
Lecture 8
Page 1

CS 111
Summer 2017

Operating System Principles:
Mutual Exclusion and

Asynchronous Completion
CS 111

Operating Systems
Peter Reiher

Lecture 8
Page 2

CS 111
Summer 2017

Outline

•  Mutual Exclusion
•  Asynchronous Completions

Lecture 8
Page 3

CS 111
Summer 2017

Mutual Exclusion

•  Critical sections can cause trouble when more than
one thread executes them at a time
–  Each thread doing part of the critical section before any of

them do all of it

•  Preventable if we ensure that only one thread can
execute a critical section at a time

•  We need to achieve mutual exclusion of the critical
section

Lecture 8
Page 4

CS 111
Summer 2017

Critical Sections in Applications

•  Most common for multithreaded applications
– Which frequently share data structures

•  Can also happen with processes
– Which share operating system resources
– Like files

•  Avoidable if you don’t share resources of any
kind
– But that’s not always feasible

Lecture 8
Page 5

CS 111
Summer 2017

Recognizing Critical Sections

•  Generally involves updates to object state
– May be updates to a single object
– May be related updates to multiple objects

•  Generally involves multi-step operations
– Object state inconsistent until operation finishes
– Pre-emption compromises object or operation

•  Correct operation requires mutual exclusion
– Only one thread at a time has access to object(s)
– Client 1 completes before client 2 starts

Lecture 8
Page 6

CS 111
Summer 2017

Critical Sections and Atomicity
•  Using mutual exclusion allows us to achieve

atomicity of a critical section
•  Atomicity has two aspects:
1.  Before or After atomicity

–  A enters critical section before B starts
–  B enters critical section after A completes
–  There is no overlap

2.  All or None atomicity
–  An update that starts will complete
–  An uncompleted update has no effect

•  Correctness generally requires both

Lecture 8
Page 7

CS 111
Summer 2017

Options for Protecting
Critical Sections

•  Turn off interrupts
– We covered that in the last class
– Prevents concurrency

•  Avoid shared data whenever possible
•  Protect critical sections using hardware mutual

exclusion
–  In particular, atomic CPU instructions

•  Software locking

Lecture 8
Page 8

CS 111
Summer 2017

Avoiding Shared Data

•  A good design choice when feasible
•  Don’t share things you don’t need to share
•  But not always an option
•  Even if possible, may lead to inefficient

resource use
•  Sharing read only data also avoids problems

–  If no writes, the order of reads doesn’t matter
– But a single write can blow everything out of the

water

Lecture 8
Page 9

CS 111
Summer 2017

Atomic Instructions

•  CPU instructions are uninterruptable
•  What can they do?

–  Read/modify/write operations
–  Can be applied to 1-8 contiguous bytes
–  Simple: increment/decrement, and/or/xor
–  Complex: test-and-set, exchange, compare-and-swap

•  Either do entire critical section in one atomic
instruction

•  Or use atomic instructions to implement locks
–  Use the lock operations to protect critical sections

Lecture 8
Page 10

CS 111
Summer 2017

Atomic Instructions – Test and Set

A C description of a machine language
instruction

bool TS(char *p) {
bool rc;
rc = *p; /* note the current value */
p = TRUE; / set the value to be TRUE */
return rc; /* return the value before we set it */

}

if !TS(flag) {
 /* We have control of the critical section! */

}

Lecture 8
Page 11

CS 111
Summer 2017

Atomic Instructions – Compare
and Swap

Again, a C description of machine instruction
bool compare_and_swap(int *p, int old, int new) {
if (*p == old) { /* see if value has been changed */

p = new; / if not, set it to new value */
return(TRUE); /* tell caller he succeeded */

} else /* value has been changed */
 return(FALSE); /* tell caller he failed */

}

if (compare_and_swap(flag,UNUSED,IN_USE) {
 /* I got the critical section! */

} else {
 /* I didn’t get it. */

}

Lecture 8
Page 12

CS 111
Summer 2017

Preventing Concurrency Via
Atomic Instructions

•  CPU instructions are hardware-atomic
–  So if you can squeeze a critical section into one

instruction, no concurrency problems
•  What can you do in one instruction?

