
Protecting Information With Cryptography 

Introduction 

In previous chapters, we’ve discussed clarifying your security goals, determining your 
security policies, using authentication mechanisms to identify principals, and using 
access control mechanisms to enforce policies concerning which principals can access 
which computer resources in which ways.  While we identified a number of shortcomings 
and problems inherent in all of these elements of securing your system, if we regard those 
topics as covered, what’s left for the operating system to worry about, from a security 
perspective?  Why isn’t that everything? 

There are a number of reasons why we need more.  Of particular importance, not 
everything is controlled by the operating system.  But perhaps you respond, you told me 
the operating system is all-powerful!  Not really.  It has substantial control over a limited 
domain – the hardware on which it runs, using the interfaces it is given control of.  It has 
no real control over what happens on other machines, nor what happens if one of its 
pieces of hardware is accessed via some mechanism outside the operating system’s 
control.   

But how can we expect the operating system to protect something when the system does 
not itself control access to that resource?  The answer is to prepare the resource for 
trouble in advance.  In essence, we assume that we are going to lose the data, or that an 
opponent will try to alter it improperly.  And we take steps to ensure that such actions 
don’t cause us problems.  The key observation is that if an opponent cannot understand 
the data in the form he obtains it, our secrets are safe.  Further, if he cannot understand it, 
he probably can’t alter it, at least not in a controllable way.  If he doesn’t know what it 
means in its current form, how can he know how to change it into something he’d prefer?   

The core technology we’ll use is cryptography, a set of techniques to convert data from 
one form to another, in controlled ways with expected outcomes.  We will convert the 
data from its ordinary form into another form using cryptography.  If we do it right, the 
opponent will not be able to determine what the original data was by examining the 
protected form.  Of course, if we ever want to use it again ourselves, we must be able to 
reverse that transformation and return the data to its ordinary form.  That must be hard for 
the opponent to do, as well.  If we can get to that point, we can also provide some 
protection for the data from alteration, or, more precisely, prevent the opponent from 
altering the data to suit his desires, and know when an opponent has tampered with our 
data.  All through the joys of cryptography! 

But using cryptography properly is not easy, and many uses of cryptography are 
computationally expensive.  So we need to be selective about where and when we use 
cryptography, and careful in how we implement it and integrate it into our systems.  Well 
chosen uses that are properly performed will tremendously increase security.  Poorly 
chosen uses that are badly implemented won’t help at all, and may even hurt. 



  

Cryptography 

Many books have been written about cryptography, but we’re only going to spend a 
chapter on it.  We’ll still be able to say useful things about it because, fortunately, there 
are important and complex issues of cryptography that we can mostly ignore.  That’s 
because we aren’t going to become cryptographers ourselves.  We’re merely going to be 
users of the technology, relying on experts in that esoteric field to provide us with tools 
that we can use without having full understanding of their workings1.  That sounds kind 
of questionable, but you are already doing just that.  Relatively few of us really 
understand the deep details of how our computer hardware works, yet we are able to 
make successful use of it, because we have good interfaces and know that smart people 
have taken great care in building the hardware for us.  Similarly, cryptography provides 
us with strong interfaces, well-defined behaviors, and better than usual assurance that 
there is a lot of brain power behind the tools we use.   

That said, cryptography is no magic wand, and there is a lot you need to understand 
merely to use it correctly.  That, particularly in the context of operating system use, is 
what we’re going to concentrate on here. 

The basic idea behind cryptography is to take a piece of data and use an algorithm (often 
called a cipher), usually augmented with a second piece of information (which is called a 
key), to convert the data into a different form.  The new form should look nothing like the 
old one, but, typically, we want to be able to run another algorithm, again augmented 
with a second piece of information, to convert the data back to its original form. 

Let’s formalize that just a little bit.  We start with data P (which we usually call the 
plaintext), a key K, and an encryption algorithm E().  We end up with C, the altered form 
of P, which we usually call the ciphertext: 

C = E(P,K) 

For example, we might take the plaintext “Transfer $100 to my savings account” and 
convert it into ciphertext “Sqzmredq #099 sn lx rzuhmfr zbbntms.”  This example 
actually uses a pretty poor encryption algorithm called a Caesar cipher.  Spend a minute 

                                                 
1 If you’d like to learn more about the fascinating history of cryptography, check out 
[K96].  If more technical detail is your desire, [S96] is a good start. 

THE CRUX OF THE PROBLEM 
HOW TO PROTECT INFORMATION OUTSIDE THE OPERATING SYSTEM’S 

DOMAIN? 

How can we use cryptography to ensure that, even if others gain access to critical data 
outside the control of the operating system, they will be unable to either use or alter it?  
What cryptographic technologies are available to assist in this problem?  How do we 
properly use those technologies?  What are the limitations on what we can do with 
them? 



or two studying the plaintext and ciphertext and see if you can figure out what the 
encryption algorithm was in this case. 

The reverse transformation takes C, which we just produced, a decryption algorithm D(), 
and the key K: 

P=D(C,K) 

So we can decrypt “Sqzmredq #099 sn lx rzuhmfr zbbntms” back into “Transfer $100 to 
my savings account.”  If you figured out how we encrypted the data in the first place, it 
should be easy to figure out how to decrypt it. 

We use cryptography for a lot of things, but when discussing it generally, it’s common to 
talk about messages being sent and received.  In such discussions, the plaintext P is the 
message we want to send and the ciphertext C is the protected version of that message 
that we send out into the cold, cruel world. 

