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Outline 

•  Introduction to  performance measurement 
•  Issues in performance measurement 
•  A performance measurement example 
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Performance Measurement 

•  Performance is almost always a key issue in software  
•  Especially in system software like operating systems 
•  Everyone wants the best possible performance 

–  But achieving it is not always easy 
–  And sometimes involves trading off other desirable 

qualities 

•  How can we know what performance we’ve 
achieved? 
–  Especially given that we must do some work to learn that 
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Performance Analysis Goals 
•  Quantify the system performance 

– For competitive positioning 
– To assess the efficacy of previous work 
– To identify future opportunities for improvement 

•  Understand the system performance 
– What factors are limiting our current performance 
– What choices make us subject to these limitations 

•  Predict system performance 
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An Overarching Goal 

•  This applies to any performance analysis you 
ever do: 

• We seek wisdom, not numbers! 

•  The point is never to produce a spreadsheet 
full of data or a pretty graph 

•  The point is to understand critical performance 
issues 
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Why Are You Measuring 
Performance? 

•  Sometimes to understand your system’s 
behavior 

•  Sometimes to compare to other systems 
•  Sometimes to investigate alternatives 

–  In how you can configure or manage your system 
•  Sometimes to determine how your system will 

(or won’t) scale up 
•  Sometimes to find the cause of performance 

problems 
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Why Is It Hard? 
•  Components operate in a complex system 

– Many steps/components in every process 
– Ongoing competition for all resources 
– Difficulty of making clear/simple assertions 
–  Systems may be too large to replicate in laboratory 
– Or have other non-reproduceable properties 

•  Lack of clear/rigorous requirements 
–  Performance is highly dependent on specifics 

•  What we measure, how we measure it 
– Ask the wrong question, get the wrong answer 
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Performance Analysis 

•  Can you characterize latency and throughput? 
– Of the system? 
– Of each major component? 

•  Can you account for all the end-to-end time? 
–  Processing, transmission, queuing delays 

•  Can you explain how these vary with load? 
•  Are there any significant unexplained results? 
•  Can you predict the performance of a system? 

– As a function of its configuration/parameters 
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Design For Performance 
Measurement 

•  Successful systems will need to have their 
performance measured 

•  Becoming a successful system will generally 
require that you improve its performance 
– Which implies measuring it 

•  It’s best to assume your system will need to be 
measured 

•  So put some forethought into making it easy 
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How To Design for Performance 
•  Establish performance requirements early 
•  Anticipate bottlenecks 

– Frequent operations (interrupts, copies, updates) 

– Limiting resources (network/disk bandwidth) 
– Traffic concentration points (resource locks) 

•  Design to minimize problems 
– Eliminate, reduce use, add resources 

•  Include performance measurement in design 
– What will be measured, and how 
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Issues in Performance 
Measurement 

•  Performance measurement terminology 
•  Types of performance problems 
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Some Important Measurement 
Terminology 

•  Metrics 
–  Indices of tendency and dispersion 

•  Factors and levels 
•  Workloads 
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Metrics 
•  A metric is a measurable quantity 

– Measurable: we can observe it in situations of 
interest 

– Quantifiable:  time/rate, size/capacity, 
effectiveness/reliability … 

•  A metric’s value should describe an important 
phenomenon in a system 
– Relevant to the questions we are addressing 

•  Much of performance evaluation is about 
properly evaluating metrics 
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Common Types of System Metrics 

•  Duration/ response time 
– How long did the program run? 

•  Processing rate 
– How many web requests handled per second? 

•  Resource consumption 
– How much disk is currently used? 

•  Reliability 
– How many messages were delivered without error? 
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Choosing Your Metrics 

•  Core question in any performance study 
•  Pick metrics based on: 

– Completeness: will my metrics cover everything I 
need to know? 

–  (Non-)redundancy: does each metric provide 
information not provided by others? 

– Variability: will this metric show any meaningful 
variation? 

– Feasibility: can I accurately measure this metric? 
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Variability in Metrics 

•  Performance of a system is often complex 
•  Perhaps not fully explainable 
•  One result is variability in many metric 

readings 
– You measure it twice/thrice/more and get different 

results every time 
•  Good performance measurement takes this into 

account 
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An Example 

•  11 pings from UCLA to MIT in one night 
•  Each took a different amount of time 

(expressed in msec): 

•  How do we understand what this says about 
how long a packet takes to get from LA to 
Boston and back? 

