-

Summer 2017

Operating System Principles:

Processes, Execution, and State

CS 111
Operating Systems
Peter Reilher

\

/ ' Outline | \

* What are processes?

 How does an operating system handle
processes?

* How do we manage the state of processes?

\ /

CS 111 Lecture 3
Summer 2017 Page 2

/ 'What Is a Process?] \

* A type of interpreter

* An executing instance of a program
* A virtual private computer
* A process 1s an object

— Characterized by its properties (state)

— Characterized by its operations
— Of course, not all OS objects are processes

\ — But processes are a central and vital OS object)
CS 111 typ C Lecture 3

Summer 2017 Page 3

/ What 1s “State™? \

* One dictionary definition of “state” 1s
— “A mode or condition of being”

— An object may have a wide range of possible states

* All persistent objects have “state”
— Distinguishing them from other objects
— Characterizing object's current condition

* Contents of state depends on object

— Complex operations often mean complex state

— We can save/restore the aggregate/total state
\ — We can talk of a subset (e.g., scheduling state) |

CS 111 ecture 3
Summer 2017 Page 4

/ Examples Of OS Object State \

* Scheduling priority of a process

* Current pointer 1nto a file

* Completion condition of an I/O operation

* List of memory pages allocated to a process

* OS objects’ state 1s mostly managed by the OS
itself

— Not (directly) by user code

\ — It must ask the OS to access or alter state of OS /
objects o

CS 111
Summer 2017

/ What Are Operations?

\

CS 111

Summer 2017

Activities performed by an object
Often resulting 1n changes to its state

* Sometimes (especially in OSes) resulting in

changes to hardware devices

Sometimes resulting in changes to other
objects’ states

— Usually indirectly, since typically one object
cannot directly change another’s state

\

@Xamples of OS Object Operatio@

* Create a process

* Deallocate a page of memory
* Open a file

* Write to a display

* Not directly performable by user processes
— They must ask the OS to perform the operation

* Almost always resulting in OS object state
\ changes)

CS 111
Summer 2017

/ Process Address Spaces \

* Each process has some memory addresses
reserved for 1ts private use

* That set of addresses 1s called its address space

* A process’ address space 1s made up of all
memory locations that the process can address

* Modern OSes provide the illusion that the
process has all of memory 1n 1ts address space

— But that’s not true, under the covers

\ /

CS 111
Summer 2017

@ogram vs. Process Address Spac}

ELF header .

section 1 header| | section 2 header] | section 3 header
target ISA :
load sections | | tYPe: code type: data type: sym

load adr: Oxxx| | load adr: Oxxx| | length: HH

info sections
length: ### | | length: ###

— Program
: initialized
compiled data symbol
code table
values
0x00000000 0x0100000 0x0110000

private data shared lib1 shared lib2

Process
private stack
\ 0x0120000 OxFFFFFFFFV
CS 111 Lecture 3

Summer 2017 Page 9

/ Process Address Space Layout \

* All required memory elements for a process
must be put somewhere 1n 1ts address space

* Different types of memory elements have
different requirements

— E.g., code is not writable but must be executable
— And stacks are readable and writable but not
executable

* Each operating system has some strategy for
\ where to put these process memory segments |

CS 111 Lecture 3
Summer 2017 Page 10

/~ Layout of Unix Processes in ™\
Memory

0x00000000 OxFFFFFFFF
 In Unix systems!,

— Code segments are statically sized
— Data segment grows up
— Stack segment grows down

* They aren’t allowed to meet

\

Cs 111 " Linux is one type of Unix system Lecture 3
Summer 2017 Page 11

/ Address Space: Code Segments\

* We start with a load module
— The output of a linkage editor
— All external references have been resolved
— All modules combined into a few segments
— Includes multiple segments (text, data, BSS)
* (Code must be loaded into memory
— A virtual code segment must be created
— Code must be read in from the load module
— Map segment into virtual address space

