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Outline 

•  Threads 
•  Interprocess communications 
•  Synchronization 

– Critical sections 
– Asynchronous event completions 
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Threads 

•  Why not just processes? 
•  What is a thread? 
•  How does the operating system deal with 

threads? 
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Why Not Just Processes? 
•  Processes are very expensive 

– To create: they own resources 
– To dispatch: they have address spaces 

•  Different processes are very distinct 
– They cannot share the same address space 
– They cannot (usually) share resources 

•  Not all programs require strong separation 
– Multiple activities working cooperatively for a 

single goal 
– Mutually trusting elements of a system 
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What Is a Thread? 
•  Strictly a unit of execution/scheduling 

– Each thread has its own stack, PC, registers 
– But other resources are shared with other threads 

•  Multiple threads can run in a process 
– They all share the same code and data space 
– They all have access to the same resources 
– This makes the cheaper to create and run 

•  Sharing the CPU between multiple threads 
– User level threads (with voluntary yielding) 
– Scheduled system threads (with preemption) 
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When Should You Use Processes? 

•  To run multiple distinct programs 
•  When creation/destruction are rare events 
•  When running agents with distinct privileges 
•  When there are limited interactions and shared 

resources 
•  To prevent interference between executing 

interpreters 
•  To firewall one from failures of the other 
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When Should You Use Threads? 

•  For parallel activities in a single program 
•  When there is frequent creation and 

destruction 
•  When all can run with same privileges 
•  When they need to share resources 
•  When they exchange many messages/signals 
•  When you don’t need to protect them from 

each other 
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Processes vs. Threads – Trade-offs 

•  If you use multiple processes 
– Your application may run much more slowly 
–  It may be difficult to share some resources 

•  If you use multiple threads 
– You will have to create and manage them 
– You will have serialize resource use 
– Your program will be more complex to write 

•  TANSTAAFL 
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Thread State and Thread Stacks 

•  Each thread has its own registers, PS, PC 
•  Each thread must have its own stack area 
•  Maximum stack size specified when thread is 

created 
– A process can contain many threads 
– They cannot all grow towards a single hole 
– Thread creator must know max required stack size 
– Stack space must be reclaimed when thread exits 

•  Procedure linkage conventions are unchanged 
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UNIX Process Stack Space 
Management 

0x00000000 0xFFFFFFFF 

code segment data segment stack segment 
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Thread Stack Allocation 

0x00000000 

0xFFFFFFFF 

code data 

stack 

thread 
stack 1 

0x0120000 

thread 
stack 2 

thread 
stack 3 
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Inter-Process Communication 

•  Even fairly distinct processes may occasionally 
need to exchange information 

•  The OS provides mechanisms to facilitate that 
– As it must, since processes can’t normally “touch” 

each other 
•  IPC 
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Goals for IPC Mechanisms 

•  We look for many things in an IPC mechanism 
– Simplicity 
– Convenience 
– Generality 
– Efficiency 
– Robustness and reliability 

•  Some of these are contradictory 
– Partially handled by providing multiple different 

IPC mechanisms 
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OS Support For IPC 

•  Provided through system calls 
•  Typically requiring activity from both 

communicating processes 
– Usually can’t “force” another process to perform 

IPC 
•  Usually mediated at each step by the OS 

– To protect both processes 
– And ensure correct behavior 
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IPC: Synchronous and Asynchronous 
•  Synchronous IPC 

– Writes block until message sent/delivered/received 
– Reads block until a new message is available 
– Very easy for programmers 

•  Asynchronous operations 
– Writes return when system accepts message 

•  No confirmation of transmission/delivery/reception 
•  Requires auxiliary mechanism to learn of errors 

– Reads return promptly if no message available 
•  Requires auxiliary mechanism to learn of new messages 
•  Often involves "wait for any of these" operation 

– Much more efficient in some circumstances 
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Typical IPC Operations 
•  Create/destroy an IPC channel 
•  Write/send/put 

–  Insert data into the channel 
•  Read/receive/get 

– Extract data from the channel 
•  Channel content query 

– How much data is currently in the channel? 
•  Connection establishment and query 

– Control connection of one channel end to another 
–  Provide information like: 

•  Who are end-points? 
•  What is status of connections? 
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IPC: Messages vs. Streams 
•  A fundamental dichotomy in IPC mechanisms 
•  Streams 

–  A continuous stream of bytes 
–  Read or write a few or many bytes at a time 
–  Write and read buffer sizes are unrelated 
–  Stream may contain app-specific record delimiters 

•  Messages (aka datagrams) 
–  A sequence of distinct messages 
–  Each message has its own length (subject to limits) 
–  Each message is typically read/written as a unit 
–  Delivery of a message is typically all-or-nothing 

