4 N

File Systems
CS 111
Operating System Principles
Peter Rether

eeeeeee

4 Outline

* File systems:
— Why do we need them?
— Why are they challenging?

* Basic elements of file system design
* Designing file systems for disks

— Basic 1ssues

— Free space, allocation, and deallocation

\

CS 111

Summer 2015

/ [Introduction } \

* Most systems need to store data persistently

— So 1t’s still there after reboot, or even power down

* Typically a core piece of functionality for the
system

— Which 1s going to be used all the time

* Even the operating system itself needs to be
stored this way

* So we must store some data persistently

\ — Most commonly on a disk drive Y,

CS 111 Lecture 9
Summer 2015 Page 3

/ Our Persistent Data Options \

* Use raw persistent storage to store the data
— Hard for users to work with

— Not much easier for OS developers

e Use a database to store the data

— Probably more structure (and possibly overhead)
than we need or can afford

* Use a file system

— Some organized way of structuring persistent data

\' — Which makes sense to users and programmers /

CS 111 Lecture 9
Summer 2015 Page 4

/ File Systems \

* Ornginally the computer equivalent of a physical
filing cabinet

Put related sets of data into individual containers

Put them all into an overall storage unit

Organized by some simple principle
— E.g., alphabetically by title
— Or chronologically by date

* (Goal 1s to provide:

— Persistence

— Ease of access /

s — Good performance Lectune 9
Summer 2015 Page 5

/ The Basic File System Concept\

* Organize data into natural coherent units
— Like a paper, a spreadsheet, a message, a program
* Store each unit as 1ts own self-contained entity
— A file
— Store each file in a way allowing efficient access

* Provide some simple, powerful organizing
principle for the collection of files

— Making 1t easy to find them
\ And easy to organize them /

CS 111 Lecture 9
Summer 2015 Page 6

/ File Systems and Hardware \

* File systems are typically stored on hardware
providing persistent memory

— Disks, tapes, flash memory, etc.

* With the expectation that a file put 1n one
“place” will be there when we look again

* Performance considerations will require us to
match the implementation to the hardware

* But ideally, the same user-visible file system
should work on any reasonable hardware y

\

CS 111 Lecture 9
Summer 2015 Page 7

/ Data and Metadata \

* File systems deal with two kinds of information

* Data — the information that the file 1s actually
supposed to store

— E.g., the mstructions of the program or the words 1n the
letter

* Metadata — Information about the information the file
stores
— E.g., how many bytes are there and when was it created

— Sometimes called attributes

» Ultimately, both data and metadata must be stored
persistently /

csit — And usually on the same piece of hardware Lecture 9
Summer 2015 Page 8

Bridging the Gap

We want something like . . . But we’ve got

Slides

smemie T something like .

DEVICES 4 Date Modified siz
E ibisk M 22,2013 11:21 AM 66 K
v 27, 2013 1:03 PM lzlkl

HOW dO

PLACES

Spirue
0 R)
'|‘ l:li‘—
[|
5 platters — | | head
10 surfaces ——— | positioning
: —— | | assembl
drwxr-xr-x 8 root wheel 272 May 4 2818 X11 8 e y
Or at lruxr-xr-x 1 root wheel 3 May 4 2018 X11R6 -» X11 9 —
drwxr-xr-x 913 root wheel 31842 Apr 21 12:21 bin Motor
1 t drwxr-xr-x 336 root wheel 11424 Mar 17 89:13 lib
eaS druxr-xr-x 183 root wheel 3502 Apr 21 12:23 libexec
drwxy-xr-x 7 root wheel 238 Jan 16 23:08 local
druxr-xr-x 238 root wheel 8892 Mar 17 89:13 sbin
druxr-xr-x 59 root wheel 28086 Apr 21 12:21 share
druwxr-xr-x 4 root wheel 136 May 4 2618 standalone
CS 111 Lecture 9

Summer 2015 Page 9

/ A Further Wrinkle \

* We want our file system to be agnostic to the storage
medium

* Same program should access the file system the same
way, regardless of actual storage medium
— Otherwise hard to write portable programs

* Should work the same for disks of different types
 Orif we use a RAID instead of one disk
 Or 1f we use flash instead of disks

* Orif even we don’t use persistent memory at all
\ — E.g., RAM file systems /

CS 111 Lecture 9
Summer 2015 Page 10

/ Desirable File System Properties\

* What are we looking for from our file system?

