
Lecture 13
Page 1

CS 111
Summer 2017

Operating System Principles:
File Systems

CS 111
Operating Systems

Peter Reiher

Lecture 13
Page 2

CS 111
Summer 2017

Outline

•  File systems:
– Why do we need them?
– Why are they challenging?

•  Basic elements of file system design
•  Designing file systems for disks
– Basic issues
– Free space, allocation, and deallocation

Lecture 13
Page 3

CS 111
Summer 2017

Introduction

•  Most systems need to store data persistently
– So it’s still there after reboot, or even power down

•  Typically a core piece of functionality for the
system
– Which is going to be used all the time

•  Even the operating system itself needs to be
stored this way

•  So we must store some data persistently

Lecture 13
Page 4

CS 111
Summer 2017

Our Persistent Data Options
•  Use raw storage blocks to store the data
– On a hard disk, flash drive, whatever
– Those make no sense to users
– Not even easy for OS developers to work with

•  Use a database to store the data
– Probably more structure (and possibly overhead)

than we need or can afford
•  Use a file system
– Some organized way of structuring persistent data
– Which makes sense to users and programmers

Lecture 13
Page 5

CS 111
Summer 2017

File Systems
•  Originally the computer equivalent of a physical

filing cabinet
•  Put related sets of data into individual containers
•  Put them all into an overall storage unit
•  Organized by some simple principle
–  E.g., alphabetically by title
–  Or chronologically by date

•  Goal is to provide:
–  Persistence
–  Ease of access
–  Good performance

Lecture 13
Page 6

CS 111
Summer 2017

The Basic File System Concept
•  Organize data into natural coherent units
– Like a paper, a spreadsheet, a message, a program

•  Store each unit as its own self-contained entity
– A file
– Store each file in a way allowing efficient access

•  Provide some simple, powerful organizing
principle for the collection of files
– Making it easy to find them
– And easy to organize them

Lecture 13
Page 7

CS 111
Summer 2017

File Systems and Hardware
•  File systems are typically stored on hardware

providing persistent memory
– Disks, tapes, flash memory, etc.

•  With the expectation that a file put in one
“place” will be there when we look again

•  Performance considerations will require us to
match the implementation to the hardware

•  But ideally, the same user-visible file system
should work on any reasonable hardware

Lecture 13
Page 8

CS 111
Summer 2017

What Hardware Do We Use?
•  Until recently, file systems were designed for

disks
•  Which required many optimizations based on

particular disk characteristics
– To minimize seek overhead
– To minimize rotational latency delays

•  Generally, the disk provided cheap persistent
storage at the cost of high latency
–  File system design had to hide as much of the latency

as possible

Lecture 13
Page 9

CS 111
Summer 2017

Disk vs SSD Performance
Cheeta	
(archival)	

Barracuda	
(high	perf)	

Extreme/Pro	
(SSD)	

RPM	 7,000	 15,000	 n/a	

average	latency	 4.3ms	 2ms	 n/a	

average	seek	 9ms	 4ms	 n/a	

transfer	speed	 105MB/s	 125MB/s	 540MB/s	

sequenCal	4KB	read	 39us	 33us	 10us	

sequenCal	4KB	write	 39us	 33us	 11us	

random	4KB	read	 13.2ms	 6ms	 10us	

random	4KB	write	 13.2ms	 6ms	 11us	

Lecture 13
Page 10

CS 111
Summer 2017

Random Access: Game Over

•  Hard disks will still be cheaper and offer more capacity
•  But not by that much
•  And SSDs have all the other advantages

Lecture 13
Page 11

CS 111
Summer 2017

Data and Metadata
•  File systems deal with two kinds of information
•  Data – the information that the file is actually

supposed to store
–  E.g., the instructions of the program or the words in the

letter

•  Metadata – Information about the information the file
stores
–  E.g., how many bytes are there and when was it created
–  Sometimes called attributes

•  Ultimately, both data and metadata must be stored
persistently
–  And usually on the same piece of hardware

Lecture 13
Page 12

CS 111
Summer 2017

Bridging the Gap
We want something like . . . But we’ve got something

like . . .