149.1 28.1  28.1  28.5  28.6  28.2 
28.4  187.8 74.3  46.1  155.8 
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Where Does Variation Come From? 
•  Inconsistent test conditions 

– Varying platforms, operations, injection rates 
– Background activity on test platform 
–  Start-up, accumulation, cache effects 

•  Flawed measurement choices/techniques 
– Measurement artefact, sampling errors 
– Measuring indirect/aggregate effects 

•  Non-deterministic factors 
– Queuing of processes, network and disk I/O 
– Where (on disk) files are allocated 
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Tendency and Dispersion 

•  Given variability in metric readings, how do 
we understand what they tell us? 

•  Tendency  
– What is common or characteristic of all readings? 

•  Dispersion  
– How much do the various measurements of the 

metric vary? 
•  Good performance experiments capture and 

report both 
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Indices of Tendency 

•  What can we compactly say that sheds light on 
all of the values observed? 

•  Some example indices of tendency: 
– Mean ... the average of all samples 
– Median ... the value of the middle sample 
– Mode ... the most commonly occurring value 

•  Each of these tells us something different, so 
which we use depends on our goals 
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Applied to Our Example Ping Data 

•  Mean:  71.2 
•  Median: 28.6 
•  Mode:  28.1 
•  Which of these best expresses the delay we 

saw? 
– Depends on what you care about 

149.1  28.1  28.1  28.5  28.6  28.2 
28.4  187.8  74.3  46.1  155.8 
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Indices of Dispersion 
•  Compact descriptions of how much variation we 

observed in our measurements 
–  Among the values of particular metrics under supposedly 

identical conditions 

•  Some examples: 
–  Range – the high and low values observed 
–  Standard deviation – statistical measure of common 

deviations from a mean 
–  Coefficient of variance – ratio of standard deviation to 

mean 

•  Again, choose the index that describes what’s 
important for the goal under examination 
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Applied to Our Ping Data Example 

•  Range: 28.1,187.8 
•  Standard deviation: 62.0 
•  Coefficient of variation: .87 

149.1  28.1  28.1  28.5  28.6  28.2 
28.4  187.8  74.3  46.1  155.8 
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Capturing Variation 

•  Generally requires repetition of the same 
experiment 

•  Ideally, sufficient repetitions to capture all 
likely outcomes 
– How do you know how many repetitions that is? 
– You don’t 

•  Design your performance measurements 
bearing this in mind 
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So What Does Our Sample Data 
Actually Mean? 

•  We know there is a minimum possible delay 
between UCLA and MIT 
– Data suggests it might be about 28.1 msec, the 

bottom of the range 
•  There are a bunch of values close to that 

– Median is 28.6, not far off low measurement 
•  But our mean is much higher 

– So there are much larger delays in some cases 

•  Stdev is much larger than the mean 
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What To Conclude? 
•  Often our messages will arrive quickly 

– Can we keep up when they do? 

•  But sometimes they will take quite a while 
– Does that cause problems for our desired 

behavior? 
•  Will our system be tolerant of fairly frequent 

long delays? 
– Will we waste a lot of time waiting for messages? 
– Should we try to find ways to use that time? 
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Meaningful Measurements 
•  Measure under controlled conditions 

– On a specified platform 
– Under a controlled and calibrated load 
– Removing as many extraneous external influences as 

possible 
•  Measure the right things 

– Direct measurements of key characteristics 
•  Ensure quality of results 

– Competing measurements we can cross-compare 
– Measure/correct for artifacts 
– Quantify repeatability/variability of results 
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Factors and Levels 

•  Sometimes we only want to measure one thing 
•  More commonly, we are interested in several 

alternatives 
– What if I doubled the memory? 
– What if work came in twice as fast? 
– What if I used a different file system? 

•  Such controlled variations for comparative 
purposes are called factors 
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Factors in Experiments 

•  Choose factors related to your experiment 
goals 

•  If you care about web server scaling, factors 
probably related to amount of work offered 

•  If you want to know which file system works 
best for you, factor is likely to be different file 
systems 

•  If you’re deciding how to partition a disk, 
factor is likely to be different partitionings 
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Levels 

•  Factors vary (by definition) 
•  Levels describe which values you test for each 

factor 
•  Levels can thus be numerical 

– Number of web requests applied per second 
– Amount of memory devoted to I/O buffers 

