
Lecture 7
Page 1

CS 111
Summer 2017

Operating System Principles:
Threads, IPC, and
Synchronization

CS 111
Operating Systems

Peter Reiher

Lecture 7
Page 2

CS 111
Summer 2017

Outline

•  Threads
•  Interprocess communications
•  Synchronization

– Critical sections
– Asynchronous event completions

Lecture 7
Page 3

CS 111
Summer 2017

Threads

•  Why not just processes?
•  What is a thread?
•  How does the operating system deal with

threads?

Lecture 7
Page 4

CS 111
Summer 2017

Why Not Just Processes?
•  Processes are very expensive

– To create: they own resources
– To dispatch: they have address spaces

•  Different processes are very distinct
– They cannot share the same address space
– They cannot (usually) share resources

•  Not all programs require strong separation
– Multiple activities working cooperatively for a

single goal
– Mutually trusting elements of a system

Lecture 7
Page 5

CS 111
Summer 2017

What Is a Thread?
•  Strictly a unit of execution/scheduling

– Each thread has its own stack, PC, registers
– But other resources are shared with other threads

•  Multiple threads can run in a process
– They all share the same code and data space
– They all have access to the same resources
– This makes the cheaper to create and run

•  Sharing the CPU between multiple threads
– User level threads (with voluntary yielding)
– Scheduled system threads (with preemption)

Lecture 7
Page 6

CS 111
Summer 2017

When Should You Use Processes?

•  To run multiple distinct programs
•  When creation/destruction are rare events
•  When running agents with distinct privileges
•  When there are limited interactions and shared

resources
•  To prevent interference between executing

interpreters
•  To firewall one from failures of the other

Lecture 7
Page 7

CS 111
Summer 2017

When Should You Use Threads?

•  For parallel activities in a single program
•  When there is frequent creation and

destruction
•  When all can run with same privileges
•  When they need to share resources
•  When they exchange many messages/signals
•  When you don’t need to protect them from

each other

Lecture 7
Page 8

CS 111
Summer 2017

Processes vs. Threads – Trade-offs

•  If you use multiple processes
– Your application may run much more slowly
–  It may be difficult to share some resources

•  If you use multiple threads
– You will have to create and manage them
– You will have serialize resource use
– Your program will be more complex to write

•  TANSTAAFL

Lecture 7
Page 9

CS 111
Summer 2017

Thread State and Thread Stacks

•  Each thread has its own registers, PS, PC
•  Each thread must have its own stack area
•  Maximum stack size specified when thread is

created
– A process can contain many threads
– They cannot all grow towards a single hole
– Thread creator must know max required stack size
– Stack space must be reclaimed when thread exits

•  Procedure linkage conventions are unchanged

Lecture 7
Page 10

CS 111
Summer 2017

UNIX Process Stack Space
Management

0x00000000 0xFFFFFFFF

code segment data segment stack segment

Lecture 7
Page 11

CS 111
Summer 2017

Thread Stack Allocation

0x00000000

0xFFFFFFFF

code data

stack

thread
stack 1

0x0120000

thread
stack 2

thread
stack 3

Lecture 7
Page 12

CS 111
Summer 2017

Inter-Process Communication

•  Even fairly distinct processes may occasionally
need to exchange information

•  The OS provides mechanisms to facilitate that
– As it must, since processes can’t normally “touch”

each other
•  IPC

Lecture 7
Page 13

CS 111
Summer 2017

Goals for IPC Mechanisms

•  We look for many things in an IPC mechanism
– Simplicity
– Convenience
– Generality
– Efficiency
– Robustness and reliability

•  Some of these are contradictory
– Partially handled by providing multiple different

IPC mechanisms

Lecture 7
Page 14

CS 111
Summer 2017

OS Support For IPC

•  Provided through system calls
•  Typically requiring activity from both

communicating processes
– Usually can’t “force” another process to perform

IPC
•  Usually mediated at each step by the OS

– To protect both processes
– And ensure correct behavior

Lecture 7
Page 15

CS 111
Summer 2017

IPC: Synchronous and Asynchronous
•  Synchronous IPC

– Writes block until message sent/delivered/received
– Reads block until a new message is available
– Very easy for programmers