* Code segments are read/execute only and sharable

\ — Many processes can use the same code segments /

CS 111 Lecture 3
Summer 2017 Page 12

/ Address Space: Data Segments\

* Data too must be initialized 1n address space
— Process data segment must be created
— Initial contents must be copied from load module
— BSS!: segments to be initialized to all zeroes
— Map segment into virtual address space

* Data segments
— Are read/write, and process private

— Program can grow or shrink 1t (using the sbrk
system call)

\ /

oS 111 Block Started by Symbol - a legacy term of no importance Lecture 3
Summer 2017 Page 13

/ Processes and Stack Frames \

* Modern programming languages are stack-based

— Greatly simplified procedure storage management

» Each procedure call allocates a new stack frame
— Storage for procedure local (vs. global) variables
— Storage for invocation parameters

— Save and restore registers

* Popped off stack when call returns

* Most modern CPUs also have stack support

\ — Stack too must be preserved as part of process state /

CS 111 Lecture 3
Summer 2017 Page 14

/ Address Space: Stack Segment\

* Size of stack depends on program activities
— E.g., by amount of local storage used by each routine
— Grows larger as calls nest more deeply

— After calls return, their stack frames can be recycled

* OS manages the process’ stack segment
— Stack segment created at same time as data segment

— Some OSes allocate fixed sized stack at program load time
— Some dynamically extend stack as program needs it

* Stack segments are read/write and process private
\ — Usually not executable /

CS 111 Lecture 3
Summer 2017 Page 15

/ Address Space: Libraries \

* Static libraries are added to load module
— Each load module has 1ts own copy of each library
— Program must be re-linked to get new version
e Shared libraries use less space
— One in-memory copy, shared by all processes
— Keep the library separate from the load modules
— Operating system loads library along with program

* Reduced memory use, faster program loads
\' Easier and better library upgrades)

CS 111 Lecture 3
Summer 2017 Page 16

/ Other Process State \

* Registers
— General registers
— Program counter, processor status

— Stack pointer, frame pointer
* Process’ own OS resources

— Open files, current working directory, locks

 But also OS-related state information

\ /

CS 111 Lecture 3
Summer 2017 Page 17

/ OS State For a Process \

* The state of process’ virtual computer
* Registers
— Program counter, processor status word

— Stack pointer, general registers

* Address space
— Text, data, and stack segments

— Sizes, locations, and contents

* The OS needs some data structure to keep
\ track of a process’ state /

CS 111 Lecture 3
Summer 2017 Page 18

/ Process Descriptors \

* Basic OS data structure for dealing with
processes

* Stores all information relevant to the process
— State to restore when process 1s dispatched
— References to allocated resources

— Information to support process operations
* Managed by the OS

* Used for scheduling, security decisions,
\allocation issues /

CS 111 Lecture 3
Summer 2017 Page 19

/ [L.inux Process Control Block \

* The data structure Linux (and other Unix
systems) use to handle processes

— AKA PCB
* An example of a process descriptor
* Keeps track of:

— Unique process ID

— State of the process (€.g., running)
— Parent process 1D

— Address space information

\

«m — And various other things Lectune 3

Summer 2017 Page 20

-

Other Process State

* Not all process state 1s stored directly in the
process descriptor

* Other process state 1s in multiple other places

— Application execution state 1s on the stack and 1n

registers

— Linux processes also have a supervisor-mode stack

* To retain the state of in-progress system calls

* To save the state of an interrupt preempted process

\° A lot of process state 1s stored in the other

s MEemory areas

Summer 2017

\

Lecture 3

Page 21

/ | Handling Processes | \

* Creating processes
* Destroying processes

* Running processes

\ /

CS 111 Lecture 3
Summer 2017 Page 22

e e e e R M e e R M M R REm Mmn M M MEm MEm M R REm Mmm M M Mmm Mmm M M Mmm Mmm M M Rmm Mmm M R Mmm Mmm M R Mmm M M e Mmm M M e M M e

