
Lecture 11
Page 1

CS 111
Summer 2017

Operating System Principles:
Performance Measurement and

Analysis
CS 111

Operating Systems
Peter Reiher

Lecture 11
Page 2

CS 111
Summer 2017

Outline

•  Introduction to performance measurement
•  Issues in performance measurement
•  A performance measurement example

Lecture 11
Page 3

CS 111
Summer 2017

Performance Measurement

•  Performance is almost always a key issue in software
•  Especially in system software like operating systems
•  Everyone wants the best possible performance

–  But achieving it is not always easy
–  And sometimes involves trading off other desirable

qualities

•  How can we know what performance we’ve
achieved?
–  Especially given that we must do some work to learn that

Lecture 11
Page 4

CS 111
Summer 2017

Performance Analysis Goals
•  Quantify the system performance

– For competitive positioning
– To assess the efficacy of previous work
– To identify future opportunities for improvement

•  Understand the system performance
– What factors are limiting our current performance
– What choices make us subject to these limitations

•  Predict system performance

Lecture 11
Page 5

CS 111
Summer 2017

An Overarching Goal

•  This applies to any performance analysis you
ever do:

• We seek wisdom, not numbers!

•  The point is never to produce a spreadsheet
full of data or a pretty graph

•  The point is to understand critical performance
issues

Lecture 11
Page 6

CS 111
Summer 2017

Why Are You Measuring
Performance?

•  Sometimes to understand your system’s
behavior

•  Sometimes to compare to other systems
•  Sometimes to investigate alternatives

–  In how you can configure or manage your system
•  Sometimes to determine how your system will

(or won’t) scale up
•  Sometimes to find the cause of performance

problems

Lecture 11
Page 7

CS 111
Summer 2017

Why Is It Hard?
•  Components operate in a complex system

– Many steps/components in every process
– Ongoing competition for all resources
– Difficulty of making clear/simple assertions
–  Systems may be too large to replicate in laboratory
– Or have other non-reproduceable properties

•  Lack of clear/rigorous requirements
–  Performance is highly dependent on specifics

•  What we measure, how we measure it
– Ask the wrong question, get the wrong answer

Lecture 11
Page 8

CS 111
Summer 2017

Performance Analysis

•  Can you characterize latency and throughput?
– Of the system?
– Of each major component?

•  Can you account for all the end-to-end time?
–  Processing, transmission, queuing delays

•  Can you explain how these vary with load?
•  Are there any significant unexplained results?
•  Can you predict the performance of a system?

– As a function of its configuration/parameters

Lecture 11
Page 9

CS 111
Summer 2017

Design For Performance
Measurement

•  Successful systems will need to have their
performance measured

•  Becoming a successful system will generally
require that you improve its performance
– Which implies measuring it

•  It’s best to assume your system will need to be
measured

•  So put some forethought into making it easy

Lecture 11
Page 10

CS 111
Summer 2017

How To Design for Performance
•  Establish performance requirements early
•  Anticipate bottlenecks

– Frequent operations (interrupts, copies, updates)

– Limiting resources (network/disk bandwidth)
– Traffic concentration points (resource locks)

•  Design to minimize problems
– Eliminate, reduce use, add resources

•  Include performance measurement in design
– What will be measured, and how

Lecture 11
Page 11

CS 111
Summer 2017

Issues in Performance
Measurement

•  Performance measurement terminology
•  Types of performance problems

Lecture 11
Page 12

CS 111
Summer 2017

Some Important Measurement
Terminology

•  Metrics
–  Indices of tendency and dispersion

•  Factors and levels
•  Workloads

Lecture 11
Page 13

CS 111
Summer 2017

Metrics
•  A metric is a measurable quantity

– Measurable: we can observe it in situations of
interest

– Quantifiable: time/rate, size/capacity,
effectiveness/reliability …

•  A metric’s value should describe an important
phenomenon in a system
– Relevant to the questions we are addressing

•  Much of performance evaluation is about
properly evaluating metrics

Lecture 11
Page 14

CS 111
Summer 2017

Common Types of System Metrics

•  Duration/ response time
– How long did the program run?