•  Asynchronous operations
– Writes return when system accepts message

•  No confirmation of transmission/delivery/reception
•  Requires auxiliary mechanism to learn of errors

– Reads return promptly if no message available
•  Requires auxiliary mechanism to learn of new messages
•  Often involves "wait for any of these" operation

– Much more efficient in some circumstances

Lecture 7
Page 16

CS 111
Summer 2017

Typical IPC Operations
•  Create/destroy an IPC channel
•  Write/send/put

–  Insert data into the channel
•  Read/receive/get

– Extract data from the channel
•  Channel content query

– How much data is currently in the channel?
•  Connection establishment and query

– Control connection of one channel end to another
–  Provide information like:

•  Who are end-points?
•  What is status of connections?

Lecture 7
Page 17

CS 111
Summer 2017

IPC: Messages vs. Streams
•  A fundamental dichotomy in IPC mechanisms
•  Streams

–  A continuous stream of bytes
–  Read or write a few or many bytes at a time
–  Write and read buffer sizes are unrelated
–  Stream may contain app-specific record delimiters

•  Messages (aka datagrams)
–  A sequence of distinct messages
–  Each message has its own length (subject to limits)
–  Each message is typically read/written as a unit
–  Delivery of a message is typically all-or-nothing

•  Each style is suited for particular kinds of interactions

Lecture 7
Page 18

CS 111
Summer 2017

IPC and Flow Control
•  Flow control: making sure a fast sender doesn’t

overwhelm a slow receiver
•  Queued messages consume system resources

– Buffered in the OS until the receiver asks for them
•  Many things can increase required buffer space

–  Fast sender, non-responsive receiver
•  Must be a way to limit required buffer space

–  Sender side: block sender or refuse message
– Receiving side: stifle sender, flush old messages
– This is usually handled by network protocols

•  Mechanisms for feedback to sender

Lecture 7
Page 19

CS 111
Summer 2017

IPC Reliability and Robustness
•  Within a single machine, OS won’t accidentally

“lose” IPC data
•  Across a network, requests and responses can be

lost
•  Even on single machine, though, a sent message

may not be processed
– The receiver is invalid, dead, or not responding

•  And how long must the OS be responsible for
IPC data?

Lecture 7
Page 20

CS 111
Summer 2017

Reliability Options
•  When do we tell the sender “OK”?

–  When it’s queued locally?
–  When it’s added to receivers input queue?
–  When the receiver has read it?
–  When the receiver has explicitly acknowledged it?

•  How persistently does the system attempt delivery?
–  Especially across a network
–  Do we try retransmissions? How many?
–  Do we try different routes or alternate servers?

•  Do channel/contents survive receiver restarts?
–  Can a new server instance pick up where the old left off?

Lecture 7
Page 21

CS 111
Summer 2017

Some Styles of IPC

•  Pipelines
•  Sockets
•  Mailboxes and named pipes
•  Shared memory

Lecture 7
Page 22

CS 111
Summer 2017

Pipelines
•  Data flows through a series of programs

–  ls | grep | sort | mail
–  Macro processor | complier | assembler

•  Data is a simple byte stream
–  Buffered in the operating system
–  No need for intermediate temporary files

•  There are no security/privacy/trust issues
–  All under control of a single user

•  Error conditions
–  Input: End of File
–  Output: next program failed

•  Simple, but very limiting

Lecture 7
Page 23

CS 111
Summer 2017

Sockets
•  Connections between addresses/ports

–  Connect/listen/accept
–  Lookup: registry, DNS, service discovery protocols

•  Many data options
–  Reliable or best effort data-grams
–  Streams, messages, remote procedure calls, …

•  Complex flow control and error handling
–  Retransmissions, timeouts, node failures
–  Possibility of reconnection or fail-over

•  Trust/security/privacy/integrity
–  We’ll discuss these issues later

•  Very general, but more complex

Lecture 7
Page 24

CS 111
Summer 2017

Mailboxes and Named Pipes
•  A compromise between sockets and pipes
•  A client/server rendezvous point

–  A name corresponds to a service
–  A server awaits client connections
–  Once open, it may be as simple as a pipe
–  OS may authenticate message sender

•  Limited fail-over capability
–  If server dies, another can take its place
–  But what about in-progress requests?