•  Each style is suited for particular kinds of interactions 
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IPC and Flow Control 
•  Flow control: making sure a fast sender doesn’t 

overwhelm a slow receiver 
•  Queued messages consume system resources 

– Buffered in the OS until the receiver asks for them 
•  Many things can increase required buffer space 

–  Fast sender, non-responsive receiver 
•  Must be a way to limit required buffer space 

–  Sender side: block sender or refuse message 
– Receiving side: stifle sender, flush old messages 
– This is usually handled by network protocols 

•  Mechanisms for feedback to sender  
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IPC Reliability and Robustness 
•  Within a single machine, OS won’t accidentally 

“lose” IPC data 
•  Across a network, requests and responses can be 

lost 
•  Even on single machine, though, a sent message 

may not be processed 
– The receiver is invalid, dead, or not responding 

•  And how long must the OS be responsible for 
IPC data? 
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Reliability Options 
•  When do we tell the sender “OK”? 

–  When it’s queued locally?   
–  When it’s added to receivers input queue? 
–  When the receiver has read it?    
–  When the receiver has explicitly acknowledged it? 

•  How persistently does the system attempt delivery? 
–  Especially across a network 
–  Do we try retransmissions?  How many? 
–  Do we try different routes or alternate servers? 

•  Do channel/contents survive receiver restarts? 
–  Can a new server instance pick up where the old left off? 
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Some Styles of IPC 

•  Pipelines 
•  Sockets 
•  Mailboxes and named pipes 
•  Shared memory 
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Pipelines 
•  Data flows through a series of programs 

–  ls | grep | sort | mail 
–  Macro processor | complier | assembler 

•  Data is a simple byte stream 
–  Buffered in the operating system 
–  No need for intermediate temporary files 

•  There are no security/privacy/trust issues 
–  All under control of a single user 

•  Error conditions 
–  Input: End of File  
–  Output: next program failed 

•  Simple, but very limiting 
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Sockets 
•  Connections between addresses/ports 

–  Connect/listen/accept 
–  Lookup: registry, DNS, service discovery protocols 

•  Many data options 
–  Reliable or best effort data-grams 
–  Streams, messages, remote procedure calls, … 

•  Complex flow control and error handling 
–  Retransmissions, timeouts, node failures 
–  Possibility of reconnection or fail-over 

•  Trust/security/privacy/integrity 
–  We’ll discuss these issues later 

•  Very general, but more complex 
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Mailboxes and Named Pipes 
•  A compromise between sockets and pipes 
•  A client/server rendezvous point 

–  A name corresponds to a service 
–  A server awaits client connections 
–  Once open, it may be as simple as a pipe 
–  OS may authenticate message sender 

•  Limited fail-over capability 
–  If server dies, another can take its place 
–  But what about in-progress requests? 

•  Client/server must be on same system 
•  Some advantages/disadvantages of other options 
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Shared Memory 
•  OS arranges for processes to share read/write 

memory segments 
–  Mapped into multiple process’ address spaces 
–  Applications must provide their own control of sharing 
–  OS is not involved in data transfer 

•  Just memory reads and writes via limited direct execution 
•  So very fast 

•  Simple in some ways 
–  Terribly complicated in others 
–  The cooperating processes must achieve whatever effects 

they want 
•  Only works on a local machine 
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Synchronization 

•  Making things happen in the “right” order 
•  Easy if only one set of things is happening 
•  Easy if simultaneously occurring things don’t 

affect each other 
•  Hideously complicated otherwise 
•  Wouldn’t it be nice if we could avoid it? 
•  Well, we can’t 

– We must have parallelism 
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The Benefits of Parallelism 
•  Improved throughput 

– Blocking of one activity does not stop others 

•  Improved modularity 
– Separating complex activities into simpler pieces 

•  Improved robustness 
– The failure of one thread does not stop others 

•  A better fit to emerging paradigms 
– Client server computing, web based services 
– Our universe is cooperating parallel processes 
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Why Is There a Problem? 