•  Processing rate
– How many web requests handled per second?

•  Resource consumption
– How much disk is currently used?

•  Reliability
– How many messages were delivered without error?

Lecture 11
Page 15

CS 111
Summer 2017

Choosing Your Metrics

•  Core question in any performance study
•  Pick metrics based on:

– Completeness: will my metrics cover everything I
need to know?

–  (Non-)redundancy: does each metric provide
information not provided by others?

– Variability: will this metric show any meaningful
variation?

– Feasibility: can I accurately measure this metric?

Lecture 11
Page 16

CS 111
Summer 2017

Variability in Metrics

•  Performance of a system is often complex
•  Perhaps not fully explainable
•  One result is variability in many metric

readings
– You measure it twice/thrice/more and get different

results every time
•  Good performance measurement takes this into

account

Lecture 11
Page 17

CS 111
Summer 2017

An Example

•  11 pings from UCLA to MIT in one night
•  Each took a different amount of time

(expressed in msec):

•  How do we understand what this says about
how long a packet takes to get from LA to
Boston and back?

149.1 28.1 28.1 28.5 28.6 28.2
28.4 187.8 74.3 46.1 155.8

Lecture 11
Page 18

CS 111
Summer 2017

Where Does Variation Come From?
•  Inconsistent test conditions

– Varying platforms, operations, injection rates
– Background activity on test platform
–  Start-up, accumulation, cache effects

•  Flawed measurement choices/techniques
– Measurement artefact, sampling errors
– Measuring indirect/aggregate effects

•  Non-deterministic factors
– Queuing of processes, network and disk I/O
– Where (on disk) files are allocated

Lecture 11
Page 19

CS 111
Summer 2017

Tendency and Dispersion

•  Given variability in metric readings, how do
we understand what they tell us?

•  Tendency
– What is common or characteristic of all readings?

•  Dispersion
– How much do the various measurements of the

metric vary?
•  Good performance experiments capture and

report both

Lecture 11
Page 20

CS 111
Summer 2017

Indices of Tendency

•  What can we compactly say that sheds light on
all of the values observed?

•  Some example indices of tendency:
– Mean ... the average of all samples
– Median ... the value of the middle sample
– Mode ... the most commonly occurring value

•  Each of these tells us something different, so
which we use depends on our goals

Lecture 11
Page 21

CS 111
Summer 2017

Applied to Our Example Ping Data

•  Mean: 71.2
•  Median: 28.6
•  Mode: 28.1
•  Which of these best expresses the delay we

saw?
– Depends on what you care about

149.1 28.1 28.1 28.5 28.6 28.2
28.4 187.8 74.3 46.1 155.8

Lecture 11
Page 22

CS 111
Summer 2017

Indices of Dispersion
•  Compact descriptions of how much variation we

observed in our measurements
–  Among the values of particular metrics under supposedly

identical conditions

•  Some examples:
–  Range – the high and low values observed
–  Standard deviation – statistical measure of common

deviations from a mean
–  Coefficient of variance – ratio of standard deviation to

mean

•  Again, choose the index that describes what’s
important for the goal under examination

Lecture 11
Page 23

CS 111
Summer 2017

Applied to Our Ping Data Example

•  Range: 28.1,187.8
•  Standard deviation: 62.0
•  Coefficient of variation: .87

149.1 28.1 28.1 28.5 28.6 28.2
28.4 187.8 74.3 46.1 155.8

Lecture 11
Page 24

CS 111
Summer 2017

Capturing Variation

•  Generally requires repetition of the same
experiment

•  Ideally, sufficient repetitions to capture all
likely outcomes
– How do you know how many repetitions that is?
– You don’t

•  Design your performance measurements
bearing this in mind

Lecture 11
Page 25

CS 111
Summer 2017

So What Does Our Sample Data
Actually Mean?