For the encryption process to be useful, it must be deterministic, so the first 
transformation always converts a particular P using a particular K to a particular C, and 
the second transformation always converts a particular C using a particular K to the 
original P. In many cases, E() and D() are actually the same algorithm, but that is not 
required.  Also, it should be very hard to figure out P from C without knowing K.  
Impossible would be nice, but we’ll usually settle for computationally infeasible.  If we 
have that property, we can show C to the most hostile, smartest opponent in the world 
and he still won’t be able to learn what P is. 

Provided, of course, . . .  

This is where cleanly theoretical papers and messy reality start to collide.  We only get 
that pleasant assurance of secrecy if the opponent does not know both D() and our key K.  
If he does, he’ll apply D() and K to C and extract the same information P that we can.   

It turns out that we usually can’t keep E() and D() secret.  Since we’re not trying to be 
cryptographers, we won’t get into the why of the matter, but it is extremely hard to design 
good ciphers.  If the cipher has weaknesses, then an opponent can extract the plaintext P 
even without K.   So we need to have a really good cipher, which is hard to come by.  
Most of us don’t have a world-class cryptographer at our fingertips to design a new one, 
so we have to rely on one of a relatively small number of known strong ciphers.  AES, a 
standard cipher that was carefully designed and thoroughly studied, is one good example 
that you should think about using. 

It sounds like we’ve thrown away half our protection, since now the cryptography’s 
benefit relies entirely on the secrecy of the key.  Precisely.  Let’s say that again in all 
caps, since it’s so important that you really need to remember it:  THE 
CRYPTOGRAPHY’S BENEFIT RELIES ENTIRELY ON THE SECRECY OF THE 
KEY.  It probably wouldn’t hurt for you to re-read that statement a few dozen times, 
since the landscape is littered with insecure systems that did not take that lesson to heart. 



The good news is that if you’re using a strong cipher and are careful about maintaining 
key secrecy, your cryptography is strong.  You don’t need to worry about anything else.  
The bad news is that maintaining key secrecy in practical systems for real uses of 
cryptography isn’t easy.  We’ll talk more about that later. 

For the moment, revel in the protection we have achieved, and rejoice to learn that we’ve 
gotten more than secrecy from our proper use of cryptography!  Consider the properties 
of the transformations we’ve performed.  If our opponent gets access to our encrypted 
data, he can’t understand it.  But what if he can alter it?  What he’ll be altering is the 
encrypted form, so he’ll make some changes in C to convert it to, say, C’.  What will 
happen when we try to decrypt C? Well, it won’t decrypt to P.  It will decrypt to 
something else, say P’.  For a good cipher of the type you should be using, it will be 
difficult to determine what a piece of ciphertext C’will decrypt to, unless you know K.  
That means it will be hard to predict which ciphertext you need to have to decrypt to a 
particular plaintext.  Which in turn means that the attacker will have no idea what his 
altered ciphertext C’ will decrypt to.   

Out of all possible bit patterns it could decrypt to, the chances are good that P’ will turn 
out to be garbage, when considered in the context of what we expected to see:  ASCII 
text, a proper PDF file, or whatever.  If we’re careful, we can detect that P’ isn’t what we 
started with, which would tell us that our opponent tampered with our encrypted data.  If 
we want to be really sure, we can perform a hashing function on the plaintext and include 
the hash in the message or encrypted file.  If the plaintext we get out doesn’t produce the 
same hash, we will have a strong indication that something is amiss.   

ASIDE: DEVELOPING YOUR OWN CIPHERS 

Don’t. 

It’s tempting to leave it at that, since it’s really important that you follow this 
guidance.  But you may not believe it, so we’ll expand a little.  The world’s best 
cryptographers often produce flawed ciphers.  Are you one of the world’s best 
cryptographers?  If you aren’t, and the top experts often fail to build strong ciphers, 
what makes you think you’ll do better, or even as well? 

We know what you’ll say next: “but the cipher I wrote is so strong that I can’t even 
break it myself.”  Well, pretty much anyone who puts their mind to it can create a 
cipher they can’t break themselves.  But remember those world-class cryptographers 
we talked about?  How did they get to be world class?  By careful study of the 
underpinnings of cryptography and by breaking other people’s ciphers.  They’re very 
good at it, and if it’s worth their trouble, they will break yours.  They might ignore it if 
you just go around bragging about your wonderful cipher (since they hear that all the 
time), but if you actually use it for something important, you will unfortunately draw 
their attention.  Following which your secrets will be revealed, following which you 
will look foolish for designing your own cipher instead of using something standard 
like AES, which is easier to do, anyway. 

So, don’t. 

 



 

So we can use cryptography to help us protect the integrity of our data, as well. 

Wait, there’s more!  What if someone hands you a piece of data that has been encrypted 
with a key K that is known only to you and your buddy Remzi?  You know you didn’t 
create it, so if it decrypts properly using key K, you know that Remzi must have created 
it.  After all, he’s the only other person who knew key K, so only he could have 
performed the encryption.  Voila, we have used cryptography for authentication!  
Unfortunately, cryptography will not clean your room, do your homework for you, or 
make thousands of julienne fries in seconds, but it’s a mighty fine tool, anyway. 

The form of cryptography we just described is often called symmetric cryptography, 
because the same key is used to encrypt and decrypt the data.  For a long time, everyone 
believed that was the only form of cryptography possible.  It turns out everyone was 
wrong. 