•  Sequential program execution is easy 
–  First instruction one, then instruction two, ... 
– Execution order is obvious and deterministic 

•  Independent parallel programs are easy 
–  If the parallel streams do not interact in any way 

•  Cooperating parallel programs are hard 
–  If the two execution streams are not synchronized 

•  Results depend on the order of instruction execution 
•  Parallelism makes execution order non-deterministic 
•  Results become combinatorially intractable 
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Synchronization Problems 

•  Race conditions 
•  Non-deterministic execution 
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Race Conditions 
•  What happens depends on execution order of 

processes/threads running in parallel 
– Sometimes one way, sometimes another 
– These happen all the time, most don’t matter 

•  But some race conditions affect correctness 
– Conflicting updates (mutual exclusion) 
– Check/act races (sleep/wakeup problem) 
– Multi-object updates (all-or-none transactions) 
– Distributed decisions based on inconsistent views 

•  Each of these classes can be managed 
–  If we recognize the race condition and danger 
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Non-Deterministic Execution 
•  Parallel execution reduces predictability of 

process behavior  
– Processes block for I/O or resources 
– Time-slice end preemption 
–  Interrupt service routines 
– Unsynchronized execution on another core 
– Queuing delays 
– Time required to perform I/O operations 
– Message transmission/delivery time 

•  Which can lead to many problems 
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What Is “Synchronization”? 
•  True parallelism is imponderable 

–  We’re not smart enough to understand it 
–  Pseudo-parallelism may be good enough 

•  Mostly ignore it 
•  But identify and control key points of interaction 

•  Actually two interdependent problems 
–  Critical section serialization 
–  Notification of asynchronous completion 

•  They are often discussed as a single problem 
–  Many mechanisms simultaneously solve both 
–  Solution to either requires solution to the other 

•  They can be understood and solved separately 
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The Critical Section Problem 
•  A critical section is a resource that is shared by 

multiple threads 
– By multiple concurrent threads, processes or CPUs 
– By interrupted code and interrupt handler 

•  Use of the resource changes its state 
– Contents, properties, relation to other resources 

•  Correctness depends on execution order 
– When scheduler runs/preempts which threads 
– Relative timing of asynchronous/independent 

events 
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Reentrant & MultiThread-safe 
Code 

•  Consider a simple recursive routine: 
int factorial(x) { tmp = factorial( x-1 ); return x*tmp} 

•  Consider a possibly multi-threaded routine: 
void debit(amt) {tmp = bal-amt; if (tmp >=0) bal = tmp)} 

•  Neither would work if tmp was shared/static 
– Must be dynamic, each invocation has own copy 
– This is not a problem with read-only information 

•  Some variables must be shared 
– And proper sharing often involves critical sections 
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Critical Section Example 1:  
Updating a File 

Process 1 Process 2 
remove(“database”); 
fd = create(“database”); 
write(fd,newdata,length); 
close(fd); 

fd = open(“database”,READ); 
count = read(fd,buffer,length); 

remove(“database”); 
fd = create(“database”); 

fd = open(“database”,READ); 
count = read(fd,buffer,length); 

write(fd,newdata,length); 
close(fd); 

−  This result could not occur with any sequential execution 

•  Process 2 reads an empty database 
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Critical Section Example 2: 
Re-entrant Signals 

First signal Second signal 
load r1,numsigs // = 0 
add r1,=1  // = 1 
store r1,numsigs // =1 

load r1,numsigs // = 0 
add r1,=1  // = 1 
store r1,numsigs // =1 

load r1,numsigs // = 0 

numsigs 

add r1,=1  // = 1 
load r1,numsigs // = 0 

r1 

add r1,=1  // = 1 
store r1,numsigs // =1 

store r1,numsigs // =1 

The signal handlers share 
numsigs and r1 . . . So numsigs is 1, 

instead of 2 
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Critical Section Example 3:   
Multithreaded Banking Code 

load r1, balance   // = 100 
load r2, amount1 // = 50 
add r1, r2              // = 150 
store r1, balance  // = 150 

Thread 1 Thread 2 
load r1, balance    // = 100 
load r2, amount2 // = 25  
sub r1, r2               // = 75 
store r1, balance   // = 75 

load r1, balance   // = 100 
load r2, amount1 // = 50 
add r1, r2            // = 150 

100 balance 

r1 

r2 

50 amount1 25 amount2 

100 150 

load r1, balance    // = 100 

100 

load r2, amount2 // = 25  

25 

75 

sub r1, r2              // = 75 
store r1, balance   // = 75 

75 

store r1, balance  // = 150 

50 

CONTEXT SWITCH!!! 

CONTEXT SWITCH!!! 

150 

The $25 debit was lost!!! 
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Even A Single Instruction Can  
Contain a Critical Section 

thread #1 
counter = counter + 1; 

thread #2 
counter = counter + 1; 

mov counter, %eax 
add $0x1, %eax 
mov %eax, counter 

But what looks like one instruction in 
C gets compiled to: 

Three instructions . . . 
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Why Is This a Critical Section? 
thread #1 

counter = counter + 1; 
thread #2 

counter = counter + 1; 

mov counter, %eax 
add $0x1, %eax 

mov counter, %eax 
add $0x1, %eax 
mov %eax, counter 

This could happen: 

mov %eax, counter 
If counter started at 1, it should end at 3 
In this execution, it ends at 2 
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These Kinds of Interleavings  
Seem Pretty Unlikely 