•  Or they can be categorical 
– Btrfs vs. Ext3 vs. XFS 
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Choosing Factors and Levels 
•  Your experiment should look at all vital factors 
•  Each factor should be examined at important 

levels 
•  But  . . . 
•  The effort involved in the experiment is related 

to (number of factors) X (number of levels) 
•  If you’re not careful, this can cause your effort 

to explode 
– Especially if you repeat runs to capture variation 
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Measurement Workloads 
•  Most measurement programs require the use of 

a workload 
•  Some kind of work applied to the system you 

are testing 
– Preferably similar to the work you care about 

•  Can be of several different forms 
– Simulated workloads 
– Replayed trace 
– Live workload 
– Standard benchmarks 
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Simulated Work Loads 
•  Artificial load generation 

– On-demand generation of a specified load 
•  Strengths 

– Controllable operation rates, parameters, mixes 
–  Scalable to produce arbitrarily large loads 
– Can collect excellent performance data 

•  Weaknesses 
– Random traffic is not a real usage scenario 
–  Simulation may not create all realistic situations 
– Wrong parameter choices yield unrealistic loads 



Lecture 11 
Page 34 

CS 111 
Summer 2017  

Replayed Workloads 
•  Captured operations from real systems 
•  Strengths 

– Represent real usage scenarios 
– Can be analyzed and replayed over and over 

•  Weakness 
– Often hard to obtain 
– Not necessarily scalable 

•  Multiple instances not equivalent to more users 
– Represent a limited set of possible behaviors 
– Limited ability to exercise little-used features 
– They are kept around forever, and become stale 
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Testing Under Live Loads 

•  Instrumented systems actually serving clients 
•  Strengths 

– Real combinations of real scenarios 
– Measured against realistic background loads 
– Enables collection of data on real usage 

•  Weakness 
– Requires good performance and reliability 
– Potentially limited testing opportunities 
– Load cannot be repeated or scaled on demand 
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Standard Benchmarks 
•  Carefully crafted/reviewed simulators 

–  Possibly derived from real workloads 
•  Strengths 

–  Heavily reviewed by developers and customers 
–  Believed to be representative of real usage 
–  Standardized and widely available 
–  Well maintained (bugs, currency, improvements) 
–  Allows comparison of competing products 

•  Weakness 
–  Inertia 
–  Often used where they are not applicable 
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Types of Performance Problems 

•  Non-scalable solutions 
– Cost per operation becomes prohibitive at scale 
– Worse-than-linear overheads and algorithms 
– Queuing delays associated with high utilization 

•  Bottlenecks 
– One component that limits system throughput 

•  Accumulated costs 
– Layers of calls, data copies, message exchanges 
– Redundant or unnecessary work 
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Dealing With Performance 
Problems 

•  A lot like finding and fixing a bug 
–  Formulate a hypothesis 
– Gather data to verify your hypothesis 
– Be sure you understand underlying problem 
– Review proposed solutions 

•  For effectiveness 
•  For potential side effects 

– Make simple changes, one at a time 
– Re-measure to confirm effectiveness of each 

•  Only harder 
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Common Measurement Mistakes 

•  Measuring time but not utilization 
– Everything is fast on a lightly loaded system 

•  Capturing averages rather than distributions 
– Outliers are usually interesting 

•  Ignoring start-up, accumulation, cache effects 
– Not measuring what we thought 

•  Ignoring instrumentation artefacts 
– They may greatly distort both times and loads 



Lecture 11 
Page 40 

CS 111 
Summer 2017  

Averages Don’t Tell the Story 
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Handling Cache and Start-up Effects 

•  Cached results may accelerate some runs 
! Insert random requests that are unlikely to be in cache 
! Overwhelm cache with new data between tests 
! Disable or bypass cache entirely 

•  Start-up costs distort total cost of computation 
! Do all start-up ops prior to starting actual test 
! Long test runs to amortize start-up effects 
! Measure and subtract start-up costs 

•  System performance may degrade with age 
! Reestablish base condition for each test 



Lecture 11 
Page 42 

CS 111 
Summer 2017  

Measurement Artifacts 
•  Costs of instrumentation code 

–  Additional calls, instructions, cache misses 
–  Additional memory consumption and paging 

•  Costs of logging results 
–  May dwarf the costs of instrumentation 
–  Increased disk load/latency may slow everything 

! Minimize frequency and costs of measuring 
–  Don’t measure everything always 
–  Use counters/accumulators instead of individual records 
–  In-memory circular buffer, reduce before writing to files 
–  Probabilistic methods that don’t execute on each 

occurrence 
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Measurement Tools 