–  Simple operations like read/write
–  Some slightly more complex operations
– With careful design, some data structures can be

implemented this way
•  Limitations

– Unusable for complex critical sections
– Unusable as a waiting mechanism

Lecture 8
Page 13

CS 111
Summer 2017

Locking
•  Protect critical sections with a data structure

–  Use atomic instructions to implement that structure
•  Locks

–  The party holding a lock can access the critical section
–  Parties not holding the lock cannot access it

•  A party needing to use the critical section tries to
acquire the lock
–  If it succeeds, it goes ahead
–  If not . . .?

•  When finished with critical section, release the lock
–  Which someone else can then acquire

Lecture 8
Page 14

CS 111
Summer 2017

Using Locks

thread #1
counter = counter + 1;

thread #2
counter = counter + 1;

mov counter, %eax
add $0x1, %eax
mov %eax, counter

What looks like one instruction in C
gets compiled to:

Three instructions . . .

•  Remember this example?

•  How can we solve this with locks?

Lecture 8
Page 15

CS 111
Summer 2017

Using Locks For Mutual Exclusion

pthread_mutex_t lock;
pthread_mutex_init(&lock, NULL);
…
if (pthread_mutex_lock(&lock) == 0) {

 counter = counter + 1;
 pthread_mutex_unlock(&lock);

}
Now the three assembly instructions are mutually exclusive

Lecture 8
Page 16

CS 111
Summer 2017

What Happens When You Don’t
Get the Lock?

•  You could just give up
– But then you’ll never execute your critical section

•  You could try to get it again
•  But it still might not be available
•  So you could try to get it again . . .

Lecture 8
Page 17

CS 111
Summer 2017

Spin Waiting
•  The computer science

equivalent
•  Check if the event

occurred
•  If not, check again
•  And again
•  And again
•  . . .

Lecture 8
Page 18

CS 111
Summer 2017

Spin Locks: Pluses and Minuses
•  Good points

– Properly enforces access to critical sections
•  Assuming properly implemented locks

– Simple to program

•  Dangers
– Wasteful

•  Spinning uses processor cycles

– Likely to delay freeing of desired resource
•  Spinning uses processor cycles

– Bug may lead to infinite spin-waits

Lecture 8
Page 19

CS 111
Summer 2017

How Do We Build Locks?
•  The very operation of locking and unlocking a

lock is itself a critical section
–  If we don’t protect it, two threads might acquire

the same lock
•  Sounds like a chicken-and-egg problem
•  But we can solve it with hardware assistance
•  Individual CPU instructions are atomic

– So if we can implement a lock with one
instruction . . .

Lecture 8
Page 20

CS 111
Summer 2017

Single Instruction Locks

•  Sounds tricky
•  The core operation of acquiring a lock (when

it’s free) requires:
1.  Check that no one else has it
2.  Change something so others know we have it

•  Sounds like we need to do two things in one
instruction

•  No problem – hardware designers have
provided for that

Lecture 8
Page 21

CS 111
Summer 2017

Building Locks From Single
Instructions

•  Requires a complex atomic instruction
– Test and set
– Compare and swap

•  Instruction must atomically:
– Determine if someone already has the lock
– Grant it if no one has it
– Return something that lets the caller know what

happened
•  Caller must honor the lock . . .

Lecture 8
Page 22

CS 111
Summer 2017

Using Atomic Instructions to
Implement a Lock

•  Assuming C implementation of test and set
bool getlock(lock *lockp) {
if (TS(lockp) == 0)

return(TRUE);
else

return(FALSE);
}
void freelock(lock *lockp) {
*lockp = 0;

}

Lecture 8
Page 23

CS 111
Summer 2017

The Asynchronous
Completion Problem

•  Parallel activities move at different speeds
•  One activity may need to wait for another to complete
•  The asynchronous completion problem is how to

perform such waits without killing performance
•  Examples of asynchronous completions