— Persistence
— Easy use model

* For accessing one file

* For organizing collections of files
— Flexibility
* No limit on number of files

* No limit on file size, type, contents

— Portability across hardware device types

— Performance

— Reliability
\ /

1y — Suitable security s
Summer 2015 Page 11

/ [Basics of File System Design} \

* Where do file systems fit in the OS?
e File control data structures

\ /

CS 111 Lecture 9
Summer 2015 Page 12

The file !

system
API

A common
internal

interface '------d--"meREee ket - femmnd - o ?
for file i —
systems 1 B 3 BB e

fil t
Device independent block 1/0 He SYStems

device driver [interfaces (disk-ddi)

\

CS 111
Summer 2015

Non-file
system
services
that use the
same API

Lecture 9
Page 13

/ The File System API \

Device independent block 1/O

device driver [interfaces (disk-ddi)

\

CS 111 Lecture 9
Summer 2015 Page 14

/ The File System API \

» Highly desirable to provide a single API to
programmers and users for all files

* Regardless of how the file system underneath 1s
actually implemented

* Arequirement 1f one wants program portability

— Very bad 1f a program won’t work because there’s a
different file system underneath

* Three categories of system calls here

1. File container operations

2. Directory operations

\

s 3. File I/O operations Lot

Summer 2015 Page 15

/ File Container Operations \

* Standard file management system calls

— Manipulate files as objects

— These operations 1ignore the contents of the file
* Implemented with standard file system

methods

— Get/set attributes, ownership, protection ...

— Create/destroy files and directories

— Create/destroy links

* Real work happens 1n file system
implementation /

CS 111 Lecture 9
Summer 2015 Page 16

/ Directory Operations

\

Summer 2015

* Directories provide the organization of a file
system

— Typically hierarchical

— Sometimes with some extra wrinkles

* At the core, directories translate a name to a
lower-level file pointer
* Operations tend to be related to that

— Find a file by name
— Create new name/file mapping

<1, — List a set of known names

\

Lecture 9

Page 17

/ File I/O Operations \

* Open — map name 1nto an open instance

Read data from file and write data to file
— Implemented using logical block fetches
— Copy data between user space and file buffer

— Request file system to write back block when done

Seek

— Change logical offset associated with open instance

Map file into address space

— File block buffers are just pages of physical memory
\ — Map into address space, page it to and from file system /

CS 111 Lecture 9
Summer 2015 Page 18

/ The Virtual File System Layer \

T
HEAE

Device independent block 1/O

device driver [interfaces (disk-ddi)

file
1/0

device
1/0

\

CS 111
Summer 2015 Page 19

The Virtual File System
(VES) Layer

* Federation layer to generalize file systems

— Permits rest of OS to treat all file systems as the same
— Support dynamic addition of new file systems

* Plug-in interface for file system implementations

— DOS FAT, Unix, EXT3, ISO 9660, network, etc.

— Each file system implemented by a plug-in module
— All implement same basic methods

* Create, delete, open, close, link, unlink,

* Get/put block, get/set attributes, read directory, etc.

* Implementation 1s hidden from higher level clients

\

., — Allclients see are the standard methods and properties

\

/

Lecture 9

Summer 2015

Page 20

-~

The File System Layer

App 4

file
1/0

ﬁ

device
I/0

Device independent block 1/O

\

CS 111
Summer 2015

device driver [interfaces (disk-ddi)

Lecture 9
Page 21

/ The File Systems Layer

* Desirable to support multiple different file systems

* All implemented on top of block I/O
— Should be independent of underlying devices

* All file systems perform same basic functions
— Map names to files
— Map <file, offset> into <device, block>
— Manage free space and allocate it to files
— Create and destroy files
— Get and set file attributes
\ — Manipulate the file name space

CS 111

\

Lecture 9

Summer 2015

Page 22

/ Why Multiple File Systems? \

* Why not instead choose one “good” one?