•  Client/server must be on same system
•  Some advantages/disadvantages of other options

Lecture 7
Page 25

CS 111
Summer 2017

Shared Memory
•  OS arranges for processes to share read/write

memory segments
–  Mapped into multiple process’ address spaces
–  Applications must provide their own control of sharing
–  OS is not involved in data transfer

•  Just memory reads and writes via limited direct execution
•  So very fast

•  Simple in some ways
–  Terribly complicated in others
–  The cooperating processes must achieve whatever effects

they want
•  Only works on a local machine

Lecture 7
Page 26

CS 111
Summer 2017

Synchronization

•  Making things happen in the “right” order
•  Easy if only one set of things is happening
•  Easy if simultaneously occurring things don’t

affect each other
•  Hideously complicated otherwise
•  Wouldn’t it be nice if we could avoid it?
•  Well, we can’t

– We must have parallelism

Lecture 7
Page 27

CS 111
Summer 2017

The Benefits of Parallelism
•  Improved throughput

– Blocking of one activity does not stop others

•  Improved modularity
– Separating complex activities into simpler pieces

•  Improved robustness
– The failure of one thread does not stop others

•  A better fit to emerging paradigms
– Client server computing, web based services
– Our universe is cooperating parallel processes

Lecture 7
Page 28

CS 111
Summer 2017

Why Is There a Problem?

•  Sequential program execution is easy
–  First instruction one, then instruction two, ...
– Execution order is obvious and deterministic

•  Independent parallel programs are easy
–  If the parallel streams do not interact in any way

•  Cooperating parallel programs are hard
–  If the two execution streams are not synchronized

•  Results depend on the order of instruction execution
•  Parallelism makes execution order non-deterministic
•  Results become combinatorially intractable

Lecture 7
Page 29

CS 111
Summer 2017

Synchronization Problems

•  Race conditions
•  Non-deterministic execution

Lecture 7
Page 30

CS 111
Summer 2017

Race Conditions
•  What happens depends on execution order of

processes/threads running in parallel
– Sometimes one way, sometimes another
– These happen all the time, most don’t matter

•  But some race conditions affect correctness
– Conflicting updates (mutual exclusion)
– Check/act races (sleep/wakeup problem)
– Multi-object updates (all-or-none transactions)
– Distributed decisions based on inconsistent views

•  Each of these classes can be managed
–  If we recognize the race condition and danger

Lecture 7
Page 31

CS 111
Summer 2017

Non-Deterministic Execution
•  Parallel execution reduces predictability of

process behavior
– Processes block for I/O or resources
– Time-slice end preemption
–  Interrupt service routines
– Unsynchronized execution on another core
– Queuing delays
– Time required to perform I/O operations
– Message transmission/delivery time

•  Which can lead to many problems

Lecture 7
Page 32

CS 111
Summer 2017

What Is “Synchronization”?
•  True parallelism is imponderable

–  We’re not smart enough to understand it
–  Pseudo-parallelism may be good enough

•  Mostly ignore it
•  But identify and control key points of interaction

•  Actually two interdependent problems
–  Critical section serialization
–  Notification of asynchronous completion

•  They are often discussed as a single problem
–  Many mechanisms simultaneously solve both
–  Solution to either requires solution to the other

•  They can be understood and solved separately

Lecture 7
Page 33

CS 111
Summer 2017

The Critical Section Problem
•  A critical section is a resource that is shared by

multiple threads
– By multiple concurrent threads, processes or CPUs
– By interrupted code and interrupt handler

•  Use of the resource changes its state
– Contents, properties, relation to other resources

•  Correctness depends on execution order
– When scheduler runs/preempts which threads
– Relative timing of asynchronous/independent

events

Lecture 7
Page 34

CS 111
Summer 2017

Reentrant & MultiThread-safe
Code

•  Consider a simple recursive routine:
int factorial(x) { tmp = factorial(x-1); return x*tmp}