Which is even worse when we
look inside:

Or . . .

Or at least

How do we get from the hardware to
the useful abstraction?

Lecture 13
Page 13

CS 111
Summer 2017

A Further Wrinkle
•  We want our file system to be agnostic to the storage

medium
•  Same program should access the file system the same

way, regardless of medium
–  Otherwise it’s hard to write portable programs

•  Should work the same for disks of different types
•  Or if we use a RAID instead of one disk
•  Or if we use flash instead of disks
•  Or if even we don’t use persistent memory at all
–  E.g., RAM file systems

Lecture 13
Page 14

CS 111
Summer 2017

Desirable File System Properties
•  What are we looking for from our file system?
–  Persistence
–  Easy use model

•  For accessing one file
•  For organizing collections of files

–  Flexibility
•  No limit on number of files
•  No limit on file size, type, contents

–  Portability across hardware device types
–  Performance
–  Reliability
–  Suitable security

Lecture 13
Page 15

CS 111
Summer 2017

The Performance Issue
•  How fast does our file system need to be?
•  Ideally, as fast as everything else
–  Like CPU, memory, and the bus
–  So it doesn’t provide a bottleneck

•  But these other devices operate today at nanosecond
speeds

•  Disk drives operate at millisecond speeds
–  Flash drives are faster, but not processor or RAM speeds

•  Suggesting we’ll need to do some serious work to
hide the mismatch

Lecture 13
Page 16

CS 111
Summer 2017

The Reliability Issue
•  Persistence implies reliability
•  We want our files to be there when we check,

no matter what
•  Not just on a good day
•  So our file systems must be free of errors
– Hardware or software

•  Remember our discussion of concurrency, race
conditions, etc.?
– Might we have some challenges here?

Lecture 13
Page 17

CS 111
Summer 2017

“Suitable” Security

•  What does that mean?
•  Whoever owns the data should be able to

control who accesses it
– Using some well-defined access control model and

mechanism
•  With strong guarantees that the system will

enforce his desired controls
–  Implying we’ll apply complete mediation
– To the extent performance allows

Lecture 13
Page 18

CS 111
Summer 2017

Basics of File System Design

•  Where do file systems fit in the OS?
•  File control data structures

Lecture 13
Page 19

CS 111
Summer 2017

A common
internal
interface
for file
systems

The file
system
API

File Systems and the OS

system calls

U
N

IX
 FS

D
O

S FS

C
D

 FS

Device independent block I/O

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

EX
T3 FS

virtual file system integration layer

directory
operations

file
I/O

device
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

Some
example
file systems

Non-file
system
services
that use the
same API

file container
operations

Lecture 13
Page 20

CS 111
Summer 2017

File Systems and Layered
Abstractions

•  At the top, apps think they are accessing files
•  At the bottom, various block devices are

reading and writing blocks
•  There are multiple layers of abstraction in

between
•  Why?
•  Why not translate directly from application file

operations to devices’ block operations?

Lecture 13
Page 21

CS 111
Summer 2017

The File System API

system calls

U
N

IX
 FS

D
O

S FS

C
D

 FS

Device independent block I/O

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

EX
T3 FS

virtual file system integration layer

file container
operations

directory
operations

file
I/O

device
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

Lecture 13
Page 22

CS 111
Summer 2017

The File System API
•  Highly desirable to provide a single API to

programmers and users for all files
•  Regardless of how the file system underneath is

actually implemented
•  A requirement if one wants program portability
–  Very bad if a program won’t work because there’s a

different file system underneath

•  Three categories of system calls here
1.  File container operations
2.  Directory operations
3.  File I/O operations

Lecture 13
Page 23

CS 111
Summer 2017

File Container Operations
•  Standard file management system calls
– Manipulate files as objects
– These operations ignore the contents of the file