•  Execution profiling 
•  Event logs 
•  End-to-end testing 



Lecture 11 
Page 44 

CS 111 
Summer 2017  

Execution Profiling 
•  Automated measurement tools 

– Compiler options for routine call counting 
•  One counter per routine, incremented on entry 

– Statistical execution sampling 
•  Timer interrupts execution at regular intervals 
•  Increment a counter in table based on PC value 
•  May have configurable time/space granularity 

– Tools to extract data and prepare reports 
•  Number of calls, time per call, percentage of time 

•  Very useful in identifying the bottlenecks 
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Time Stamped Event Logs 

•  Application instrumentation technique 
•  Create a log buffer and routine 

– Call log routine for all interesting events 
– Routine stores time and event in a buffer 

•  Requires a cheap, very high resolution timer 

•  Extract buffer, archive data, mine the data 
– Time required for particular operations 
–  Frequency of operations 
– Combinations of operations 
– Also useful for post-mortem analysis 
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Time Stamping 

date time  event   sub-type 
----------  ------------  ------------  ------------- 
05/11/06 09:02:31.207408  packet_rcv  0x20749329 
05/11/06 09:02:31.209301  packet_route 0x20749329 
05/11/06 09:02:31.305208  wakeup   0x4D8C2042 
05/11/06 09:02:31.401106  read_packet  0x033C2DA0 
05/11/06 09:02:31.401223  read_packet  0x033C2DA0 
05/11/06 09:02:31.402110  sleep   0x4D8C2042 
05/11/06 09:02:31.614209  interrupt  0x00000003 
05/11/06 09:02:31.614209  dispatch  0x1B0324C0 
05/11/06 09:02:31.614210  intr_return  0x00000003 
05/11/06 09:02:31.652303  check_queue 0x2D3F2040 
05/11/06 09:02:31.652306  packet_rcv  0x20749329 

Dump of simple trace log 
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End-to-End Testing 

•  Client-side throughput/latency measurements 
– Elapsed time for X operations of type Y 
–  Instrumented clients to collect detailed timings 

•  Strengths 
– Easy tests to run, easy data to analyze 
– Results reflect client experienced performance 

•  Weaknesses 
– No information about why it took that long 
– No information about resources consumed 
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A Performance Measurement 
Example 

•  The Conquest file system 
– A research system built by one of my students 

•  Using persistent RAM to store many files 
– Which allowed him to get rid of a lot of OS code 

related to disk drives 
•  Stored some files on disk 

– Which we won’t worry about here 
•  Expectation was better performance than disk-

based file systems 
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How Did We Measure Conquest? 

•  What were the metrics? 
•  What were the factors? 
•  What was the workload? 
•  What were the results? 
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Choosing the Metrics 
•  Core claim was better speed 
•  So metrics should be speed-related 
•  Speeding up overall file system operations was 

the goal 
– Not speeding up an isolated operation 

•  So we needed metrics capturing that 
•  We used several “operations per second” 

metrics 
– Reads, writes, creates, also bandwidth 
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Choosing the Factors 

•  We were claiming better performance than 
other file systems 

•  So one factor was which file system we tested 
•  We also wanted to show scaling effects 

– Can it perform well for any size system? 
•  So another factor chosen was number of files 

in the file system 
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Choosing the Workload 

•  File systems are traditionally tested against 
standard benchmarks 

•  We tested against several of those 
•  One benchmark we used is called Postmark 
•  Postmark performs various “transactions” 

related to file operations 
•  The metric we’ll show is Postmark 

transactions per second 
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One Set of Results 
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Which Showed What? 
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Conquest (cfs) was even faster than ramfs 

And several other things 

Conquest scaled better than standard file systems 
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A Couple of Words on Presentation 
•  Always consider these questions: 
1.  To whom am I speaking? 

–  What do they know and not know? 
–  What are they prepared to absorb, and what not? 

2.  Why are they listening to me? 
–  How might this help them achieve their goals? 
–  How might this address their concerns? 

3.  What do I want them to leave with? 
–  What conclusions do I want them to draw? 
–  What actions do I want them to take? 
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Performance Presentation 

•  Highlight the key results 
– Answers to the basic questions 
–  Identified problems, risks and opportunities 

•  Why should they believe these results? 
– Methodology employed, relation to other results 
– Back-up details 

•  Not just numbers, but explanations 
– How do we now better understand the system 
– How does this affect our plans and intentions 