•  To cause problems, things have to happen 
exactly wrong 

•  Indeed, that’s true 
•  But you’re executing a billion instructions per 

second 
•  So even very low probability events can 

happen with frightening frequency 
•  Often, one problem blows up everything that 

follows 
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Critical Sections and Mutual 
Exclusion 

•  Critical sections can cause trouble when more than 
one thread executes them at a time 
–  Each thread doing part of the critical section before any of 

them do all of it 

•  Preventable if we ensure that only one thread can 
execute a critical section at a time 

•  We need to achieve mutual exclusion of the critical 
section 

•  How? 
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One Solution: Interrupt Disables 

•  Temporarily block some or all interrupts 
– Can be done with a privileged instruction 
– Side-effect of loading new Processor Status Word 

•  Abilities 
– Prevent Time-Slice End (timer interrupts) 
– Prevent re-entry of device driver code 

•  Dangers 
– May delay important operations 
– A bug may leave them permanently disabled 
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What Happens During an Interrupt? 
•  What we discussed before 
•  The hardware traps to stop whatever is 

executing 
•  A trap table is consulted 
•  An Interrupt Service Routine (ISR) is 

consulted 
•  The ISR handles the interrupt and restores the 

CPU to its earlier state 
– Generally, interrupted code continues 
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Preventing Preemption 
DLL_insert(DLL *head, DLL*element) { 

	last->next	=	element;	
	head->prev	=	element;	

}	

DLL_insert(DLL	*head,	DLL*element)	{	

	DLL	*last	=	head->prev;	

	element->prev	=	last;	
	element->next	=	head;	

 last->next = element; 
 head->prev = element; 

} 

	DLL	*last	=	head->prev;	

	element->prev	=	last;	

	element->next	=	head;	

 int save = disableInterrupts();	

 restoreInterrupts(save);	

DLL_insert(DLL *head, DLL*element) { 
 DLL *last = head->prev; 
 element->prev = last; 
 element->next = head; 
 last->next = element; 
 head->prev = element; 

} 
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Downsides of Disabling Interrupts 
•  Not an option in user mode 

– Requires use of privileged instructions 

•  Dangerous if improperly used 
– Could disable preemptive scheduling, disk I/O, etc. 

•  Delays system response to important interrupts 
– Received data isn’t processed until interrupt 

serviced 
– Device will sit idle until next operation is initiated 

•  May prevent safe concurrency 
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Interrupts and Resource Allocation 

•  Interrupt handlers are not allowed to block 
– Only a scheduled process/thread can block 
–  Interrupts are disabled until call completes 

•  Ideally they should never need to wait 
– Needed resources are already allocated 
– Operations implemented with lock-free code 

•  Brief spins may be acceptable 
– Wait for hardware to acknowledge a command 
– Wait for a co-processor to release a lock 
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Interrupts – When To Disable Them 

•  In situations that involve shared resources 
– Used by both synchronous and interrupt code 

•  Hardware registers (e.g., in a device or clock) 
•  Communications queues and data structures 

•  That also involve non-atomic updates 
– Operations that require multiple instructions 

•  Where pre-emption in mid-operation could lead to data 
corruption or a deadlock. 

•  Must disable interrupts in these critical sections 
– Disable them as seldom and as briefly as possible 
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Be Careful With Interrupts 
•  Be very sparing in your use of disables 

–  Interrupt service time is very costly 
•  Scheduled processes have been preempted 
•  Devices may be idle, awaiting new instructions 
•  The system will be less responsive 

– Disable as few interrupts as possible 
– Disable them as briefly as possible 

•  Interrupt routines cannot block or yield the CPU 
– They are not a scheduled thread that can block/run 
– Cannot do resource allocations that might block 
– Cannot do synchronization operations that might block 
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Evaluating Interrupt Disables 
•  Effectiveness/Correctness 

–  Ineffective against multiprocessor/device parallelism 
– Only usable by kernel mode code 

•  Progress 
– Deadlock risk (if handler can block for resources) 

•  Fairness 
–  Pretty good (assuming disables are brief) 

•  Performance 
– One instruction, much cheaper than system call 
– Long disables may impact system performance 
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Other Possible Solutions 
•  Avoid shared data whenever possible 
•  Eliminate critical sections with atomic instructions 

–  Atomic (uninterruptable) read/modify/write operations 
–  Can be applied to 1-8 contiguous bytes 
–  Simple: increment/decrement, and/or/xor 
–  Complex: test-and-set, exchange, compare-and-swap 

•  Use atomic instructions to implement locks  
–  Use the lock operations to protect critical sections 

•  We’ll cover these in more detail in the next class 