•  We know there is a minimum possible delay
between UCLA and MIT
– Data suggests it might be about 28.1 msec, the

bottom of the range
•  There are a bunch of values close to that

– Median is 28.6, not far off low measurement
•  But our mean is much higher

– So there are much larger delays in some cases

•  Stdev is much larger than the mean

Lecture 11
Page 26

CS 111
Summer 2017

What To Conclude?
•  Often our messages will arrive quickly

– Can we keep up when they do?

•  But sometimes they will take quite a while
– Does that cause problems for our desired

behavior?
•  Will our system be tolerant of fairly frequent

long delays?
– Will we waste a lot of time waiting for messages?
– Should we try to find ways to use that time?

Lecture 11
Page 27

CS 111
Summer 2017

Meaningful Measurements
•  Measure under controlled conditions

– On a specified platform
– Under a controlled and calibrated load
– Removing as many extraneous external influences as

possible
•  Measure the right things

– Direct measurements of key characteristics
•  Ensure quality of results

– Competing measurements we can cross-compare
– Measure/correct for artifacts
– Quantify repeatability/variability of results

Lecture 11
Page 28

CS 111
Summer 2017

Factors and Levels

•  Sometimes we only want to measure one thing
•  More commonly, we are interested in several

alternatives
– What if I doubled the memory?
– What if work came in twice as fast?
– What if I used a different file system?

•  Such controlled variations for comparative
purposes are called factors

Lecture 11
Page 29

CS 111
Summer 2017

Factors in Experiments

•  Choose factors related to your experiment
goals

•  If you care about web server scaling, factors
probably related to amount of work offered

•  If you want to know which file system works
best for you, factor is likely to be different file
systems

•  If you’re deciding how to partition a disk,
factor is likely to be different partitionings

Lecture 11
Page 30

CS 111
Summer 2017

Levels

•  Factors vary (by definition)
•  Levels describe which values you test for each

factor
•  Levels can thus be numerical

– Number of web requests applied per second
– Amount of memory devoted to I/O buffers

•  Or they can be categorical
– Btrfs vs. Ext3 vs. XFS

Lecture 11
Page 31

CS 111
Summer 2017

Choosing Factors and Levels
•  Your experiment should look at all vital factors
•  Each factor should be examined at important

levels
•  But . . .
•  The effort involved in the experiment is related

to (number of factors) X (number of levels)
•  If you’re not careful, this can cause your effort

to explode
– Especially if you repeat runs to capture variation

Lecture 11
Page 32

CS 111
Summer 2017

Measurement Workloads
•  Most measurement programs require the use of

a workload
•  Some kind of work applied to the system you

are testing
– Preferably similar to the work you care about

•  Can be of several different forms
– Simulated workloads
– Replayed trace
– Live workload
– Standard benchmarks

Lecture 11
Page 33

CS 111
Summer 2017

Simulated Work Loads
•  Artificial load generation

– On-demand generation of a specified load
•  Strengths

– Controllable operation rates, parameters, mixes
–  Scalable to produce arbitrarily large loads
– Can collect excellent performance data

•  Weaknesses
– Random traffic is not a real usage scenario
–  Simulation may not create all realistic situations
– Wrong parameter choices yield unrealistic loads

Lecture 11
Page 34

CS 111
Summer 2017

Replayed Workloads
•  Captured operations from real systems
•  Strengths

– Represent real usage scenarios
– Can be analyzed and replayed over and over

•  Weakness
– Often hard to obtain
– Not necessarily scalable

•  Multiple instances not equivalent to more users
– Represent a limited set of possible behaviors
– Limited ability to exercise little-used features
– They are kept around forever, and become stale

Lecture 11
Page 35

CS 111
Summer 2017

Testing Under Live Loads

•  Instrumented systems actually serving clients
•  Strengths

– Real combinations of real scenarios
– Measured against realistic background loads
– Enables collection of data on real usage

•  Weakness
– Requires good performance and reliability
– Potentially limited testing opportunities
– Load cannot be repeated or scaled on demand

