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Name: ____________________________________ 
  

This is an open book, open note test.  You may use electronic devices to take the test, but 
may not access the network during the test.  You have three hours to complete it.  Please 
remember to put your name on all sheets of your answers. 

There are 3 questions on the test, each on a separate page.  You must answer all of them. 
Each problem you answer is worth 33% of the total points on the test.  You get 1% for 
putting your name on the test. 

You must answer every part of every problem.  Read each question CAREFULLY, make 
sure you understand EXACTLY what question is being asked and what type of answer is 
expected, and make sure that your answer clearly and directly responds to the asked 
question.  

I am looking for depth of understanding and the ability to solve real problems.  I want to 
see specific answers.  Vague generalities will receive little or no credit (e.g., zero credit 
for an answer like “no, due to the relocation problem.”).  Superficial answers will not be 
sufficient on this exam. 

Organize your thoughts before writing out the answer.  If the correct part of your answer 
is buried under a mountain of words, I may have trouble finding it. 

 



1. Many file systems end up storing the same bit patterns over and over again for 
many different files, effectively wasting a lot of disk space storing redundant data.  
Some file system deal with this issue by using deduplication, a technique that tries 
to ensure that any bit pattern occurring more than once anywhere in the file 
system is only stored on disk one time.  Other files containing the same bit pattern 
do not store unique copies of the data, but instead “point to” (in some fashion), 
the single copy.   Of course, one must choose some granularity (in terms of length 
of bit patterns) at which one deduplicates.  There would be no benefit in 
deduplicating all occurrences of the bit pattern “0”, for example.   (Note: if you 
propose some technique other than deduplication for dealing with this problem 
and do not address the points below concerning deduplication, you will get 0 on 
this question.  Don’t do that.) 

a. What granularity would you suggest deduplicating at?  Why? 
b. What algorithms and data structures will you use to detect duplicates? 
c. Should deduplication be applied to directories or just to regular files?  

Why? 
d. Does the use of deduplication cause any new security problems?  Why? 
e. Describe how you would alter the FFS to allow it to perform some useful 

form of deduplication.  Describe the changes to metadata structures that 
your alteration would require.  How would the following file operations 
change (in their underlying OS implementation) in your design: 
create(), open(), read(), write(), unlink()? 

f. Will deduplication improve, degrade, or not alter file system consistency 
concerns?  Explain. 

g. Will deduplication perform better when the underlying storage medium is 
a hard disk drive or a flash drive, or will it have the same performance for 
both?  Why? 

 

a. (5 points) Deduplication at high granularity won’t find much to work with.  
For instance, file deduplication will only help for totally identical files.  
Deduplication at a low granularity (such as a few bytes) won’t scale, since 
you will need to keep too many indices for different patterns.  If one is 
going with a fixed size, a disk block/IO cache block size is reasonable.  It 
has the advantage of fitting in easily with other file system elements.  
Probably doing a variable sized granularity not aligned on a particular 
boundary would provide the most bang for the buck, but adds much 
complexity. 

b. (7 points) Dedupping by comparing full patterns will be an immense loser.  
You will be best off dedupping by comparing the outputs of a hash 
algorithm applied to the bit patterns.  Avoiding collisions is vital, and you 
don’t want the hash to be too long, both because you’ll be storing the hash 
and you will be doing lots of comparisons on it.  A cryptographic hash is a 
good choice.  In terms of data structures, you need a general data 
structure shared by the entire file system that keeps track of the hashes 
you’ve already seen.    It needs to scale well and not be a performance 



bottleneck, particularly on file reads.  Either a database or perhaps a hash 
table (of the hashes themselves) might be a good choice.  In addition to a 
pointer to the actual data with that hash, it should contain a reference 
count of how many places in the file system use that block, since once all 
such references are either deleted or altered to have different contents, the 
data pointed to by the entry should be freed.  Other data structures 
designed to handle fast pattern lookups, like tries, might also work well.  
The key to getting full points is a complete description of how you will use 
the data structure. 