•  Implemented with standard file system
methods
– Get/set attributes, ownership, protection ...
– Create/destroy files and directories
– Create/destroy links

•  Real work happens in file system
implementation

Lecture 13
Page 24

CS 111
Summer 2017

Directory Operations
•  Directories provide the organization of a file

system
– Typically hierarchical
– Sometimes with some extra wrinkles

•  At the core, directories translate a name to a
lower-level file pointer

•  Operations tend to be related to that
– Find a file by name
– Create new name/file mapping
– List a set of known names

Lecture 13
Page 25

CS 111
Summer 2017

File I/O Operations

•  Open – use name to set up an open instance
•  Read data from file and write data to file
–  Implemented using logical block fetches
–  Copy data between user space and file buffer
–  Request file system to write back block when done

•  Seek
–  Change logical offset associated with open instance

•  Map file into address space
–  File block buffers are just pages of physical memory
–  Map into address space, page it to and from file system

Lecture 13
Page 26

CS 111
Summer 2017

device
I/O

The Virtual File System Layer

system calls

U
N

IX
 FS

D
O

S FS

C
D

 FS

Device independent block I/O

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

EX
T3 FS

virtual file system integration layer

file container
operations

directory
operations

file
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

Lecture 13
Page 27

CS 111
Summer 2017

The Virtual File System
(VFS) Layer

•  Federation layer to generalize file systems
–  Permits rest of OS to treat all file systems as the same
–  Support dynamic addition of new file systems

•  Plug-in interface or file system implementations
–  DOS FAT, Unix, EXT3, ISO 9660, network, etc.
–  Each file system implemented by a plug-in module
–  All implement same basic methods

•  Create, delete, open, close, link, unlink,
•  Get/put block, get/set attributes, read directory, etc.

•  Implementation is hidden from higher level clients
–  All clients see are the standard methods and properties

Lecture 13
Page 28

CS 111
Summer 2017

device
I/O

The File System Layer

system calls

Device independent block I/O

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

virtual file system integration layer

file container
operations

directory
operations

file
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

U
N

IX
 FS

D
O

S FS

C
D

 FS

EX
T3 FS

Lecture 13
Page 29

CS 111
Summer 2017

The File Systems Layer
•  Desirable to support multiple different file systems
•  All implemented on top of block I/O
–  Should be independent of underlying devices

•  All file systems perform same basic functions
–  Map names to files
–  Map <file, offset> into <device, block>
–  Manage free space and allocate it to files
–  Create and destroy files
–  Get and set file attributes
–  Manipulate the file name space

Lecture 13
Page 30

CS 111
Summer 2017

Why Multiple File Systems?
•  Why not instead choose one “good” one?
•  There may be multiple storage devices
–  E.g., hard disk and flash drive
–  They might benefit from very different file systems

•  Different file systems provide different services,
despite the same interface
–  Differing reliability guarantees
–  Differing performance
–  Read-only vs. read/write

•  Different file systems used for different purposes
–  E.g., a temporary file system

Lecture 13
Page 31

CS 111
Summer 2017

device
I/O

Device Independent Block I/O
Layer

system calls

CD
drivers

disk
drivers

diskette
drivers

device driver interfaces (disk-ddi)
flash

drivers

virtual file system integration layer

file container
operations

directory
operations

file
I/O

socket
I/O

… …

App 1 App 2 App 3 App 4

U
N

IX
 FS

D
O

S FS

C
D

 FS

EX
T3 FS

Device independent block I/O

Lecture 13
Page 32

CS 111
Summer 2017

File Systems and Block I/O
Devices

•  File systems typically sit on a general block I/O layer
•  A generalizing abstraction – make all disks look same
•  Implements standard operations on each block device
–  Asynchronous read (physical block #, buffer, bytecount)
–  Asynchronous write (physical block #, buffer, bytecount)

•  Map logical block numbers to device addresses
–  E.g., logical block number to <cylinder, head, sector>

•  Encapsulate all the particulars of device support
–  I/O scheduling, initiation, completion, error handlings
–  Size and alignment limitations

Lecture 13
Page 33

CS 111
Summer 2017

Why Device Independent
Block I/O?

