  Reduce frequency of entering critical section
•  Reduce exclusive use of the serialized resource
•  Spread requests out over more resources

Lecture 9
Page 46

CS 111
Summer 2017

Eliminating Critical Sections

•  Eliminate shared resource
– Give everyone their own copy
– Find a way to do your work without it

•  Use atomic instructions
– Only possible for simple operations

•  Great when you can do it
•  But often you can’t

Lecture 9
Page 47

CS 111
Summer 2017

Eliminate Preemption in Critical
Section

•  If your critical section cannot be
preempted, no synchronization problems

•  May require disabling interrupts
– As previously discussed, not always an

option

Lecture 9
Page 48

CS 111
Summer 2017

Reducing Time in Critical Section

•  Eliminate potentially blocking operations
– Allocate required memory before taking lock
– Do I/O before taking or after releasing lock

•  Minimize code inside the critical section
– Only code that is subject to destructive races
– Move all other code out of the critical section
– Especially calls to other routines

•  Cost: this may complicate the code
– Unnaturally separating parts of a single operation

Lecture 9
Page 49

CS 111
Summer 2017

Reducing Time in Critical Section
int List_Insert(list_t *l, int key) {

 pthread_mutex_lock(&l->lock);
 node_t new = (node_t*) malloc(sizeof(node_t));
 if (new == NULL) {
 perror(“malloc”);
 pthread_mutex_unlock(&l->lock);
 return(-1);
 }
 new->key = key;
 new->next = l->head;
 l->head = new;
 pthread_mutex_unlock(&l->lock);
 return 0;

}

int List_Insert(list_t *l, int key) {
 node_t new = (node_t*) malloc(sizeof(node_t));
 if (new == NULL) {
 perror(“malloc”);
 return(-1);
 }
 new->key = key;
 pthread_mutex_lock(&l->lock);
 new->next = l->head;
 l->head = new;
 pthread_mutex_unlock(&l->lock);
 return 0;

}

Lecture 9
Page 50

CS 111
Summer 2017

Reduced Frequency of Entering
Critical Section

•  Can we use critical section less often?
– Less use of high-contention resource/operations
– Batch operations

•  Consider “sloppy counters”
– Move most updates to a private resource
– Costs:

•  Global counter is not always up-to-date
•  Thread failure could lose many updates

– Alternative:
•  Sum single-writer private counters when needed

Lecture 9
Page 51

CS 111
Summer 2017

Remove Requirement for Full
Exclusivity

•  Read/write locks
•  Reads and writes are not equally common

–  File read/write: reads/writes > 50
–  Directory search/create: reads/writes > 1000

•  Only writers require exclusive access
•  Read/write locks

–  Allow many readers to share a resource
–  Only enforce exclusivity when a writer is active
–  Policy: when are writers allowed in?

•  Potential starvation if writers must wait for readers

Lecture 9
Page 52

CS 111
Summer 2017

Spread Requests Over More Resources

•  Change lock granularity
•  Coarse grained - one lock for many objects

–  Simpler, and more idiot-proof
–  Greater resource contention (threads/resource)

•  Fine grained - one lock per object (or sub-pool)
–  Spreading activity over many locks reduces contention
–  Dividing resources into pools shortens searches
–  A few operations may lock multiple objects/pools

•  TANSTAAFL
–  Time/space overhead, more locks, more gets/releases
–  Error-prone: harder to decide what to lock when

Lecture 9
Page 53

CS 111
Summer 2017

Lock Granularity – Pools vs. Elements
•  Consider a pool of objects, each with its own lock

•  Most operations lock only one buffer within the pool
•  But some operations require locking the entire pool

–  Two threads both try to add block AA to the cache
–  Thread 1 looks for block B while thread 2 is deleting it

•  The pool lock could become a bottle-neck, so
–  Minimize its use
–  Reader/writer locking
–  Sub-pools ...

buffer A buffer B buffer C buffer D buffer E ...
pool of file system cache buffers

Lecture 9
Page 54

CS 111
Summer 2017

The Snake in the Garden

•  Locking is great for preventing improper
concurrent operations

•  With careful design, it can usually be made to
perform well

•  But that care isn’t enough
•  If we aren’t even more careful, locking can

lead to our system freezing forever
•  Deadlock

