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Outline 

•  Mutual Exclusion 
•  Asynchronous Completions 
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Mutual Exclusion  

•  Critical sections can cause trouble when more than 
one thread executes them at a time 
–  Each thread doing part of the critical section before any of 

them do all of it 

•  Preventable if we ensure that only one thread can 
execute a critical section at a time 

•  We need to achieve mutual exclusion of the critical 
section 
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Critical Sections in Applications 

•  Most common for multithreaded applications 
– Which frequently share data structures 

•  Can also happen with processes 
– Which share operating system resources 
– Like files 

•  Avoidable if you don’t share resources of any 
kind 
– But that’s not always feasible 
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Recognizing Critical Sections 

•  Generally involves updates to object state 
– May be updates to a single object 
– May be related updates to multiple objects 

•  Generally involves multi-step operations 
– Object state inconsistent until operation finishes 
– Pre-emption compromises object or operation 

•  Correct operation requires mutual exclusion 
– Only one thread at a time has access to object(s) 
– Client 1 completes before client 2 starts 
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Critical Sections and Atomicity 
•  Using mutual exclusion allows us to achieve 

atomicity of a critical section 
•  Atomicity has two aspects: 
1.  Before or After atomicity 

–  A enters critical section before B starts 
–  B enters critical section after A completes 
–  There is no overlap 

2.  All or None atomicity 
–  An update that starts will complete 
–  An uncompleted update has no effect 

•  Correctness generally requires both 
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Options for Protecting  
Critical Sections 

•  Turn off interrupts 
– We covered that in the last class 
– Prevents concurrency 

•  Avoid shared data whenever possible 
•  Protect critical sections using hardware mutual 

exclusion 
–  In particular, atomic CPU instructions 

•  Software locking 
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Avoiding Shared Data 

•  A good design choice when feasible 
•  Don’t share things you don’t need to share 
•  But not always an option 
•  Even if possible, may lead to inefficient 

resource use 
•  Sharing read only data also avoids problems 

–  If no writes, the order of reads doesn’t matter 
– But a single write can blow everything out of the 

water 
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Atomic Instructions 

•  CPU instructions are uninterruptable 
•  What can they do? 

–  Read/modify/write operations 
–  Can be applied to 1-8 contiguous bytes 
–  Simple: increment/decrement, and/or/xor 
–  Complex: test-and-set, exchange, compare-and-swap 

•  Either do entire critical section in one atomic 
instruction 

•  Or use atomic instructions to implement locks  
–  Use the lock operations to protect critical sections 
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Atomic Instructions – Test and Set 

A C description of a machine language 
instruction 

bool TS( char *p) { 
bool rc; 
rc = *p;    /* note the current value   */ 
*p = TRUE;  /* set the value to be TRUE   */ 
return rc;    /* return the value before we set it  */ 

} 

if !TS(flag) { 
 /* We have control of the critical section! */ 

} 



Lecture 8 
Page 11 

CS 111 
Summer 2017  

Atomic Instructions – Compare  
and Swap 

Again, a C description of machine instruction 
bool compare_and_swap( int *p, int old, int new ) { 
if (*p == old) {  /* see if value has been changed  */ 

*p = new;   /* if not, set it to new value   */ 
return( TRUE);  /* tell caller he succeeded   */ 

} else    /* value has been changed   */ 
 return( FALSE);  /* tell caller he failed    */ 

} 

if (compare_and_swap(flag,UNUSED,IN_USE) { 
 /* I got the critical section! */ 

} else { 
 /* I didn’t get it.  */ 

} 
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Preventing Concurrency Via  
Atomic Instructions 

•  CPU instructions are hardware-atomic 
–  So if you can squeeze a critical section into one 

instruction, no concurrency problems 
•  What can you do in one instruction? 

–  Simple operations like read/write 
–  Some slightly more complex operations 
– With careful design, some data structures can be 

implemented this way 
•  Limitations 

– Unusable for complex critical sections 
– Unusable as a waiting mechanism 
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Locking 
•  Protect critical sections with a data structure 

–  Use atomic instructions to implement that structure 
•  Locks  

–  The party holding a lock can access the critical section 
–  Parties not holding the lock cannot access it 

•  A party needing to use the critical section tries to 
acquire the lock 
–  If it succeeds, it goes ahead 
–  If not . . .? 

•  When finished with critical section, release the lock 
–  Which someone else can then acquire 
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Using Locks 

thread #1 
counter = counter + 1; 

thread #2 
counter = counter + 1; 

mov counter, %eax 
add $0x1, %eax 
mov %eax, counter 

What looks like one instruction in C 
gets compiled to: 

Three instructions . . . 

•  Remember this example? 

•  How can we solve this with locks? 
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Using Locks For Mutual Exclusion 

pthread_mutex_t lock; 
pthread_mutex_init(&lock, NULL); 
… 
if (pthread_mutex_lock(&lock) == 0) { 

 counter = counter + 1; 
 pthread_mutex_unlock(&lock); 

} 
Now the three assembly instructions are mutually exclusive 
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What Happens When You Don’t 
Get the Lock? 