•  A better abstraction than generic disks
•  Allows unified LRU buffer cache for disk data
–  Hold frequently used data until it is needed again
–  Hold pre-fetched read-ahead data until it is requested

•  Provides buffers for data re-blocking
–  Adapting file system block size to device block size
–  Adapting file system block size to user request sizes

•  Handles automatic buffer management
–  Allocation, deallocation
–  Automatic write-back of changed buffers

Lecture 13
Page 34

CS 111
Summer 2017

Why Do We Need That Cache?

•  File access exhibits a high degree of reference
locality at multiple levels:
– Users often read and write a single block in small

operations, reusing that block
– Users read and write the same files over and over
– Users often open files from the same directory
– OS regularly consults the same meta-data blocks

•  Having common cache eliminates many disk
accesses, which are slow

Lecture 13
Page 35

CS 111
Summer 2017

File Systems Control Structures

•  A file is a named collection of information
•  Primary roles of file system:
–  To store and retrieve data
–  To manage the media/space where data is stored

•  Typical operations:
–  Where is the first block of this file?
–  Where is the next block of this file?
–  Where is block 35 of this file?
–  Allocate a new block to the end of this file
–  Free all blocks associated with this file

Lecture 13
Page 36

CS 111
Summer 2017

Finding Data On Disks
•  Essentially a question of how you managed the

space on your disk
•  Space management on disk is complex
– There are millions of blocks and thousands of files
– Files are continuously created and destroyed
– Files can be extended after they have been written
– Data placement on disk has performance effects
– Poor management leads to poor performance

•  Must track the space assigned to each file
– On-disk, master data structure for each file

Lecture 13
Page 37

CS 111
Summer 2017

On-Disk File Control Structures
•  On-disk description of important attributes of a file
–  Particularly where its data is located

•  Virtually all file systems have such data structures
–  Different implementations, performance & abilities
–  Implementation can have profound effects on what the file

system can do (well or at all)
•  A core design element of a file system
•  Paired with some kind of in-memory representation

of the same information

Lecture 13
Page 38

CS 111
Summer 2017

The Basic File Control
Structure Problem

•  A file typically consists of multiple data blocks
•  The control structure must be able to find them
•  Preferably able to find any of them quickly
–  I.e., shouldn’t need to read the entire file to find a

block near the end
•  Blocks can be changed
•  New data can be added to the file
– Or old data deleted

•  Files can be sparsely populated

Lecture 13
Page 39

CS 111
Summer 2017

The In-Memory Representation
•  There is an on-disk structure pointing to disk

blocks (and holding other information)
•  When file is opened, an in-memory structure is

created
•  Not an exact copy of the disk version
– The disk version points to disk blocks
– The in-memory version points to RAM pages

•  Or indicates that the block isn’t in memory

– Also keeps track of which blocks are dirty and
which aren’t

Lecture 13
Page 40

CS 111
Summer 2017

In-Memory Structures and
Processes

•  What if multiple processes have a given file
open?

•  Should they share one control structure or have
one each?

•  In-memory structures typically contain a
cursor pointer
–  Indicating how far into the file data has been read/

written
•  Sounds like that should be per-process . . .