Lecture 11
Page 36

CS 111
Summer 2017

Standard Benchmarks
•  Carefully crafted/reviewed simulators

–  Possibly derived from real workloads
•  Strengths

–  Heavily reviewed by developers and customers
–  Believed to be representative of real usage
–  Standardized and widely available
–  Well maintained (bugs, currency, improvements)
–  Allows comparison of competing products

•  Weakness
–  Inertia
–  Often used where they are not applicable

Lecture 11
Page 37

CS 111
Summer 2017

Types of Performance Problems

•  Non-scalable solutions
– Cost per operation becomes prohibitive at scale
– Worse-than-linear overheads and algorithms
– Queuing delays associated with high utilization

•  Bottlenecks
– One component that limits system throughput

•  Accumulated costs
– Layers of calls, data copies, message exchanges
– Redundant or unnecessary work

Lecture 11
Page 38

CS 111
Summer 2017

Dealing With Performance
Problems

•  A lot like finding and fixing a bug
–  Formulate a hypothesis
– Gather data to verify your hypothesis
– Be sure you understand underlying problem
– Review proposed solutions

•  For effectiveness
•  For potential side effects

– Make simple changes, one at a time
– Re-measure to confirm effectiveness of each

•  Only harder

Lecture 11
Page 39

CS 111
Summer 2017

Common Measurement Mistakes

•  Measuring time but not utilization
– Everything is fast on a lightly loaded system

•  Capturing averages rather than distributions
– Outliers are usually interesting

•  Ignoring start-up, accumulation, cache effects
– Not measuring what we thought

•  Ignoring instrumentation artefacts
– They may greatly distort both times and loads

Lecture 11
Page 40

CS 111
Summer 2017

Averages Don’t Tell the Story

Lecture 11
Page 41

CS 111
Summer 2017

Handling Cache and Start-up Effects

•  Cached results may accelerate some runs
! Insert random requests that are unlikely to be in cache
! Overwhelm cache with new data between tests
! Disable or bypass cache entirely

•  Start-up costs distort total cost of computation
! Do all start-up ops prior to starting actual test
! Long test runs to amortize start-up effects
! Measure and subtract start-up costs

•  System performance may degrade with age
! Reestablish base condition for each test

Lecture 11
Page 42

CS 111
Summer 2017

Measurement Artifacts
•  Costs of instrumentation code

–  Additional calls, instructions, cache misses
–  Additional memory consumption and paging

•  Costs of logging results
–  May dwarf the costs of instrumentation
–  Increased disk load/latency may slow everything

! Minimize frequency and costs of measuring
–  Don’t measure everything always
–  Use counters/accumulators instead of individual records
–  In-memory circular buffer, reduce before writing to files
–  Probabilistic methods that don’t execute on each

occurrence

Lecture 11
Page 43

CS 111
Summer 2017

Measurement Tools

•  Execution profiling
•  Event logs
•  End-to-end testing

Lecture 11
Page 44

CS 111
Summer 2017

Execution Profiling
•  Automated measurement tools

– Compiler options for routine call counting
•  One counter per routine, incremented on entry

– Statistical execution sampling
•  Timer interrupts execution at regular intervals
•  Increment a counter in table based on PC value
•  May have configurable time/space granularity

– Tools to extract data and prepare reports
•  Number of calls, time per call, percentage of time

•  Very useful in identifying the bottlenecks

Lecture 11
Page 45

CS 111
Summer 2017

Time Stamped Event Logs

•  Application instrumentation technique
•  Create a log buffer and routine

– Call log routine for all interesting events
– Routine stores time and event in a buffer

•  Requires a cheap, very high resolution timer

•  Extract buffer, archive data, mine the data
– Time required for particular operations
–  Frequency of operations
– Combinations of operations
– Also useful for post-mortem analysis