•  You could just give up 
– But then you’ll never execute your critical section 

•  You could try to get it again 
•  But it still might not be available 
•  So you could try to get it again . . . 
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Spin Waiting 
•   The computer science 

equivalent 
•  Check if the event 

occurred 
•  If not, check again 
•  And again 
•  And again 
•  . . . 
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Spin Locks: Pluses and Minuses 
•  Good points 

– Properly enforces access to critical sections 
•  Assuming properly implemented locks 

– Simple to program 

•  Dangers 
– Wasteful 

•  Spinning uses processor cycles 

– Likely to delay freeing of desired resource 
•  Spinning uses processor cycles 

– Bug may lead to infinite spin-waits 
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How Do We Build Locks? 
•  The very operation of locking and unlocking a 

lock is itself a critical section 
–  If we don’t protect it, two threads might acquire 

the same lock 
•  Sounds like a chicken-and-egg problem 
•  But we can solve it with hardware assistance 
•  Individual CPU instructions are atomic 

– So if we can implement a lock with one 
instruction . . . 
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Single Instruction Locks 

•  Sounds tricky 
•  The core operation of acquiring a lock (when 

it’s free) requires: 
1.  Check that no one else has it 
2.  Change something so others know we have it 

•  Sounds like we need to do two things in one 
instruction 

•  No problem – hardware designers have 
provided for that 
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Building Locks From Single 
Instructions 

•  Requires a complex atomic instruction 
– Test and set 
– Compare and swap 

•  Instruction must atomically: 
– Determine if someone already has the lock 
– Grant it if no one has it 
– Return something that lets the caller know what 

happened 
•  Caller must honor the lock . . .  
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Using Atomic Instructions to 
Implement a Lock 

•  Assuming C implementation of test and set 
bool getlock( lock *lockp) { 
if (TS(lockp) == 0 ) 

return( TRUE); 
else 

return( FALSE); 
} 
void freelock( lock *lockp ) { 
*lockp = 0; 

} 
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The Asynchronous  
Completion Problem 

•  Parallel activities move at different speeds 
•  One activity may need to wait for another to complete 
•  The asynchronous completion problem is how to 

perform such waits without killing performance 
•  Examples of asynchronous completions 

–  Waiting for an I/O operation to complete 
–  Waiting for a response to a network request 
–  Delaying execution for a fixed period of real time 
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How Can We Wait? 
•  Spin locking/busy waiting 
•  Yield and spin … 
•  Either spin option may still require mutual 

exclusion 
•  Completion events 
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Spin Waiting For Asynchronous 
Completions 

•  Wastes CPU, memory, bus bandwidth 
– Each path through the loop costs instructions 

•  May actually delay the desired event 
– One of your cores is busy spinning 
– Maybe it could be doing the work required to 

complete the event instead 
– But it’s spinning . . . 
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Spinning Sometimes Makes Sense 
1.  When awaited operation proceeds in parallel 

– A hardware device accepts a command 
– Another CPU releases a briefly held spin-lock 

2.  When awaited operation is guaranteed to be soon 
–  Spinning is less expensive than sleep/wakeup 

3.  When spinning does not delay awaited operation 
– Burning CPU delays running another process 
– Burning memory bandwidth slows I/O 

4.  When contention is expected to be rare 
–  Multiple waiters greatly increase the cost 
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A Classic “spin-wait” 
/* set a specified register in the ZZ controller to a specified value  */ 

zzSetReg( struct zzcontrol *dp, short reg, long value ) { 
 while( (dp->zz_status & ZZ_CMD_READY) == 0) 
  ; 
 dp->zz_value = value; 
 dp->zz_reg = reg; 
 dp->zz_cmd = ZZ_SET_REG; 

} 

/* program the ZZ for a specified DMA read or write operation   */ 

zzStartIO( struct zzcontrol *dp, struct ioreq *bp ) { 

 zzSetReg(dp, ZZ_R_ADDR, bp->buffer_start); 

 zzSetReg(dp, ZZ_R_LEN, bp->buffer_length); 

 zzSetReg(dp, ZZ_R_CMD, bp->write ? ZZ_C_WRITE : ZZ_C_READ ); 

 zzSetReg(dp, ZZ_R_CTRL, ZZ_INTR + ZZ_GO); 

} 

No guarantee 
that hardware 
is ready when 

this routine 
returns. 
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Yield and Spin 

•  Check if your event occurred 
•  Maybe check a few more times 
•  But then yield 
•  Sooner or later you get rescheduled 
•  And then you check again  
•  Repeat checking and yielding until your event 

is ready 
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Problems With Yield and Spin 

•  Extra context switches 
– Which are expensive 

•  Still wastes cycles if you spin each time you’re 
scheduled 

•  You might not get scheduled to check until 
long after event occurs 

•  Works very poorly with multiple waiters 
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Another Approach: Condition 
Variables 