•  Consider a possibly multi-threaded routine:
void debit(amt) {tmp = bal-amt; if (tmp >=0) bal = tmp)}

•  Neither would work if tmp was shared/static
– Must be dynamic, each invocation has own copy
– This is not a problem with read-only information

•  Some variables must be shared
– And proper sharing often involves critical sections

Lecture 7
Page 35

CS 111
Summer 2017

Critical Section Example 1:
Updating a File

Process 1 Process 2
remove(“database”);
fd = create(“database”);
write(fd,newdata,length);
close(fd);

fd = open(“database”,READ);
count = read(fd,buffer,length);

remove(“database”);
fd = create(“database”);

fd = open(“database”,READ);
count = read(fd,buffer,length);

write(fd,newdata,length);
close(fd);

−  This result could not occur with any sequential execution

•  Process 2 reads an empty database

Lecture 7
Page 36

CS 111
Summer 2017

Critical Section Example 2:
Re-entrant Signals

First signal Second signal
load r1,numsigs // = 0
add r1,=1 // = 1
store r1,numsigs // =1

load r1,numsigs // = 0
add r1,=1 // = 1
store r1,numsigs // =1

load r1,numsigs // = 0

numsigs

add r1,=1 // = 1
load r1,numsigs // = 0

r1

add r1,=1 // = 1
store r1,numsigs // =1

store r1,numsigs // =1

The signal handlers share
numsigs and r1 . . . So numsigs is 1,

instead of 2

Lecture 7
Page 37

CS 111
Summer 2017

Critical Section Example 3:
Multithreaded Banking Code

load r1, balance // = 100
load r2, amount1 // = 50
add r1, r2 // = 150
store r1, balance // = 150

Thread 1 Thread 2
load r1, balance // = 100
load r2, amount2 // = 25
sub r1, r2 // = 75
store r1, balance // = 75

load r1, balance // = 100
load r2, amount1 // = 50
add r1, r2 // = 150

100 balance

r1

r2

50 amount1 25 amount2

100 150

load r1, balance // = 100

100

load r2, amount2 // = 25

25

75

sub r1, r2 // = 75
store r1, balance // = 75

75

store r1, balance // = 150

50

CONTEXT SWITCH!!!

CONTEXT SWITCH!!!

150

The $25 debit was lost!!!

Lecture 7
Page 38

CS 111
Summer 2017

Even A Single Instruction Can
Contain a Critical Section

thread #1
counter = counter + 1;

thread #2
counter = counter + 1;

mov counter, %eax
add $0x1, %eax
mov %eax, counter

But what looks like one instruction in
C gets compiled to:

Three instructions . . .

Lecture 7
Page 39

CS 111
Summer 2017

Why Is This a Critical Section?
thread #1

counter = counter + 1;
thread #2

counter = counter + 1;

mov counter, %eax
add $0x1, %eax

mov counter, %eax
add $0x1, %eax
mov %eax, counter

This could happen:

mov %eax, counter
If counter started at 1, it should end at 3
In this execution, it ends at 2

Lecture 7
Page 40

CS 111
Summer 2017

These Kinds of Interleavings
Seem Pretty Unlikely

•  To cause problems, things have to happen
exactly wrong

•  Indeed, that’s true
•  But you’re executing a billion instructions per

second
•  So even very low probability events can

happen with frightening frequency
•  Often, one problem blows up everything that

follows

Lecture 7
Page 41

CS 111
Summer 2017

Critical Sections and Mutual
Exclusion

•  Critical sections can cause trouble when more than
one thread executes them at a time
–  Each thread doing part of the critical section before any of

them do all of it

•  Preventable if we ensure that only one thread can
execute a critical section at a time

•  We need to achieve mutual exclusion of the critical
section

•  How?