* Created by the operating system
— Using some method to 1nitialize their state

— In particular, to set up a particular program to run

* At the request of other processes
— Which specify the program to run
— And other aspects of their 1nitial state

* Parent processes

— The process that created your process

* Child processes

\ — The processes your process created /

CS 111 Lecture 3
Summer 2017 Page 23

/ Creating a Process Descriptor \

* The process descriptor 1s the OS’ basic per-
process data structure

* So a new process needs a new descriptor
* What does the OS do with the descriptor?
* Typically puts 1t into a process table

— The data structure the OS uses to organize all
currently active processes

— Process table contains one entry for each process
\ in the system /

CS 111 Lecture 3
Summer 2017 Page 24

/ What Else Does a \

New Process Need?
* An address space

* To hold all of the segments 1t will need
e So the OS needs to create one

— And allocate memory for code, data and stack

* OS then loads program code and data into new
segments

* Initializes a stack segment

\° Sets up 1nitial registers (PC, PS, SP))

CS 111 Lecture 3
Summer 2017 Page 25

/ Choices for Process Creation \

1. Start with a “blank™ process
— No 1nitial state or resources

— Have some way of filling in the vital stuff
* Code

* Program counter, etc.

— This 1s the basic Windows approach
2. Use the calling process as a template

— Including code, PC, etc.

\ — This 1s the basic Unix/Linux approach

CS 111

— Give new process the same stuff as the old one

Summer 2017

/

Lecture 3
Page 26

/ Starting With a Blank Process \

* Basically, create a brand new process

* The system call that creates it obviously needs
to provide some information
— Everything needed to set up the process properly
— At the mimimum, what code 1s to be run
— Generally a lot more than that

* Other than bootstrapping, the new process 1s
created by command of an existing process

CS 111 Lecture 3
Summer 2017 Page 27

/ Windows Process Creation \

* The CreateProcess () system call
* A very flexible way to create a new process

— Many parameters with many possible values

* Generally, the system call includes the name of
the program to run

— In one of a couple of parameter locations

* Different parameters fill out other critical
information for the new process

.\ — Environment information, priorities, etc. LT

Summer 2017 Page 28

-

\

CS 111
Summer 2017

Process Forking

* The way Unix/Linux creates processes
* Essentially clones the existing parent process

* On assumption that the new child process 1s a
lot like the old one

— Most likely to be true for some kinds of parallel

programming

— Not so likely for more typical user computing

\

Lecture 3

Page 29

/ Why Did Unix Use Forking? \

* Avoids costs of copying a lot of code
— If 1t’s the same code as the parent’s . . .
* Historical reasons
— Parallel processing literature used a cloning fork
— Fork allowed parallelism before threads invented
* Practical reasons

— Easy to manage shared resources
» [ike stdin, stdout, stderr

— Easy to set up process pipe-lines (€.2. 1s | more)

\ — Eases design of command shells

CS 111 Lecture 3
Summer 2017 Page 30

/ What Happens After a Fork? \

* There are now two processes
— With different IDs

— But otherwise mostly exactly the same
* How do I profitably use that?
* Program executes a fork

* Now there are two programs

— With the same code and program counter

* Write code to figure out which 1s which

\ — Usually, parent goes “one way” and child goes)
CS 111 “the other” Lecture 3

Summer 2017 Page 31

/ Forking and the Data Segments\

* Forked child shares the parent’s code
* But not its stack

— It has 1ts own stack, initialized to match the
parent’s

— Just as 1f a second process running the same
program had reached the same point in 1ts run
* Child should have its own data segment,
though

\— Forked processes do not share their data segments

CS 111 Lecture 3
Summer 2017 Page 32

/ Forking and Copy on Write \

 If the parent had a big data area. settino 1~ g
separate copy for the ch” Potential serious

— And fork was supposs problems if OS
, doesn’t get this right.
* If neither parent nor ¢ E.g., Linux

data area, though, no ¢« DirtyCOW bug.
* So set 1t up as copy-on-write

* If one of them writes 1t, then make a copy and
let the process write the copy

\ — The other process keeps the original /

CS 111 Lecture 3
Summer 2017 Page 33

/ But Fork Isn’t What \
I Usually Want!