Public Key Cryptography 

When we discussed using cryptography for authentication, you might have noticed a little 
problem.  In order to verify the authenticity of a piece of encrypted information, you need 
to know the key used to encrypt it.  If we only care about using cryptography for 
authentication, that’s inconvenient.  It means that we need to communicate the key we’re 
using for that purpose to whoever might need to authenticate us.  What if we’re 
Microsoft, and we want to authenticate ourselves to every user who has purchased our 
software?  We can’t use just one key to do this, because we’d need to send that key to 
hundreds of millions of users and, once they had that key, they could pretend to be 
Microsoft by using it to encrypt information.  Alternately, Microsoft could generate a 
different key for each of those hundreds of millions of users, but that would require 
secretly delivering a unique key to hundreds of millions of users, not to mention keeping 
track of all those keys.  Bummer. 

Fortunately, our good friends, the cryptographic wizards, came up with a solution.  What 
if we use two different keys for cryptography, one to encrypt and one to decrypt?  Our 
encryption operation becomes  

C = E(P,Kencrypt) 

And our decryption operation becomes 

P=D(C,Kdecrypt) 

Life has just become a lot easier for Microsoft.  They can tell everyone their decryption 
key Kdecrypt, but keep their encryption key Kencrypt secret.   They can now authenticate their 
data by encrypting it with their secret key, while their hundreds of millions of users can 
check the authenticity using the key Microsoft made public.  For example, Microsoft 
could encrypt an update to their operating system with Kencrypt and send it out to all their 
users.  Each user could decrypt it with Kdecrypt.  If it decrypted into a properly formatted 



software update, the user could be sure it was created by Microsoft.  Since no one else 
knows that private key, no one else could have created the update. 

Sounds like magic, but it isn’t.  It’s actually mathematics coming to our rescue, as it so 
frequently does.  We won’t get into the details here, but you have to admit it’s pretty neat.  
This form of cryptography is called public key cryptography, since one of the two keys 
can be widely known to the entire public, while still achieving desirable results.  The key 
everyone knows is called the public key, and the key that only the owner knows is called 
the private key.  Public key cryptography (often abbreviated as PK) has a complicated 
invention history, which, while interesting, is not really germane to our discussion.  
Check out a paper by a pioneer in the field, Whitfield Diffie, for details [D88]. 

Public key cryptography avoids one hard issue that faced earlier forms of cryptography: 
securely distributing a secret key.  Here, the private key is created by one party and kept 
secret by him.  It’s never distributed to anyone else.  The public key must be distributed, 
but generally we don’t care if some third party learns this key, since they can’t use it to 
sign messages.  Distributing a public key is an easier problem than distributing a secret 
key, though, alas, it’s harder than it sounds.  We’ll get to that. 

Public key cryptography is actually even neater, since it works the other way around.  
You can use the decryption key Kdecrypt  to encrypt, in which case you need the encryption 
key Kencrypt  to decrypt.  We still expect the encryption key to be kept secret and the 
decryption key to be publically known, so doing things in this order no longer allows 
authentication.  Anyone could encrypt with Kdecrypt, after all.  But only the owner of the 
key can decrypt such messages using Kencrypt.  So that allows anyone to send an encrypted 
message to someone who has a private key, provided you know their public key.  Thus, 
PK allows authentication if you encrypt with the private key and secret communication if 
you encrypt with the public key. 

What if you want both, as you very well might?  You’ll need two different key pairs to do 
that.  Let’s say Alice wants to use PK to communicate secretly with her pal Bob, and also 
wants to be sure Bob can authenticate her messages.  Let’s also say Alice and Bob each 
have their own PK pair.  Each of them knows his or her own private key and the other 
party’s public key.  If Alice encrypts her message with her own private key, she’ll 
authenticate the message, since Bob can use her public key to decrypt and will know that 
only Alice could have created that message.  But everyone knows Alice’s public key, so 
there would be no secrecy achieved.  However, if Alice takes the authenticated message 
and encrypts it a second time, this time with Bob’s public key, she will achieve secrecy as 
well.  Only Bob knows the matching private key, so only Bob can read the message.  Of 
course, Bob will need to decrypt twice, once with his private key and then a second time 
with Alice’s public key.   

Sounds expensive.  It’s actually worse than you think, since it turns out that public key 
cryptography has a shortcoming: it’s much more computationally expensive than 
traditional cryptography that relies on a single shared key.  Public key cryptography can 
take hundreds of times longer to perform than standard symmetric cryptography.  As a 
result, we really can’t afford to use public key cryptography for everything.  We need to 
pick and choose our spots, using it to achieve the particular things it’s so good at. 



There’s another important issue.  We rather blithely said that Alice knows Bob’s public 
key and Bob knows Alice’s.  How did we achieve this blissful state of affairs?   
Originally, only Alice knew her public key and only Bob knew his public key.  We’re 
going to need to do something to get that knowledge out to the rest of the world if we 
want to benefit from the magic of public key cryptography.  And we’d better be careful 
about it, since Bob is going to assume that messages encrypted with the public key he 
thinks belongs to Alice were actually created by Alice.  What if some evil genius, called, 
perhaps, Eve, manages to convince Bob that Eve’s public key actually belongs to Alice?  
If that happens, then messages created by Eve would be misidentified by Bob as 
originating from Alice, totally subverting our entire goal of authenticating the messages.  
So we’d better make sure Eve can’t fool Bob about which public key belongs to Alice. 

This leads down a long and rather shadowy road to the arcane realm of key distribution 
infrastructures.  You will be happier if you don’t try to travel that road yourself, since 
even the most well prepared pioneers who have hazarded it often come to grief.  We’ll 
talk a bit more about how, in practice, we distribute public keys in our chapter on 
distributed system security.   For the moment, bear in mind that the beautiful magic of 
public key cryptography rests on the grubby and uncertain foundation of key distribution. 