c. (2 points)  There will be little value in dedupping directories.  They 
usually contain only directory names and inode pointers.  Both are too 
short to benefit from dedupping.  The chance that there will be identical 
names and inodes spanning more than one entry in two directories is low. 

d. (2 points)  Other than introducing more code that might contain security 
flaws, dedupping a file system should not cause security problems.  It does 
not grant users access to anything they do not already have the right to 
access.  They only get access to a dedupped block in a file they can’t read 
if they already have a copy of that dedupped block in a file they can 
access.  It would be better to hide the deduplication from users, since if 
they know that a particular block of their own file is duplicated in some 
other file, there is a minor privacy leak. 

e. (12 points: 7 for general discussion, 1 each for proper description of the 
operations)  Assuming we are working at the block level, each pointer to a 
block in an inode might point either to a block or to a dedup entry in the 
dedup database/table.  The latter point to a single instance of the 
duplicated block.  Dedupping can happen as files are written, on close 
after a write, when a written block is flushed from the block cache to the 
disk, or at some point in the background.  Any (or some reasonable 
combination) are acceptable.  Dedupping as writes occur is probably not 
a good idea, though, as it may require multiple hashes and table lookups 
when a program performs multiple writes to a single block. 

There are small details of how this approach would impact the FFS inode 
layout, such as how are you going to keep the information about whether a 
block pointer is a true block pointer or a pointer to a dedup entry.  There 
is currently no room in either the pointer or the inode for that.  You didn’t 
need to address such issues. 

Pointing to a data block without being concerned about whether it is a 
dedup block or not is possible, but it leads to further issues that must be 
addressed if the answer goes in this direction.  These include how do you 
make sure when you write a block that you’re only writing your own 
block, and how do you determine when you can garbage collect a block. 

For the operation descriptions, details may vary depending on how the 
student has suggested the system be designed. 



(a)  On create, nothing special must happen.  So far, there is no data 
in the file, so there are no duplicates.  Of course, the inode 
structure used to hold the file’s pointers is allocated in a different 
format. 

(b) On open, no special action is required.  The file’s inode will not 
itself be deduplicated, and open will only reference the inode. 

(c) On read, the pointer for the requested block is followed either to a 
standard data block or to a dedup pointer, which in turn is 
followed to the duplicated data block.  In either case, the actual 
data is returned to the user without indication of whether it went 
through a dedup pointer. 

(d) On write, there are several possibilities.  A write to a brand new 
block should wait till the block is filled.  Once filled, the block’s 
data is hashed and checked against the dedup table.  If a duplicate 
is found, the file’s pointer for the block is set to the dedup table 
entry.  On write to a block that is currently dedupped, a new copy 
of the block must be made and the final state of the block run 
through deduplication.  It is unlikely to match the old hash (since 
some data was written), but it might match another.  On a write to 
a block that is not currently deduplicated, we check for duplication 
at the usual moment, possibly replacing the pointer to a data block 
to a point to a dedup hash entry. 

(e) On unlink, we must check all the data blocks of the file to see 
which, if any, were deduplicated.  If some were, we need to 
decrement the reference count of those blocks in the table of hash 
entries.  Should any reference counts go to zero there as a result, 
we need to free the actual data block associated with it and free 
the entry in the table. 

f. (2 points) In many ways, dedupping will not affect consistency.  It will 
have some minor costs.  First, the update of a file’s state is now potentially 
a bit more complex, since not only a file’s inode and data block must be 
consistently written, but also the dedup table entry.  Second, if there is 
corruption in one block of the disk, and that block is either in the dedup 
table or in one of the duplicated blocks, more files will be affected.  On the 
up side, corruption in a duplicated block will be easy to detect, since the 
dedup table contains a hash of the proper contents of the block. 

g. (3 points)  Dedup should perform very well on flash, but might run into 
some problems on hard disks.  By its nature, it will be impossible to ensure 
that a duplicated block is located in close physical proximity to all files 
that share it.  So for some files, some blocks will require long seeks to 
access them.  But it doesn’t really matter where the data is located for a 
file in the flash memory, since access times are constant for all of them.  
As a minor point, flash wear issues will likely be improved by dedup, since 
we can avoid writing multiple copies of a block when it is duplicated. 