* Indeed, you usually don’t want another copy of
the same process

* You want a process to do something entirely
different

* Handled with exec ()
— A Unix system call to “remake” a process

— Changes the code associated with a process

— Resets much of the rest of its state, too
\ * Like open files /

CS 111 Lecture 3
Summer 2017 Page 34

/ The exec C(Call \

* A Linux/Unix system call to handle the
common case

* Replaces a process’ existing program with a
different one

— New code

— Different set of other resources
— Different PC and stack

* Essentially, called after you do a fork

\ /

CS 111 Lecture 3
Summer 2017 Page 35

/ How Does the OS Handle Exec?\

* Must get rid of the child’s old code
— And 1ts stack and data areas

— Latter 1s easy 1f you are using copy-on-write

e Must load a brand new set of code for that
Process

 Must 1initialize child’s stack, PC, and other
relevant control structure

— To start a fresh program run for the child process

\ /

CS 111 Lecture 3
Summer 2017 Page 36

/Loading Programs Into Processes\

* Whether you did a Windows
CreateProcess () ora Unix exec ()

— You need to go from loadable program to runnable
process

* To get from the code to the running version,
you need to perform the loading step

— Initializing the various memory domains we
discussed earlier
\ * Code, stack, data segment, etc. /

CS 111 Lecture 3
Summer 2017 Page 37

/ Loading Programs \

* You have a load module
— The output of linkage editor
— All external references have been resolved
— All modules combined into a few segments
— Includes multiple segments (code, data, etc.)

* A computer cannot “execute” a load module
— Computers execute instructions in memory
— Memory must be allocated for each segment

\ — Code must be copied from load module to memory)

CS 111 Lecture 3
Summer 2017 Page 38

/" Program to Process Transition

ELF header
target ISA

load sections
info sections

Process

\

CS 111

o« This 1s the job of the
length: .
loader and linkage
com .
co editor
0x00000000 0x0100000

private stack

0x0120000 OxFFFFFFFﬁ,/

ram

0x0110000

shared lib2

Lecture 3

Summer 2017

Page 39

/" Destroying Processes |\

\

* Most processes terminate
— All do, of course, when the machine goes down
— But most do some work and then exit before that
— Others are killed by the OS or another process

* When a process terminates, the OS needs to
clean 1t up

— Essentially, getting rid of all of its resources
— In a way that allows simple reclamation

\

CS 111
Summer 2017

Lecture 3
Page 40

/ What Must the OS Do to

Terminate a Process?

* Reclaim any resources 1t may be holding
— Memory
— Locks
— Access to hardware devices
* Inform any other process that needs to know
— Those waiting for interprocess communications

— Parent (and maybe child) processes

\- Remove process descriptor from the process
table

CS 111

\

/

Lecture 3

Summer 2017

Page 41

—_——

~ [Ruming Processes| |

* Processes must execute code to do their job

* Which means the OS must give them access to
a Processor core

* But usually more processes than cores
— Easily 200-300 on a typical modern machine

* So processes will need to share the cores

— And they can’t all execute instructions at once

* Sooner or later, a process not running on a core
\ needs to be put onto one Y,

CS 111 Lecture 3
Summer 2017 Page 42

/ Loading a Process \

* To run a process on a core, the core’s hardware
must be nitialized

— Either to initial state or whatever state the process
was 1n the last time 1t ran

* Must load the core’s registers

e Must initialize the stack and set the stack
pointer

* Must set up any memory control structures

* Must set the program counter
\e Then what? /

CS 111 Lecture 3
Summer 2017 Page 43

/ How a Process Runs on an OS \

e]t uses an execution model called limited direct
execution

* Most instructions are executed directly by the
process on the core

— Without any OS intervention

* Some 1nstructions instead cause a trap to the
operating system
— Privileged instructions that can only execute 1n
supervisor mode