•  Create a synchronization object associated 
with a resource or request 
– Requester blocks awaiting event on that object 
– Upon completion, the event is “posted” 
– Posting event to object unblocks the waiter 

blocked ready 

running exit 

post 

create 

wait 
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Condition Variables and the OS 

•  Generally the OS provides condition variables 
– Or library code that implements threads does 

•  It blocks a process or thread when condition 
variable is used 
– Moving it out of the ready queue 

•  It observes when the desired event occurs 
•  It then unblocks the blocked process or thread 

– Putting it back in the ready queue 
– Possibly preempting the running process 
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Waiting Lists 
•  Likely to have threads waiting on several 

different things 
•  Pointless to wake up everyone on every event 

– Each should wake up when his event happens 
•  Suggests all events need a waiting list 

– When posting an event, look up who to awaken 
•  Wake up everyone on the list? 
•  One-at-a-time in FIFO order? 
•  One-at-a-time in priority order (possible starvation)? 

– Choice depends on event and application 
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Who To Wake Up? 

•  Who wakes up when a condition variable is 
signaled? 
– pthread_cond_wait … at least one blocked thread 
– pthread_cond_broadcast … all blocked threads 

•  The broadcast approach may be wasteful 
–  If the event can only be consumed once 
– Potentially unbounded waiting times 

•  A waiting queue would solve these problems 
– Each post wakes up the first client on the queue 
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Evaluating Waiting List Options 

•  Effectiveness/Correctness 
– Should be very good 

•  Progress 
– There is a trade-off involving cutting in line 

•  Fairness 
– Should be very good 

•  Performance 
– Should be very efficient 
– Depends on frequency of spurious wakeups 
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Locking and Waiting Lists 

•  Spinning for a lock is usually a bad thing 
– Locks should probably have waiting lists 

•  A waiting list is a (shared) data structure 
–  Implementation will likely have critical sections 
– Which may need to be protected by a lock 

•  This seems to be a circular dependency 
– Locks have waiting lists 
– Which must be protected by locks 
– What if we must wait for the waiting list lock? 
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A Possible Problem 

•  The sleep/wakeup race condition 

void sleep( eventp *e ) { 
while(e->posted == FALSE) { 

add_to_queue( &e->queue, 
myproc ); 
myproc->runstate |= BLOCKED; 
yield(); 

} 
} 

void wakeup( eventp *e) { 
      struct proce *p; 

      e->posted = TRUE; 
      p = get_from_queue(&e-> 
queue); 
      if (p) { 

      p->runstate &= ~BLOCKED; 
      resched(); 

      }  /* if !p, nobody’s 
waiting */ 
} 

Consider this sleep code: And this wakeup code: 

What’s the problem with this? 
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A Sleep/Wakeup Race 

•  Let’s say thread B is using a resource and 
thread A needs to get it 

•  So thread A will call sleep() 
•  Meanwhile, thread B finishes using the 

resource 
– So thread B will call wakeup() 

•  No other threads are waiting for the resource  
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The Race At Work 
void sleep( eventp *e ) { 

while(e->posted == FALSE) { 

void wakeup( eventp *e) { 
struct proce *p; 

e->posted = TRUE; 
p = get_from_queue(&e-> queue); 

if (p) { 

 }  /* if !p, nobody’s waiting */ 
} 

Nope, nobody’s in the queue! 

add_to_queue( &e->queue, myproc ); 

myproc->runsate |= BLOCKED; 
yield(); 

  } 
   } 

Yep, somebody’s locked it! 

Thread A Thread B 

The effect?  
Thread A is sleeping But there’s no one to 

wake him up 

CONTEXT SWITCH! 

CONTEXT SWITCH! 
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Solving the Problem 

•  There is clearly a critical section in sleep() 
– Starting before we test the posted flag 
– Ending after we put ourselves on the notify list 

•  During this section, we need to prevent 
– Wakeups of the event 
– Other people waiting on the event 

•  This is a mutual-exclusion problem 
– Fortunately, we already know how to solve those 
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Progress vs. Fairness 
•  Consider … 

–  P1: lock(), park() 
–  P2: unlock(), unpark() 
–  P3: lock() (before P2’s 

unpark()) 
•  Progress says: 

–  It is available, so P3 gets it 
–  Spurious wakeup of P1 

•  Fairness says: 
–  FIFO, P3 gets in line 
–  And a convoy forms 

void	unlock(lock_t	*m)	{	

	while	(TestAndSet(&m->guard,	1)	==	1);	
 m->locked = 0;	
	if	(!queue_empty(m->q))	
  unpark(queue_remove(m->q); 
 m->guard = 0; 

}	

void	lock(lock_t	*m)	{	
	while(true)	{	
	 	while	(TestAndSet(&m->guard,	1)	==	1);	
	 	if	(!m->locked)	{	
	 	 	m->locked	=	1;	
	 	 	m->guard	=	0;	
	 	 	return;	
	 	}		
	 	queue_add(m->q,	me);	
	 	m->guard	=	0;	
	 	park();	
	}	

}	