One more thing about PK cryptography: THE CRYPTOGRAPHY’S BENEFIT RELIES 
ENTIRELY ON THE SECRECY OF THE KEY.  (Bet you’ve heard that before.)  In this 
case, the private key.  But the secrecy of that private key is every bit as important to the 
overall benefit of public key cryptography as the secrecy of the single shared key in the 
case of symmetric cryptography.  Never divulge private keys.  Never share private keys.  
Take great care in your use of private keys and in how you store them.  If you lose a 
private key, everything you used it for is at risk, and whoever gets hold of it can pose as 
you and read your secret messages.  That wouldn’t be very good, would it? 

Cryptographic Hashes 

As we discussed earlier, we can protect data integrity by using cryptography, since 
alterations to encrypted data will not decrypt properly.  We can reduce the costs of that 
integrity check by hashing the data and encrypting just the hash, instead of encrypting the 
entire thing.  However, if we want to be really careful, we can’t use just any hash 
function, since hash functions, by their very nature, have hash collisions, where two 
different bit patterns hash to the same thing.  If an attacker can change the bit pattern we 
intended to send to some other bit pattern of his choosing that hashes to the same thing, 
we would lose our integrity property. 

So to be particularly careful, we can use a cryptographic hash to ensure integrity.  
Cryptographic hashes are a special category of hash functions with several important 
properties: 

• it is computationally infeasible to find two inputs that will produce 
the same hash value 

• any change to an input will result in an unpredictable change to the 
resulting hash value 



• it is computationally infeasible to infer any properties of the input 
based only on the hash value 

Based on these properties, if we only care about data integrity, rather than secrecy, we 
can take the cryptographic hash of a piece of data, encrypt only that hash, and send both 
the encrypted hash and the data to our partner.  If an opponent fiddles with the data in 
transit, when we decrypt the hash and repeat the hashing operation on the data, we’ll see 
a mismatch and detect the tampering2.    

To formalize it a bit, to perform a cryptographic hash we take a plaintext P and a hashing 
algorithm H().  Note that there is not necessarily any key involved.  Here’s what happens: 

S = H(P) 

Since cryptographic hashes are a subclass of hashes in general, we normally expect S to 
be shorter than P, perhaps a lot shorter.  That implies there will be collisions, situations in 
which two different plaintexts P and P’ both hash to S.  However, the properties of 
cryptographic hashes outlined above will make it difficult for an adversary to make use of 
collisions. Even if you know both S and P, it should be hard to find any other plaintext P’ 
that hashes to S3.  It won’t be hard to figure out what S’ should be for an altered value of 
plaintext P’, since you can simply apply the cryptographic hashing algorithm directly to 
P’.  But even a slightly altered version of P, such as a P’ differing only in one bit, should 
produce a hash S’ that differs from S in completely unpredictable ways. 

Cryptographic hashes can be used for other purposes than ensuring integrity of encrypted 
data, as well. They are the class of hashes of choice for storing salted hashed passwords, 
for example, as discussed in the chapter on authentication.  They can be used to 
determine if a stored file has been altered, a function provided by well-known security 
software like Tripwire. Like other cryptographic algorithms, you’re well advised to use 
standard algorithms for cryptographic hashing.  For example, the SHA-3 algorithm is 
commonly regarded as a good choice.  However, there is a history of cryptographic 
hashing algorithms becoming obsolete, so if you are designing a system that uses one, it’s 
wise to first check to see what current recommendations are for choices of such an 
algorithm. 

                                                 
2 Why do we need to encrypt the cryptographic hash?  Well, anyone, including our 
opponent, can run a cryptographic hashing algorithm on anything, including his altered 
version of the message.  If we don’t encrypt the hash, he’ll simply change the message, 
compute a new hash, replace both the original message and the original hash with his 
versions, and send the result.  If the hash we sent is encrypted, though, he can’t know 
what the encrypted version of the altered hash should be. 
3 Every so often, a well known cryptographic hashing function is “broken,” in the sense 
that someone figures out how to create a P’ that uses the function to produce the same 
hash as P.  That happened to a hashing function known as SHA-1 in 2017, rendering that 
function unsafe and unusable for its intended purpose [G17]. 



Cracking Cryptography 

Chances are that you’ve heard about people cracking cryptography.  It’s a popular theme 
in film and television.  How worried should you be about that? 

Well, if you didn’t take our earlier advice and went ahead and built your own cipher, you 
should be very worried.  Worried enough that you should stop reading this, rip out your 
own cipher from your system, and replace it with a well-known respected standard.  Go 
ahead, we’ll still be here when you get back. 

What if you did use one of those standards?  In that case, you’re probably OK.  If you use 
a modern standard, with a few unimportant exceptions, there are no known ways to read 
data encrypted with these algorithms without obtaining the key.  Which isn’t to say your 
system is secure, but probably no one will break into it by cracking the cryptographic 
algorithm. 

How will they do it, then?  Probably by exploiting software flaws in your system having 
nothing to do with the cryptography, but there’s some chance they will crack it by 
obtaining your keys or exploiting some other flaw in your management of cryptography.  
How?  Software flaws in how you create and use your keys are a common problem.  In 
distributed environments, flaws in the methods used to share keys are also a common 
weakness that can be exploited.  Peter Gutmann produced a nice survey of the sorts of 
problems improper management of cryptography frequently causes [G02].  Examples 
include distributing secret keys in software shared by many people, incorrectly 
transmitting plaintext versions of keys across a network, and choosing keys from a 
seriously reduced set of possible choices, rather than the larger theoretically possible set.  
More recently, the Heartbleed attack demonstrated a way to obtain keys being used in 
OpenSSL sessions from the memory of a remote computer, which allowed an attacker to 
decrypt the entire session, despite no flaws in either the cipher itself or its 
implementation, nor in its key selection procedures.  This flaw allowed attackers to read 
the traffic of something between ¼ and ½ of all sites using HTTPS, the cryptographically 
protected version of HTTP [D+14]. 