–  Waiting for an I/O operation to complete
–  Waiting for a response to a network request
–  Delaying execution for a fixed period of real time

Lecture 8
Page 24

CS 111
Summer 2017

How Can We Wait?
•  Spin locking/busy waiting
•  Yield and spin …
•  Either spin option may still require mutual

exclusion
•  Completion events

Lecture 8
Page 25

CS 111
Summer 2017

Spin Waiting For Asynchronous
Completions

•  Wastes CPU, memory, bus bandwidth
– Each path through the loop costs instructions

•  May actually delay the desired event
– One of your cores is busy spinning
– Maybe it could be doing the work required to

complete the event instead
– But it’s spinning . . .

Lecture 8
Page 26

CS 111
Summer 2017

Spinning Sometimes Makes Sense
1.  When awaited operation proceeds in parallel

– A hardware device accepts a command
– Another CPU releases a briefly held spin-lock

2.  When awaited operation is guaranteed to be soon
–  Spinning is less expensive than sleep/wakeup

3.  When spinning does not delay awaited operation
– Burning CPU delays running another process
– Burning memory bandwidth slows I/O

4.  When contention is expected to be rare
–  Multiple waiters greatly increase the cost

Lecture 8
Page 27

CS 111
Summer 2017

A Classic “spin-wait”
/* set a specified register in the ZZ controller to a specified value */

zzSetReg(struct zzcontrol *dp, short reg, long value) {
 while((dp->zz_status & ZZ_CMD_READY) == 0)
 ;
 dp->zz_value = value;
 dp->zz_reg = reg;
 dp->zz_cmd = ZZ_SET_REG;

}

/* program the ZZ for a specified DMA read or write operation */

zzStartIO(struct zzcontrol *dp, struct ioreq *bp) {

 zzSetReg(dp, ZZ_R_ADDR, bp->buffer_start);

 zzSetReg(dp, ZZ_R_LEN, bp->buffer_length);

 zzSetReg(dp, ZZ_R_CMD, bp->write ? ZZ_C_WRITE : ZZ_C_READ);

 zzSetReg(dp, ZZ_R_CTRL, ZZ_INTR + ZZ_GO);

}

No guarantee
that hardware
is ready when

this routine
returns.

Lecture 8
Page 28

CS 111
Summer 2017

Yield and Spin

•  Check if your event occurred
•  Maybe check a few more times
•  But then yield
•  Sooner or later you get rescheduled
•  And then you check again
•  Repeat checking and yielding until your event

is ready

Lecture 8
Page 29

CS 111
Summer 2017

Problems With Yield and Spin

•  Extra context switches
– Which are expensive

•  Still wastes cycles if you spin each time you’re
scheduled

•  You might not get scheduled to check until
long after event occurs

•  Works very poorly with multiple waiters

Lecture 8
Page 30

CS 111
Summer 2017

Another Approach: Condition
Variables

•  Create a synchronization object associated
with a resource or request
– Requester blocks awaiting event on that object
– Upon completion, the event is “posted”
– Posting event to object unblocks the waiter

blocked ready

running exit

post

create

wait

Lecture 8
Page 31

CS 111
Summer 2017

Condition Variables and the OS

•  Generally the OS provides condition variables
– Or library code that implements threads does

•  It blocks a process or thread when condition
variable is used
– Moving it out of the ready queue

•  It observes when the desired event occurs
•  It then unblocks the blocked process or thread

– Putting it back in the ready queue
– Possibly preempting the running process

Lecture 8
Page 32

CS 111
Summer 2017

Waiting Lists
•  Likely to have threads waiting on several

different things
•  Pointless to wake up everyone on every event

– Each should wake up when his event happens
•  Suggests all events need a waiting list

– When posting an event, look up who to awaken
•  Wake up everyone on the list?
•  One-at-a-time in FIFO order?
•  One-at-a-time in priority order (possible starvation)?

– Choice depends on event and application

Lecture 8
Page 33

CS 111
Summer 2017

Who To Wake Up?