Lecture 13
Page 41

CS 111
Summer 2017

Per-Process or Not?
•  What if cooperating processes are working

with the same file?
– They might want to share a cursor

•  And how can we know when all processes are
finished with an open file?
– So we can reclaim space used for its in-memory

descriptor
•  Implies a two-level solution

1.  A structure shared by all
2.  A structure shared by cooperating processes

Lecture 13
Page 42

CS 111
Summer 2017

The Unix Approach

On-disk file
descriptors

(UNIX struct
dinode)

Open-file references
(UNIX user file

descriptor)
in process descriptor

I-node I-node I-node I-node I-node

I-node I-node I-node I-node

offset
options
I-node ptr

stdout
stderr

stdin
stdout
stderr

stdin
stdout
stderr

stdin

offset
options
I-node ptr

offset
options
I-node ptr

offset
options
I-node ptr

offset
options
I-node ptr

In-memory file descriptors
(UNIX struct inode)

Open file
instance

descriptors

Two processes can
share one descriptor

Two descriptors can
share one inode

Lecture 13
Page 43

CS 111
Summer 2017

File System Structure

•  How do I organize a disk into a file system?
– Linked extents

•  The DOS FAT file system
– File index blocks

•  Unix System V file system

Lecture 13
Page 44

CS 111
Summer 2017

Basics of File System Structure
•  Most file systems live on disks
•  Disk volumes are divided into fixed-sized blocks
–  Many sizes are used: 512, 1024, 2048, 4096, 8192 ...

•  Most blocks will be used to store user data
•  Some will be used to store organizing “meta-data”
–  Description of the file system (e.g., layout and state)
–  File control blocks to describe individual files
–  Lists of free blocks (not yet allocated to any file)

•  All operating systems have such data structures
–  Different OSes and file systems have very different goals
–  These result in very different implementations

Lecture 13
Page 45

CS 111
Summer 2017

The Boot Block

•  The 0th block of a disk is usually reserved for
the boot block
– Code allowing the machine to boot an OS

•  Not usually under the control of a file system
–  It typically ignores the boot block entirely

•  Not all disks are bootable
– But the 0th block is usually reserved, “just in case”

•  So file systems start work at block 1

Lecture 13
Page 46

CS 111
Summer 2017

Managing Allocated Space
•  A core activity for a file system, with various choices
•  What if we give each file same amount of space?
–  Internal fragmentation ... just like memory

•  What if we allocate just as much as file needs?
–  External fragmentation, compaction ... just like memory

•  Perhaps we should allocate space in “pages”
–  How many chunks can a file contain?

•  The file control data structure determines this
–  It only has room for so many pointers, then file is “full”

•  So how do we want to organize the space in a file?

Lecture 13
Page 47

CS 111
Summer 2017

Linked Extents

•  A simple answer
•  File control block contains exactly one pointer
–  To the first chunk of the file
–  Each chunk contains a pointer to the next chunk
–  Allows us to add arbitrarily many chunks to each file

•  Pointers can be in the chunks themselves
–  This takes away a little of every chunk
–  To find chunk N, you have to read the first N-1 chunks

•  Pointers can be in auxiliary “chunk linkage” table
–  Faster searches, especially if table kept in memory

Lecture 13
Page 48

CS 111
Summer 2017

The DOS File System

boot block

BIOS parameter
 block (BPB)

File
Allocation

Table
(FAT)

cluster #1
(root directory)

cluster #2
…

block 0512

block 1512

block 2512

Cluster size and FAT length
are specified in the BPB

Data clusters begin
immediately after the end
of the FAT

Root directory begins in
the first data cluster

Lecture 13
Page 49

CS 111
Summer 2017

DOS File System Overview

•  DOS file systems divide space into “clusters”
–  Cluster size (multiple of 512) fixed for each file system
–  Clusters are numbered 1 though N

•  File control structure points to first cluster of a file
•  File Allocation Table (FAT), one entry per cluster
–  Contains the number of the next cluster in file
–  A 0 entry means that the cluster is not allocated
–  A -1 entry means “end of file”

•  File system is sometimes called “FAT,” after the name
of this key data structure

Lecture 13
Page 50

CS 111
Summer 2017

DOS FAT Clusters
directory entry

name: myfile.txt

length: 1500 bytes

1st cluster: 3

File Allocation Table

x 1

2

3

4

5

6

x

0

5

-1

4

cluster #3

cluster #4

cluster #5

first 512 bytes of file

second 512 bytes of file

last 476 bytes of file

Each FAT entry
corresponds to a
cluster, and
contains the
number of the
next cluster.