One way attackers deal with cryptography is by guessing the key.  Doing so doesn’t 
actually crack the cryptography at all.  Cryptographic algorithms are designed to prevent 
people who don’t know the key from obtaining the secrets.  If you know the key, it’s not 
supposed to make decryption hard.   

So an attacker could try simply guessing each possible key and trying it.  That’s called a 
brute force attack, and it’s why you should use long keys.  For example, AES keys are at 
least 128 bits.  Assuming you generate your AES key at random, an attacker will need to 
make 2127 guesses at your key, on average, before he gets it right.  That’s a lot of guesses 
and will take a lot of time.  Of course, if a software flaw causes your system to select one 
out of thirty two possible AES keys, instead of one out of 2128, a brute force attack may 
become trivial.  Key selection is a big deal for cryptography. 

For example, the original 802.11 wireless networking standard included no cryptographic 
protection of data being streamed through the air.  The first attempt to add such 



protection was called WEP (Wired Equivalent Protocol, a rather optimistic name).  WEP 
was constrained by the need to fit into the existing standard, but the method it used to 
generate and distribute symmetric keys was seriously flawed.  Merely by listening in on 
wireless traffic on an 802.11 network, an attacker could determine the key being used in 
as little as a minute.  There are widely available tools that allow anyone to do so. 

As another example, an early implementation of the Netscape web browser generated 
cryptographic keys using some easily guessable values as seeds to a random number 
generator, such as the time of day and the ID of the process requesting the key.  
Researchers discovered they could guess the keys produced in around 30 seconds 
[GW96]. 

You might have heard that PK systems use much longer keys, 2K or 4K bits.  Sounds 
much safer, no?  Shouldn’t that at least make them stronger against brute force attacks?  
However, you can’t select keys for this type of cryptosystem at random.  Only a 
relatively few pairs of public and private keys are possible.  That’s because the public and 
private keys must be related to each other for the system to work.  The relationship is 
usually mathematical, and usually intended to be mathematically hard to derive, so 
knowing the public key should not make it easy to know the private key.  However, with 
the public key in hand, one can use the mathematical properties of the system to derive 
the private key eventually.   That’s why PK systems use such big keys – to make sure 
“eventually” is a very long time. 

TIP:  SELECTING KEYS 

One important aspect of key secrecy is selecting a good one to begin with.  For 
public key cryptography, you need to run an algorithm to select one of the few 
possible pairs of keys you will use.  But for symmetric cryptography, you are free to 
select any of the possible keys.  How should you choose? 

Randomly.  If you use any deterministic method to select your key, your opponent’s 
problem of finding out your key has just been converted into a problem of figuring 
out your method.  Worse, since you’ll probably generate many keys over the course 
of time, once he knows your method, he’ll get all of them.  If you use random 
chance to generate keys, though, figuring out one of them won’t help your opponent 
figure out any of your other keys.  This highly desirable property in a cryptographic 
system is called perfect forward secrecy. 

Unfortunately, true randomness is hard to come by.  The best source for operating 
system purposes is to examine hardware processes that are believed to be random in 
nature, like low order bits of the times required for pieces of hardware to perform 
operations, and convert the results into random numbers.  That’s called gathering 
entropy.  In Linux, this is done for you automatically, and you can use the gathered 
entropy by reading /dev/random.   Use it to generate your keys.  It’s not perfect, 
but it’s good enough for many purposes. 



But that only matters if you keep the private key secret.  By now, we hope this sounds 
obvious, but many makers of embedded devices use PK to provide encryption for those 
devices, and include a private key in the device’s software.  All too often, the same 
private key is used for all devices of a particular model.  Such shared private keys 
invariably become, well, public.  In September 2016, one study found 4.5 million 
embedded devices relying on these private keys that were no longer so private [V16].  
Anyone could pose as any of these devices for any purpose, and could read any 
information sent to them using PK.  In essence, the cryptography performed by these 
devices was little more than window dressing and did not increase the security of the 
devices by any appreciable amount. 

To summarize, cracking cryptography is usually about learning the key.  So . . .  

THE CRYPTOGRAPHY’S BENEFIT RELIES ENTIRELY ON THE SECRECY OF 
THE KEY. 

Cryptography and Operating Systems 

Cryptography is fascinating, but lots of things are fascinating, while having no bearing on 
operating systems.  Why did we bother spending half a chapter on cryptography?  
Because we can use it to protect operating systems. 

But not just anywhere and for all purposes.  We’ve pounded into your head that key 
secrecy is vital for effective use of cryptography.  That should make it clear that any time 
the key can’t be kept secret, you can’t effectively use cryptography.  Casting your mind 
back to the first chapter on security, remember that the operating system has control of 
and access to all resources on a computer.  Which implies that if you have encrypted 
information on the computer, and you have the necessary key to decrypt it on the same 
computer, the operating system on that machine can decrypt the data, whether that was 
the effect you wanted or not.   