\ — The OS takes care of things from there Leeture 3

CS 111
Summer 2017 Page 44

/ [Limited Direct Execution \

* CPU directly executes most application code
— Punctuated by occasy” "l traps (for system calls)

— With occasional tiv erunte (£or fime sharing)
The key to

g0ood system
— For Linux use’” performance

— For OS emvy ! on Linux)

* Maximizing du s always the goal

— For virtual machines

* Enter the OS as seldom as possible

\ — Get back to the application as quickly as possible /

CS 111 Lecture 3
Summer 2017 Page 45

/ Exceptions \

* The technical term for what happens when the
process can’t (or shouldn’t) run an instruction
* Some exceptions are routine
— End-of-file, arithmetic overflow, conversion error

— We should check for these after each operation

* Some exceptions occur unpredictably
— Segmentation fault (e.g., dereferencing NULL)

— User abort (*C), hang-up, power-failure
\ — These are asynchronous exceptions /

CS 111 Lecture 3
Summer 2017 Page 46

/ Asynchronous Exceptions \

* Inherently unpredictable

* Programs can’t check for them, since no way of
knowing when and if they happen

* Some languages support try/catch operations

* Hardware and OS support traps

— Which catch these exceptions and transfer control to
the OS

* Operating systems also use these for system calls
— Requests from a program for OS services

\ /

CS 111 Lecture 3
Summer 2017 Page 47

/ Using Traps for System Calls \

* Made possible at processor design time, not OS design time

* Reserve one privileged instruction for system calls
— Most computers specifically define such instructions

* Define system call linkage conventions
— Call: r0 = system call number, rl points to arguments
— Return: r0 = return code, condition code indicates success/failure

* Prepare arguments for the desired system call
* Execute the designated system call instruction
* Which causes an exception that traps to the OS

* OS recognizes & performs requested operation
— Entering the OS through a point called a gate

\° Returns to instruction after the system call /

CS 111 Lecture 3
Summer 2017 Page 48

-

System Call Trap Gates \

Application Program

\ system call dispatch

CS 111

table

instr; instr; instr; trap; instr; instr;
A user mode
supervisor mode
PS/PC [¢—
TRAP vector table return to
1st level trap handler user mode

This specifies
the trap gate |

Lecture 3

Summer 2017

Page 49

/ Trap Handling \

* Partially hardware, partially software

* Hardware portion of trap handling
— Trap cause an index into trap vector table for PC/PS
— Load new processor status word, switch to supervisor mode

— Push PC/PS of program that caused trap onto stack
— Load PC (with address of 1st level handler)

* Software portion of trap handling
— 1t level handler pushes all other registers
— 15t level handler gathers info, selects 2™ level handler

— 2nd Jevel handler actually deals with the problem
\ « Handle the event, kill the process, return ... /

CS 111 Lecture 3
Summer 2017 Page 50

/ Traps and the Stack \

* The code to handle a trap 1s just code
— Although run 1n privileged mode

* [t requires a stack to run
— Since i1t might call many routines

* How does the OS provide 1t with the necessary
stack?

* While not losing track of what the user process
was doing?

CS 111 Lecture 3
Summer 2017 Page 51

@acking and Unstacking a System Cam

User-mode Stack

\

CS 111

\

direction
of growth

Supervisor-mode Stack

user mode
PC & PS

saved
user mode
registers

parameters
to system
call handler

return PC

Summer 2017

Lecture 3
Page 52

/ Returning to User-Mode \

* Return 1s opposite of interrupt/trap entry
— 2nd level handler returns to 1st level handler

— Ist level handler restores all registers from stack

— Use privileged return instruction to restore PC/PS
— Resume user-mode execution at next instruction

* Saved registers can be changed before return
— Change stacked user 10 to reflect return code
— Change stacked user PS to reflect success/failure