2. Each of the following three situations poses interesting allocation or locking 
problems (figuring out what or how to lock while avoiding deadlocks, hangs and 
bottlenecks).  For each resource, (1) describe the best approach (2) justify why the 
situation demanded this approach, and (3) tell me specifically how you would apply 
that approach to the problem. 

 
(a) A cellular communications processor that controls calls, power-levels, and the 

movement of calls across adjacent cells supports millions of calls and hundreds of 
concurrent operations.  To prevent conflicting updates, there are locks associated 
with each transceiver, call, and cellular sector.  Some operations start by locking a 
single object (e.g., a call) but as they progress it becomes clear that it will also be 
necessary to lock other objects (e.g., one or more sectors).  How can we prevent 
concurrent multi-object operations from deadlocking? 

 
In this situation, I would use total ordering (since sharing is not an option, all-up-front is 
precluded by the problem, and revocation is always nasty). 

I would define a relative ordering among the types of objects (e.g. transceivers, calls, 
sectors) and an ordering within each type of object, and then require processes that 
locked objects to always lock them in order.  If a process holds a higher numbered mutex 
and needs to get a lower numbered one, it must release the higher numbered one, take the 
lower numbered one, and then re-take the higher numbered one (lock dancing).  Note 
that when releasing a mutex for a lock dance, there is a possibility that someone else will 
get it, and therefore the resource must be in a completely consistent state when the mutex 
is released.  Similarly, when it is reobtained, the program cannot assume that it was not 
changed in the interim. 
 
 
 
   (b) Swap space on secondary storage.  If there is not room on the swap device to swap 
out one of the in-memory processes, we will be unable to make room to swap in and run 
any of the processes that are currently swapped out.  How can we prevent such a 
situation? 
 
Swap space is a commodity resource, and as such much easier to manage.  I would avoid 
deadlocks by requiring reservations be obtained whenever a process is created or 
expands the size of its virtual address space.  The banker's algorithm would work in this 
situation, but I would not allow any over-booking.  I would only allow processes virtual 
addresses to be created/expanded as long as there was guaranteed swap-space for them 
... after which I would fail subsequent requests. 
 
   (c) A network lock manager provides locking services for a very wide range of 
distributed resources that are shared by thousands of clients.  The clients are a wide 
variety of applications running on many different operating systems, and not all of the 
resources they need are managed by the network lock manager.  How can we ensure 
network locks will not contribute to deadlocks among the client applications? 



 
 Mutual exclusion is surely necessary, and since the applications are running on different 
operating systems and machines, we probably can't prevent them from blocking while 
holding network locks.  Because the managed resources are arbitrary (and only some of 
them are owned by the lock manager), that probably makes ordering impractical.  This 
leaves us with preemption.  We should implement leases with lock breaking. 
    
 
 



2. A company with around 500 employees in several offices around the globe wishes 
to provide its employees with a wide range of software services hosted at several 
company server machines.  They expect to add, remove, and alter services 
regularly, and they expect to host hundreds of such services. They wish to 
maintain tight access control on the services, with much more specificity than 
merely enforcing that particular users are or are not allowed to use the service.  
Instead, for each service, the service designer must be allowed to specify 
particular elements of the service that are under access control.  (For example, one 
service might want access control on whether the user is allowed to print results 
from the service, while another might want access control on whether a particular 
user is allowed to escalate a problem to a higher ranking employee, and a third 
service might use access control to permit only system administrators to 
determine how much of a server’s CPU use a particular user is expending, while 
not allowing the administrators to see the specific tasks being performed.)  Since 
the company doesn’t know all services they will ultimately offer, they cannot 
specify all service elements that might need access control, but they know that not 
all services will need access control for all possible elements. The service 
designer should be able to specify which actions offered by his service are under 
access control. (For instance, service A might want access control on printing, 
while service B does not.)  The access control mechanism is to be built into the 
operating system, to ensure trustworthiness, uniformity, and to protect from 
application bugs. Users will occasionally be added or deleted, and access 
permissions for particular users and services will change often. 
How would you design the operating system mechanism to provide this kind of 
access control?  Consider the required scale, flexibility, performance, distributed 
nature of the problem, and security issues, at the minimum. 