Either you trust your operating system or you don’t.  If you don’t, life is going to be 
unpleasant anyway, but one implication is that the untrusted operating system, having 
access at one time to your secret key, can copy it and re-use it whenever it wants to.  If, 
on the other hand, you trust your operating system, you don’t need to hide your data from 
it, so cryptography isn’t necessary in this case.  This observation has relevance to any 
situation in which you provide your data to something you don’t trust.  For instance, if 
you don’t trust your cloud computing facility with your data, you won’t improve the 
situation by giving them your data in plaintext and asking them to encrypt it.  They’ve 
seen the plaintext and can keep a copy of the key.    

If you’re sure your operating system is trustworthy right now, but are concerned it might 
not be later, you can encrypt something now and make sure the key is not stored on the 
machine.  Of course, if you’re wrong about the current security of the operating system, 
or if you ever decrypt the data on the machine after the OS goes rogue, your 
cryptography will not protect you, since that ever-so-vital secrecy of the key will be 
compromised. 



One can argue that not all compromises of an operating system are permanent.  Many are, 
but some only give an attacker temporary access to system resources, or perhaps access 
to only a few particular resources.  In such cases, if the encrypted data is not stored in 
plaintext and the decryption key is not available at the time or in the place the attacker 
can access, encrypting that data may still provide benefit.  The tricky issue here is that 
you can’t know ahead of time whether successful attacks on your system will only occur 
at particular times, for particular durations, or on particular elements of the system.   So if 
you take this approach, you want to minimize all your exposure: decrypt infrequently, 
dispose of plaintext data quickly and carefully, and don’t keep a plaintext version of the 
key in the system except when performing the cryptographic operations.  Such 
minimization can be difficult to achieve. 

So if cryptography won’t protect us completely against a dishonest operating system, 
what operating system uses for cryptography are there?  We saw a specialized example in 
the chapter on authentication.  Some cryptographic operations are one-way: they can 
encrypt, but never decrypt.  We can use these to securely store passwords in encrypted 
form, even if the operating system is compromised, since the encrypted passwords can’t 
be decrypted.  (But if the legitimate user ever provides the correct password to a 
compromised operating system, all bets are off, alas.  The compromised operating system 
will copy the password provided by the user and hand it off to whatever villain is 
working behind the scenes, before it runs the password through the one-way 
cryptographic hashing algorithm.) 

What else?  In a distributed environment, if we encrypt data on one machine and then 
send it across the network, all the intermediate components won’t be part of our machine, 
and thus won’t have access to the key.  The data will be protected in transit.  Of course, 
our partner on the final destination machine will need the key if she is to use the data.  As 
we promised before, we’ll get to that issue in another chapter. 

Anything else?  Well, what if someone can get access to some of our hardware without 
going through our operating system?  If the data stored on that hardware is encrypted, and 
the key isn’t on that hardware itself, the cryptography will protect the data.  This form of 
encryption is sometimes called at-rest data encryption, to distinguish it from encrypting 
data we’re sending between machines.  It’s useful and important, so let’s examine it in 
more detail. 

At-Rest Data Encryption 

As we saw in the chapters on persistence, data can be stored on a disk drive, flash drive, 
or other medium.  If it’s sensitive data, we might want some of our desirable security 
properties, such as secrecy or integrity, to be applied to it.  One technique to achieve 
these goals for this data is to store it in encrypted form, rather than in plaintext.  Of 
course, encrypted data cannot be used in most computations, so if the machine where it is 
stored needs to perform a general computation on the data, it must first be decrypted4.   If 
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created a form of cryptography called homomorphic cryptography, which allows you to 



the purpose is merely to preserve a safe copy of the data, rather than to use it, decryption 
may not be necessary, but that is not the common case. 

The data can be encrypted in different ways, using different ciphers (DES, AES, 
Blowfish), at different granularities (records, data blocks, individual files, entire file 
systems), by different system components (applications, libraries, file systems, device 
drivers).  One common general use of at-rest data encryption is called “full disk 
encryption.”  This usually means that the entire contents (or almost the entire contents) of 
the storage device are encrypted.  Despite the name, full-disk encryption can actually be 
used on many kinds of persistent storage media, not just hard disk drives.  Full disk 
encryption is usually provided either in hardware (built into the storage device) or by 
system software (a device driver or some element of a file system).  In either case, the 
operating system plays a role in the protection provided.  Windows BitLocker and 
Apple’s FileVault are examples of software-based full disk encryption. 

Generally, at boot time either the decryption key or information usable to obtain that key 
(such as a passphrase – like a password, but possibly multiple words) is requested from 
the user.  If the right information is provided, the key or keys necessary to perform the 
decryption become available (either to the hardware or the operating system). As data is 
placed on the device, it is encrypted.  As data moves off the device, it is decrypted. The 
data remains decrypted as long as it is stored anywhere in the machine’s memory, 
including in shared buffers or user address space.  When new data is to be sent to the 
device, it is first encrypted.  The data is never placed on the storage device in decrypted 
form.  After the initial request to obtain the decryption key is performed, encryption and 
decryption are totally transparent to users and applications.  They never see the data in 
encrypted form and are not asked for the key again, until the machine reboots. 

Cryptography is a computationally expensive operation, particularly if performed in 
software.  There will be overhead associated with performing software-based full disk 
encryption.  Reports of the amount of overhead vary, but a few percent extra latency for 
disk-heavy operations is common.  For operations making less use of the disk, the 
overhead may be imperceptible.  For hardware based full disk encryption, the rated speed 
of the disk drive will be achieved, which may or may not be slower than a similar model 
not using full disk encryption. 

What does this form of encryption protect against?   