•  Who wakes up when a condition variable is
signaled?
– pthread_cond_wait … at least one blocked thread
– pthread_cond_broadcast … all blocked threads

•  The broadcast approach may be wasteful
–  If the event can only be consumed once
– Potentially unbounded waiting times

•  A waiting queue would solve these problems
– Each post wakes up the first client on the queue

Lecture 8
Page 34

CS 111
Summer 2017

Evaluating Waiting List Options

•  Effectiveness/Correctness
– Should be very good

•  Progress
– There is a trade-off involving cutting in line

•  Fairness
– Should be very good

•  Performance
– Should be very efficient
– Depends on frequency of spurious wakeups

Lecture 8
Page 35

CS 111
Summer 2017

Locking and Waiting Lists

•  Spinning for a lock is usually a bad thing
– Locks should probably have waiting lists

•  A waiting list is a (shared) data structure
–  Implementation will likely have critical sections
– Which may need to be protected by a lock

•  This seems to be a circular dependency
– Locks have waiting lists
– Which must be protected by locks
– What if we must wait for the waiting list lock?

Lecture 8
Page 36

CS 111
Summer 2017

A Possible Problem

•  The sleep/wakeup race condition

void sleep(eventp *e) {
while(e->posted == FALSE) {

add_to_queue(&e->queue,
myproc);
myproc->runstate |= BLOCKED;
yield();

}
}

void wakeup(eventp *e) {
 struct proce *p;

 e->posted = TRUE;
 p = get_from_queue(&e->
queue);
 if (p) {

 p->runstate &= ~BLOCKED;
 resched();

 } /* if !p, nobody’s
waiting */
}

Consider this sleep code: And this wakeup code:

What’s the problem with this?

Lecture 8
Page 37

CS 111
Summer 2017

A Sleep/Wakeup Race

•  Let’s say thread B is using a resource and
thread A needs to get it

•  So thread A will call sleep()
•  Meanwhile, thread B finishes using the

resource
– So thread B will call wakeup()

•  No other threads are waiting for the resource

Lecture 8
Page 38

CS 111
Summer 2017

The Race At Work
void sleep(eventp *e) {

while(e->posted == FALSE) {

void wakeup(eventp *e) {
struct proce *p;

e->posted = TRUE;
p = get_from_queue(&e-> queue);

if (p) {

 } /* if !p, nobody’s waiting */
}

Nope, nobody’s in the queue!

add_to_queue(&e->queue, myproc);

myproc->runsate |= BLOCKED;
yield();

 }
 }

Yep, somebody’s locked it!

Thread A Thread B

The effect?
Thread A is sleeping But there’s no one to

wake him up

CONTEXT SWITCH!

CONTEXT SWITCH!

Lecture 8
Page 39

CS 111
Summer 2017

Solving the Problem

•  There is clearly a critical section in sleep()
– Starting before we test the posted flag
– Ending after we put ourselves on the notify list

•  During this section, we need to prevent
– Wakeups of the event
– Other people waiting on the event

•  This is a mutual-exclusion problem
– Fortunately, we already know how to solve those

Lecture 8
Page 40

CS 111
Summer 2017

Progress vs. Fairness
•  Consider …

–  P1: lock(), park()
–  P2: unlock(), unpark()
–  P3: lock() (before P2’s

unpark())
•  Progress says:

–  It is available, so P3 gets it
–  Spurious wakeup of P1

•  Fairness says:
–  FIFO, P3 gets in line
–  And a convoy forms

void	unlock(lock_t	*m)	{	

	while	(TestAndSet(&m->guard,	1)	==	1);	
 m->locked = 0;	
	if	(!queue_empty(m->q))	
 unpark(queue_remove(m->q);
 m->guard = 0;

}	

void	lock(lock_t	*m)	{	
	while(true)	{	
	 	while	(TestAndSet(&m->guard,	1)	==	1);	
	 	if	(!m->locked)	{	
	 	 	m->locked	=	1;	
	 	 	m->guard	=	0;	
	 	 	return;	
	 	}		
	 	queue_add(m->q,	me);	
	 	m->guard	=	0;	
	 	park();	
	}	

}	