It is vital to notice that we are asking for the OS to perform access control on 
arbitrary pieces of user code, which means that the OS must take over when those 
pieces of code are invoked.  Thus, a good answer to this question requires that 
you describe how the operating system will become involved so that it can 
perform access control.  One general approach is to register this code with the 
OS and add system calls to obtain access to it.  Another approach is to use the 
distributed nature of the system to force actions through the OS, by requiring 
messaging to access the protected code.  When the message is delivered, the OS 
will have a chance to perform access control before invoking the code.  Other 
approaches are possible. 

Assuming the second approach, we should have a new set of system calls related 
to these types of access permission.  Probably it would be best to specify that 
there are particular portions of a program that can only be accessed by remote 
users by going through the operating system first.  The cost won’t be that high, 
since the remote users are getting to the services by sending messages to the 
server, which already go through the OS.  The messages can be delivered first to 
the OS component that performs the access control and, if allowed, then delivered 
to the application. 



One set of system calls will require the applications to register a service as under 
access control.  This might be something similar to setting up a socket, but with 
the understanding that access control has been applied to anything that comes 
through it.  We will also need calls that change the particular access permissions 
associated with the socket or whatever it is.  While one could limit such calls to 
being made from inside the program that provides the service, it would be easier 
to build such programs and manage the system if the access permissions could be 
changed by a system administrator.  That implies some kind of persistent 
information about the access permissions for the service, since they need to be 
around even if the service is not running.  An obvious choice would be to store 
them in a file that is only accessible by trusted administrators and the system 
itself.  The tools would then read and write the files.   

From the scalability perspective, this would work reasonably well.  Each service 
(or service element) being controlled would have one file with its access 
permissions, which would need to be stored on the server that runs the service.  
File systems handle scale well.  Only access control files associated with active 
services would need to be opened and accessed, so the costs of the I/O would be 
low.  Presumably services in high use would have their access permissions stored 
in the block I/O cache, limiting further the I/O required. 
In terms of performance, this approach would work well.  There need not be any 
extra kernel boundary crossings, since the permissions would be checked when 
messages arrive, which are handled in the OS itself.  The permission information 
would usually be cached in RAM.  If the checking mechanism is designed to be 
cheap, in the manner of Unix file access permissions, the costs of the checks 
themselves would be low.  Applications would not need to perform internal 
checks, since any requests for protected services that were delivered to the 
application had already been checked. 
Distribution issues are reasonable.  Services are accessed by messages, and 
access control is applied to each incoming message.  This would require some 
kind of common name space for remote users, which is reasonable in the 
environment in question.  We can replicate services, as necessary for scaling and 
load management, since each server will handle its own access control.  There 
would be issues of ensuring consistency of access permission across replicated 
servers, if we support them, but if we assume changes of access permissions are 
not common and can be handled with a consensus protocol, that can work.  If 
each message is self-contained and comes with the necessary trusted identity 
information, we don’t need to worry about failure or saving state. 
Security will depend on proper authentication.  The method used is more or less 
orthogonal to the rest of the design, but something must be done.  Presumably we 
will want some kind of primal authentication operation for users.  This would 
generate credentials useful for ongoing authentication.  We could use 
authentication servers.  We could require each service to perform a login 
operation (perhaps to invoke a common one used by all services) that generates 
credentials that expire.  We could require remote users to establish an 
authenticated session with each server, with ongoing crypto providing the 



authentication after that point.  Other approaches are possible.  Any reasonable 
choice is sufficient.  The student must also indicate that messages cannot be 
tampered with in transit, since that could lead to improper use of a controlled 
service.   

This sample answer contains a lot of detail, more than I would expect from any 
student.  However, each issue that was mentioned in the question had to be 
discussed in at least a little detail to get full points.   
There are entirely different approaches to this problem, which are also OK, to the 
extent they are developed correctly and address the required issues. 

 