• It offers no extra protection against users trying to access data they should not 
be allowed to see.  Either the standard access control mechanisms that the 
operating system provides work (and such users can’t get to the data because 

                                                 

perform operations on the encrypted form of the data without decrypting it.  For example, 
you could add one to an encrypted integer without decrypting it first.  When you 
decrypted the result, sure enough, one would have been added to the original number.  
Homomorphic ciphers have been developed, but high computational and storage costs 
render them impractical for most purposes, as of the writing of this chapter.  Perhaps that 
will change, with time. 



they lack access permissions) or they don’t (in which case such users will be 
given equal use of the decryption key as anyone else).  

• It does not protect against flaws in applications that divulge data.  Such flaws 
will permit attackers to pose as the user, so if the user can access the 
unencrypted data, so can the attacker.  So, for example, it offers little 
protection in the face of buffer overflow or SQL injection attacks.   

• It does not protect against dishonest privileged users on the system, such as a 
system administrator.  If his privileges allow him to pose as the user who owns 
the data or to install system components that give him access to the user’s data, 
he will be given decrypted copies of the data on request.   

• It does not protect against security flaws in the operating system itself.  Once 
the key is provided, it is available (directly in memory, or indirectly by asking 
the hardware to use it) to the operating system, whether that OS is trustworthy 
and secure or compromised and insecure. 

So what benefit does this form of encryption provide?  Consider this situation.  If a 
hardware device storing data is physically moved from one machine to another, the 
operating system on the other machine is not obligated to honor the access control 
information stored on the device.  In fact, it need not even use the same file system to 
access that device.  For example, it can treat the device as merely a source of raw data 
blocks, rather than an organized file system.  So any access control information 
associated with files on the device might be ignored by the new operating system. 

However, if the data on the device is encrypted via full disk encryption, the new machine 
will usually be unable to obtain the encryption key.  It can access the raw blocks, but they 
are encrypted and cannot be decrypted without the key.  This benefit would be useful if 
the hardware in question was stolen and moved to another machine, for example.  This 
situation is a very real possibility for mobile devices, which are frequently lost or stolen.  
Disk drives are sometimes resold, and data belonging to the former owner (including 
quite sensitive data) has been found on them by the re-purchaser.   These are important 
cases where full disk encryption provides real benefits. 

For other forms of encryption of data at rest, the system must still address the issues of 
how much is encrypted, how to obtain the key, and when to encrypt and decrypt the data, 
with different types of protection resulting depending on how these questions are 
addressed.  Generally, such situations require that some software ensures that the 
unencrypted form of the data is no longer stored anywhere, including caches, and that the 
cryptographic key is not available to those who might try to illicitly access the data.  
There are relatively few circumstances where such protection is of value, but there are a 
few common examples: 

• Archiving data that might need to be copied and must be preserved, but need 
not be used.  In this case, the data can be encrypted at the time of its creation, 
and perhaps never decrypted, or only decrypted under special circumstances 
under the control of the data’s owner.    If the machine was uncompromised 
when the data was first encrypted and the key is not permanently stored on the 
system, the encrypted data is fairly safe. 



• Storing sensitive data in a cloud computing facility, a variant of the previous 
example.  If one does not completely trust the cloud computing provider (or 
one is uncertain of how careful that provider is ⎯ remember, when you trust 
another computing element, you’re trusting not only its honesty, but also its 
carefulness and correctness), encrypting the data before sending it to the cloud 
facility is wise.  Many cloud backup products include this capability.  In this 
case, the cryptography and key use occur before moving the data to the 
untrusted system, or after it is recovered from that system. 

• User-level encryption performed through an application. For example, a user 
might choose to encrypt an email message, with any stored version of it being 
in encrypted form.  In this case, the cryptography will be performed by the 
application, and the user will do something to make a cryptographic key 
available to the application.  Ideally, that application will ensure that the 
unencrypted form of the data and the key used to encrypt it are no longer 
readily available after encryption is completed.  Remember, however, that 
while the key exists, the operating system can obtain access to it without your 
application knowing. 

One important special case for encrypting selected data at rest is a password vault (also 
known as a key ring).   Typical users interact with many remote sites that require them to 
provide passwords.  (Authentication based on what you know, remember?)  The best 
security is achieved if one uses a different password for each site, but doing so places a 
burden on the human user, who generally has a hard time remembering many passwords.  
A solution is to encrypt all the different passwords and store them on the machine, 
indexed by the site they are used for.  When one of the passwords is required, it is 
decrypted and provided to the site that requires it.   

For password vaults and all such special cases, the system must have some way of 
obtaining the required key whenever data needs to be encrypted or decrypted. If an 
attacker can obtain the key, the cryptography becomes useless, so safe storage of the key 
becomes critical.  Typically, if the key is stored in unencrypted form anywhere on the 
computer in question, the encrypted data is at risk, so well designed encryption systems 
tend not to do so.  For example, in the case of password vaults, the key used to decrypt 
the passwords is not stored in the machine’s stable storage.  It is obtained by asking the 
user for it when required, or asking him for a passphrase used to derive the key. The key 
is then used to decrypt the needed password.  Maximum security would suggest 
destroying the key as soon as this decryption was performed (remember the principle of 
least privilege?), but doing so would imply that the user would have to re-enter the key 
each time he needed a password (remember the principle of acceptability?).  A 
compromise between usability and security is reached, in most cases, by remembering the 
key after first entry for a significant period of time, but only keeping it in RAM.  When 
the user logs out, or the system shuts down, or the application that handles the password 
vault (such as a web browser) exits, the key is “forgotten.”  This approach is reminiscent 
of single sign-on systems, where a user is asked for his password when he first accesses 
the system, but is not required to re-authenticate himself again until he logs out.  It has 
the same disadvantages as those systems, such as permitting an unattended terminal to be 
used by unauthorized parties to use someone else’s access permissions.  But both have 



the tremendous advantage that they don’t annoy their users so much that they are 
abandoned in favor of systems offering no security whatsoever. 