-1 = End of File

0 = free cluster

Lecture 13
Page 51

CS 111
Summer 2017

DOS File System Characteristics
•  To find a particular block of a file
–  Get number of first cluster from directory entry
–  Follow chain of pointers through File Allocation Table

•  Entire File Allocation Table is kept in memory
–  No disk I/O is required to find a cluster
–  For very large files the search can still be long

•  No support for “sparse” files
–  Of a file has a block n, it must have all blocks < n

•  Width of FAT determines max file system size
–  How many bits describe a cluster address?
–  Originally 8 bits, eventually expanded to 32

Lecture 13
Page 52

CS 111
Summer 2017

File Index Blocks

•  A different way to keep track of where a file’s
data blocks are on the disk

•  A file control block points to all blocks in file
– Very fast access to any desired block
– But how many pointers can the file control block

hold?
•  File control block could point at extent

descriptors
– But this still gives us a fixed number of extents

Lecture 13
Page 53

CS 111
Summer 2017

Hierarchically Structured File
Index Blocks

•  To solve the problem of file size being limited
by entries in file index block

•  The basic file index block points to blocks
•  Some of those contain pointers which in turn

point to blocks
•  Can point to many extents, but still a limit to

how many
– But that limit might be a very large number
– Has potential to adapt to wide range of file sizes

Lecture 13
Page 54

CS 111
Summer 2017

Unix System V File System

Boot block

Super
block

I-nodes

Available
blocks

Block 0

Block 1

Block 2

Block size and number of I-nodes are
specified in super block

I-node #1 (traditionally) describes the
root directory

Data blocks begin immediately after the
end of the I-nodes.

Lecture 13
Page 55

CS 111
Summer 2017

Unix Inodes and Block Pointers

1st

2nd

10th

11th

1034th

1035th

...
...
...

2058th

2059th ...
...

Indirect blocks Data blocks

1st

Block pointers
(in I-node)

Triple-indirect Double-indirect

...

...

2nd

10th
11th
12th
13th

3rd
4th
5th
6th
7th
8th
9th

...

Lecture 13
Page 56

CS 111
Summer 2017

Why Is This a Good Idea?
•  The UNIX pointer structure seems ad hoc and

complicated
•  Why not something simpler?
–  E.g., all block pointers are triple indirect

•  File sizes are not random
–  The majority of files are only a few thousand bytes long

•  Unix approach allows us to access up to 40Kbytes
(assuming 4K blocks) without extra I/Os
– Remember, the double and triple indirect blocks

must themselves be fetched off disk

Lecture 13
Page 57

CS 111
Summer 2017

How Big a File Can Unix Handle?
•  The on-disk inode contains 13 block pointers

–  First 10 point to first 10 blocks of file
–  11th points to an indirect block (which contains pointers to 1024

blocks)
–  12th points to a double indirect block (pointing to 1024 indirect blocks)
–  13th points to a triple indirect block (pointing to 1024 double indirect

blocks)

•  Assuming 4k bytes per block and 4 bytes per pointer
–  10 direct blocks = 10 * 4K bytes = 40K bytes
–  Indirect block = 1K * 4K = 4M bytes
–  Double indirect = 1K * 4M = 4G bytes
–  Triple indirect = 1K * 4G = 4T bytes
–  At the time system was designed, that seemed impossibly large
–  But . . .

Lecture 13
Page 58

CS 111
Summer 2017

Unix Inode Performance Issues

•  The inode is in memory whenever file is open
•  So the first ten blocks can be found with no extra I/O
•  After that, we must read indirect blocks
–  The real pointers are in the indirect blocks
–  Sequential file processing will keep referencing it
–  Block I/O will keep it in the buffer cache

•  1-3 extra I/O operations per thousand pages
–  Any block can be found with 3 or fewer reads

•  Index blocks can support “sparse” files
–  Not unlike page tables for sparse address spaces