Lecture 11
Page 46

CS 111
Summer 2017 8/4/17

Time Stamping

date time event sub-type
---------- ------------ ------------ -------------
05/11/06 09:02:31.207408 packet_rcv 0x20749329
05/11/06 09:02:31.209301 packet_route 0x20749329
05/11/06 09:02:31.305208 wakeup 0x4D8C2042
05/11/06 09:02:31.401106 read_packet 0x033C2DA0
05/11/06 09:02:31.401223 read_packet 0x033C2DA0
05/11/06 09:02:31.402110 sleep 0x4D8C2042
05/11/06 09:02:31.614209 interrupt 0x00000003
05/11/06 09:02:31.614209 dispatch 0x1B0324C0
05/11/06 09:02:31.614210 intr_return 0x00000003
05/11/06 09:02:31.652303 check_queue 0x2D3F2040
05/11/06 09:02:31.652306 packet_rcv 0x20749329

Dump of simple trace log

Lecture 11
Page 47

CS 111
Summer 2017

End-to-End Testing

•  Client-side throughput/latency measurements
– Elapsed time for X operations of type Y
–  Instrumented clients to collect detailed timings

•  Strengths
– Easy tests to run, easy data to analyze
– Results reflect client experienced performance

•  Weaknesses
– No information about why it took that long
– No information about resources consumed

Lecture 11
Page 48

CS 111
Summer 2017

A Performance Measurement
Example

•  The Conquest file system
– A research system built by one of my students

•  Using persistent RAM to store many files
– Which allowed him to get rid of a lot of OS code

related to disk drives
•  Stored some files on disk

– Which we won’t worry about here
•  Expectation was better performance than disk-

based file systems

Lecture 11
Page 49

CS 111
Summer 2017

How Did We Measure Conquest?

•  What were the metrics?
•  What were the factors?
•  What was the workload?
•  What were the results?

Lecture 11
Page 50

CS 111
Summer 2017

Choosing the Metrics
•  Core claim was better speed
•  So metrics should be speed-related
•  Speeding up overall file system operations was

the goal
– Not speeding up an isolated operation

•  So we needed metrics capturing that
•  We used several “operations per second”

metrics
– Reads, writes, creates, also bandwidth

Lecture 11
Page 51

CS 111
Summer 2017

Choosing the Factors

•  We were claiming better performance than
other file systems

•  So one factor was which file system we tested
•  We also wanted to show scaling effects

– Can it perform well for any size system?
•  So another factor chosen was number of files

in the file system

Lecture 11
Page 52

CS 111
Summer 2017

Choosing the Workload

•  File systems are traditionally tested against
standard benchmarks

•  We tested against several of those
•  One benchmark we used is called Postmark
•  Postmark performs various “transactions”

related to file operations
•  The metric we’ll show is Postmark

transactions per second

Lecture 11
Page 53

CS 111
Summer 2017

One Set of Results

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

5000	 10000	 15000	 20000	 25000	 30000	

xfs	

reiserfs	

ext2fs	

ramfs	

cfs	

Number of files

Transactions
per second

Lecture 11
Page 54

CS 111
Summer 2017

Which Showed What?

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

5000	 10000	 15000	 20000	 25000	 30000	

xfs	

reiserfs	

ext2fs	

ramfs	

cfs	

Number of files

Transactions
per second

Conquest (cfs) was even faster than ramfs

And several other things

Conquest scaled better than standard file systems

Lecture 11
Page 55

CS 111
Summer 2017

A Couple of Words on Presentation
•  Always consider these questions:
1.  To whom am I speaking?

–  What do they know and not know?
–  What are they prepared to absorb, and what not?

2.  Why are they listening to me?
–  How might this help them achieve their goals?
–  How might this address their concerns?

3.  What do I want them to leave with?
–  What conclusions do I want them to draw?
–  What actions do I want them to take?

Lecture 11
Page 56

CS 111
Summer 2017

Performance Presentation

•  Highlight the key results
– Answers to the basic questions
–  Identified problems, risks and opportunities

•  Why should they believe these results?
– Methodology employed, relation to other results
– Back-up details

•  Not just numbers, but explanations
– How do we now better understand the system
– How does this affect our plans and intentions