Cryptographic Capabilities 

Remember from our chapter on access control that capabilities had the problem that we 
could not leave them in users’ hands, since then users could forge them and grant 
themselves access to anything they wanted.  Cryptography can be used to create 
unforgeable capabilities.   A trusted entity could use cryptography to create a sufficiently 
long and securely encrypted data structure that indicated that the possessor was allowed 
to have access to a particular resource.  This data structure could then be given to a user, 
who would present it to the owner of the matching resource to obtain access.  The system 
that actually controlled the resource must be able to check the validity of the data 
structure before granting access, but would not need to maintain an access control list. 

Such cryptographic capabilities could be created either with symmetric or public key 
cryptography.  With symmetric cryptography, both the creator of the capability and the 
system checking it would need to share the same key.  This option is most feasible when 
both of those entities are the same system, since otherwise it requires moving keys 
around between the machines that need to use the keys, possibly at high speed and scale, 
depending on the use scenario.   One might wonder why the single machine would bother 
creating a cryptographic capability to allow access, rather than simply remembering that 
the user had passed an access check, but there are several possible reasons.  For example, 
if the machine controlling the resource worked with vast numbers of users, keeping track 
of the access status for each of them would be costly and complex, particularly in a 
distributed environment where the system needed to worry about failures and delays.  Or 
if the system wished to give transferable rights to the access, as it might if the principal 
might move from machine to machine, it would be more feasible to allow the capability 
to move with the principal and be used from any location.  Symmetric cryptographic 
capabilities also make sense when all of the machines creating and checking them are 
inherently trusted and key distribution is not problematic. 

If public key cryptography is used to create the capabilities, then the creator and the 
resource controller need not be co-located and the trust relationships need not be as 
strong.  The creator of the capability needs one key (typically the secret key) and the 
controller of the resource needs the other.  If the content of the capability is not itself 
secret, then a true public key can be used, with no concern over who knows it.  If secrecy 
(or at least some degree of obscurity) is required, what would otherwise be a public key 
can be distributed only to the limited set of entities that would need to check the 
capabilities5.  A resource manager could create a set of credentials (indicating which 
principal was allowed to use what resources, in what ways, for what period of time) and 
then encrypt them with his private key.  Any one else can validate those credentials by 

                                                 
5 Remember, however, that if you are embedding a key in a piece of widely distributed 
software, you can count on that key becoming public knowledge.  So even if you believe 
the matching key is secret, not public, it is unwise to rely too heavily on that belief. 



decrypting them with the resource manager's public key.  As long as only the resource 
manager knows the private key, no one can forge capabilities. 

As suggested above, such cryptographic capabilities can hold a good deal of information, 
including expiration times, identity of the party who was given the capability, and much 
else.  Since strong cryptography will ensure integrity of all such information, the 
capability can be relied upon.  This feature allows the creator of the capability to prevent 
arbitrary copying and sharing of the capability, at least to a certain extent.  For example, a 
cryptographic capability used in a network context can be tied to a particular IP address, 
and would only be regarded as valid if the message carrying it came from that address. 

Many different encryption schemes can be used.  The important point is that the 
encrypted capabilities must be long enough that it is computationally infeasible to find a 
valid capability by brute force enumeration or random guessing (e.g., the number of 
invalid bit patterns is 10^15 times larger than the number of valid bit patterns). 

We’ll say a bit more about cryptographic capabilities in the chapter on distributed system 
security. 

Summary 

Cryptography can offer certain forms of protection for data even when that data is no 
longer in a system’s custody.  These forms of protection include secrecy, integrity, and 
authentication.  Cryptography achieves such protection by converting the data’s original 
bit pattern into a different bit pattern, using an algorithm called a cipher.  In most cases, 
the transformation can be reversed to obtain the original bit pattern.  Symmetric ciphers 
use a single secret key shared by all parties with rights to access the data.  Asymmetric 
ciphers use one key to encrypt the data and a second key to decrypt the data, with one of 
the keys kept secret and the other commonly made public.  Cryptographic hashes, on the 
other hand, do not allow reversal of the cryptography and do not require the use of keys.   

Strong ciphers make it computationally infeasible to obtain the original bit pattern 
without access to the required key.  For symmetric and asymmetric ciphers, this implies 
that only holders of the proper key can obtain the cipher’s benefits.  Since cryptographic 
hashes have no key, this implies that no one should be able to obtain the original bit 
pattern from the hash. 

For operating systems, the obvious situations in which cryptography can be helpful are 
when data is sent to another machine, or when hardware used to store the data might be 
accessed without the intervention of the operating system.  In the latter case, data can be 
encrypted on the device (using either hardware or software), and decrypted as it is 
delivered to the operating system. 

Ciphers are generally not secret, but rather are widely known and studied standards.  A 
cipher’s ability to protect data thus relies entirely on key secrecy.  If attackers can learn, 
deduce, or guess the key, all protection is lost.  Thus, extreme care in key selection and 
maintaining key secrecy is required if one relies on cryptography for protection.  A good 



principle is to store keys in as few places as possible, for as short a duration as possible, 
available to as few parties as possible. 
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