\ /

CS 111 Lecture 3
Summer 2017 Page 53

/ Asynchronous Events \

* Some things are worth waiting for
— When I read (), I want to wait for the data

* Other time waiting doesn’t make sense
— [want to do something else while waiting
— I have multiple operations outstanding
— Some events demand very prompt attention

* We need event completion call-backs
— This 1s a common programming paradigm
— Computers support interrupts (similar to traps)
— Commonly associated with I/O devices and timers

\ /

CS 111 Lecture 3
Summer 2017 Page 54

/ User-Mode Signal Handling \

* OS defines numerous types of signals
— Exceptions, operator actions, communication

* Processes can control their handling
— Ignore this signal (pretend 1t never happened)
— Designate a handler for this signal

— Default action (typically kill or coredump process)

* Analogous to hardware traps/interrupts
— But implemented by the operating system

\ — Delivered to user mode processes)

CS 111 Lecture 3
Summer 2017 Page 55

/ 'Managing Process State | \

* A shared responsibility

* The process itself takes care of its own stack
* And the contents of its memory

* The OS keeps track of resources that have
been allocated to the process

— Which memory

— Open files and devices

— Supervisor stack
\ — And many other things /

CS 111 Lecture 3
Summer 2017 Page 56

/ Blocked Processes \

* One important process state element 1s whether
a process 1s ready to run
— No point in trying to run it if it 1sn’t ready to run

* Why might it not be?

* Perhaps it’s waiting for I/O

* Or for some resource request to be satistied

* The OS keeps track of whether a process 1s
blocked

\ /

CS 111 Lecture 3
Summer 2017 Page 57

/ Blocking and Unblocking \
Processes

* Why do we block processes?
— Blocked/unblocked are merely notes to scheduler

— So the scheduler knows not to choose them

— And so other parts of OS know 1f they later need to
unblock

* Any part of OS can set block
remove them

— And a process can ask to be blocked itself
\ * Through a system call /

Better be sure
someone will
unblock you . . .

CS 111 Lecture 3
Summer 2017 Page 58

/ Who Handles Blocking?

\

CS 111

Summer 2017

— When process needs an unavailable resource

* Change process's scheduling state to “blocked”

e Call t
— When t]

* Usually happens 1n a resource manager

he scheduler and yield the CPU
e required resource becomes

availab!

C

* Change process's scheduling state to “ready”

* Notify scheduler that a change has occurred

\

Lecture 3

Page 59

/ Swapping Processes \

* Processes can only run when 1n main memory

— CPU can only execute instructions stored 1n that
memory

* Sometimes we move processes out of main
memory to secondary storage

— E.g., a disk drive
— Expecting that we’ll move them back later

* Usually because of resource shortages

\ — Particularly memory /

CS 111 Lecture 3
Summer 2017 Page 60

/ Why We Swap \

* To make best use of a limited amount of memory
— A process can only execute 1f it 1s In memory
— Max number of processes 1s limited by memory size
— If 1t 1sn't READY, it doesn't need to be in memory
— Swap it out and make room for some other process

* We don’t swap out all blocked processes
— Swapping 1s expensive

— And also expensive to bring them back

\ — Typically only done when resources are tight /

CS 111 Lecture 3
Summer 2017 Page 61

/ Basic Mechanics of Swapping \

* Process’ state 1s stored 1n parts of main
memory
* Copy them out to secondary storage
— If you’re lucky and careful, some don’t need to be
copied
* Alter the process descriptor to indicate what
you did

* Give the freed resources to another process

\ /

CS 111 Lecture 3
Summer 2017 Page 62

/ Swapping Back \

* When whatever blocked the process you swapped 1s
cleared, you can swap back

— Assuming there’s space

* Reallocate required memory and copy state back
from secondary storage

— Both stack and heap

* Unblock the process’ descriptor to make 1t eligible for
scheduling

* Ready swapped processes need not be brought back
\ immediately

.\, — But they won’t get any cycles till you do s

Summer 2017 Page 63