Lecture 7
Page 42

CS 111
Summer 2017

One Solution: Interrupt Disables

•  Temporarily block some or all interrupts
– Can be done with a privileged instruction
– Side-effect of loading new Processor Status Word

•  Abilities
– Prevent Time-Slice End (timer interrupts)
– Prevent re-entry of device driver code

•  Dangers
– May delay important operations
– A bug may leave them permanently disabled

Lecture 7
Page 43

CS 111
Summer 2017

What Happens During an Interrupt?
•  What we discussed before
•  The hardware traps to stop whatever is

executing
•  A trap table is consulted
•  An Interrupt Service Routine (ISR) is

consulted
•  The ISR handles the interrupt and restores the

CPU to its earlier state
– Generally, interrupted code continues

Lecture 7
Page 44

CS 111
Summer 2017

Preventing Preemption
DLL_insert(DLL *head, DLL*element) {

	last->next	=	element;	
	head->prev	=	element;	

}	

DLL_insert(DLL	*head,	DLL*element)	{	

	DLL	*last	=	head->prev;	

	element->prev	=	last;	
	element->next	=	head;	

 last->next = element;
 head->prev = element;

}

	DLL	*last	=	head->prev;	

	element->prev	=	last;	

	element->next	=	head;	

 int save = disableInterrupts();	

 restoreInterrupts(save);	

DLL_insert(DLL *head, DLL*element) {
 DLL *last = head->prev;
 element->prev = last;
 element->next = head;
 last->next = element;
 head->prev = element;

}

Lecture 7
Page 45

CS 111
Summer 2017

Downsides of Disabling Interrupts
•  Not an option in user mode

– Requires use of privileged instructions

•  Dangerous if improperly used
– Could disable preemptive scheduling, disk I/O, etc.

•  Delays system response to important interrupts
– Received data isn’t processed until interrupt

serviced
– Device will sit idle until next operation is initiated

•  May prevent safe concurrency

Lecture 7
Page 46

CS 111
Summer 2017

Interrupts and Resource Allocation

•  Interrupt handlers are not allowed to block
– Only a scheduled process/thread can block
–  Interrupts are disabled until call completes

•  Ideally they should never need to wait
– Needed resources are already allocated
– Operations implemented with lock-free code

•  Brief spins may be acceptable
– Wait for hardware to acknowledge a command
– Wait for a co-processor to release a lock

Lecture 7
Page 47

CS 111
Summer 2017

Interrupts – When To Disable Them

•  In situations that involve shared resources
– Used by both synchronous and interrupt code

•  Hardware registers (e.g., in a device or clock)
•  Communications queues and data structures

•  That also involve non-atomic updates
– Operations that require multiple instructions

•  Where pre-emption in mid-operation could lead to data
corruption or a deadlock.

•  Must disable interrupts in these critical sections
– Disable them as seldom and as briefly as possible

Lecture 7
Page 48

CS 111
Summer 2017

Be Careful With Interrupts
•  Be very sparing in your use of disables

–  Interrupt service time is very costly
•  Scheduled processes have been preempted
•  Devices may be idle, awaiting new instructions
•  The system will be less responsive

– Disable as few interrupts as possible
– Disable them as briefly as possible

•  Interrupt routines cannot block or yield the CPU
– They are not a scheduled thread that can block/run
– Cannot do resource allocations that might block
– Cannot do synchronization operations that might block

Lecture 7
Page 49

CS 111
Summer 2017

Evaluating Interrupt Disables
•  Effectiveness/Correctness

–  Ineffective against multiprocessor/device parallelism
– Only usable by kernel mode code

•  Progress
– Deadlock risk (if handler can block for resources)

•  Fairness
–  Pretty good (assuming disables are brief)

•  Performance
– One instruction, much cheaper than system call
– Long disables may impact system performance

Lecture 7
Page 50

CS 111
Summer 2017

Other Possible Solutions
•  Avoid shared data whenever possible
•  Eliminate critical sections with atomic instructions

–  Atomic (uninterruptable) read/modify/write operations
–  Can be applied to 1-8 contiguous bytes
–  Simple: increment/decrement, and/or/xor
–  Complex: test-and-set, exchange, compare-and-swap

•  Use atomic instructions to implement locks
–  Use the lock operations to protect critical sections

•  We’ll cover these in more detail in the next class