* There may be multiple storage devices
— E.g., hard disk and flash drive
— They might benefit from very different file systems

* Dafferent file systems provide different services,
despite the same interface
— Differing reliability guarantees
— Differing performance
— Read-only vs. read/write

\° Different file systems used for different purposes)

11— E.g., atemporary file system L oetine §
Summer 2015 Page 23

/ Device Independent Block 1/O \

Layer

T
Jll

Device independent block 1/O

device driver [interfaces (disk-ddi)

file
1/0

device
1/0

Summer 2015 Page 24

/ File Systems and Block 1/0 \

Devices
* File systems typically sit on a general block 1/0 layer
* A generalizing abstraction — make all disks look same

* Implements standard operations on each block device
— Asynchronous read (physical block #, buffer, bytecount)
— Asynchronous write (physical block #, buffer, bytecount)

Map logical block numbers to device addresses

— E.g., logical block number to <cylinder, head, sector>

* Encapsulate all the particulars of device support

— I/0O scheduling, initiation, completion, error handlings

— Size and alignment limitations
CS 111 Lecture 9
Summer 2015 Page 25

/~ Why Device Independent ™\
Block I/0O?

A better abstraction than generic disks
Allows unified LRU buffer cache for disk data

— Hold frequently used data until 1t 1s needed again

— Hold pre-fetched read-ahead data until 1t 1s requested

* Provides buffers for data re-blocking
— Adapting file system block size to device block size
— Adapting file system block size to user request sizes

Handles automatic buffer management

— Allocation, deallocation
\ — Automatic write-back of changed buffers /

CS 111 Lecture 9
Summer 2015 Page 26

/ Why Do We Need That Cache?\

* File access exhibits a high degree of reference
locality at multiple levels:

— Users often read and write a single block in small
operations, reusing that block

— Users read and write the same files over and over
— Users often open files from the same directory
— OS regularly consults the same meta-data blocks

* Having common cache eliminates many disk
\ accesses, which are slow)

CS 111 Lecture 9
Summer 2015 Page 27

/ﬁevices, Sockets and File System\

App 4

Summer 2015 Page 28

© DiskDrives. N

 Still the primary method of providing stable
storage

— Storage meant to last beyond a single power cycle
of the computer

— Particularly for file systems

* Getting good performance from disk drives is
critical for file system performance

* A place where physics meets computer science

\ — Somewhat uncomfortably)

CS 111 Lecture 9
Summer 2015 Page 29

/" Some Important Disk N\

Characteristics
* Disks are random access devices (mostly . . .)

— With complex usage, performance, and scheduling

* Key OS services depend on disk I/0
— Program loading, file I/O, paging
— Disk performance drives overall performance

* Disk I/O operations are subject to overhead

— Higher overhead means fewer operations/second

— Careful scheduling can reduce overhead

CS 111

\ — Clever scheduling can improve throughput, delay

/

re 9

Summer 2015 Page 30

/ Disk Drives — A Physical View \

Spindle 10 heads

0

[

————+
[|
[

—r——

1
5 platters — | | head

10 surfaces ——— | positioning

——— |

. —— | | assembly
|—1—|-

9 —— —r

Motor

\ /

CS 111 Lecture 9
Summer 2015 Page 31

/ Disk Drives — A Logical View \

sectors

rack platter

—_— surface

cylinder -l
\ (10 corresponding tracks) /

CS 111 Lecture 9
Summer 2015 Page 32

/ Disk Drive Terms \

Spindle
— A mounted assembly of circular platters

* Head assembly

— Read/write head per surface, all moving in unison

e Track
— Ring of data readable by one head in one position
Cylinder
— Corresponding tracks on all platters
* Sector
— Logical records written within tracks

\° Disk address = <cylinder / head / sector >)

CS 111 Lecture 9
Summer 2015 Page 33

/ Disk Overheads \

e Seek time

— Time to move heads from current track to the right
track

— Not constant

* Rotational delay
— Time for the right sector to rotate under the head
— Not constant

 Transfer time

— Time to read all the bytes of a sector

\

CS 111 — ConStant Lecture 9

Summer 2015 34 Page 34

/ Typical Disk Drive Performance\

heads 10 platters 3
cylinders 17,000 tracks/inch 18,000
sectors/track 400 bytes/sector 512
RPM 7200 speed 196Mb/sec
seek time 0-15 ms latency 0-8ms

Time to read one 8192 byte block
seek rotate transfer total
best case Oms Oms 333us 333us
worst case 15ms 8ms 333us 23.3ms (70X)
\average 9ms 4ms 333us 13.3ms (40X) Y
CS 111 Lecture

Summer 2015 Page 35

/~ Why Is This Problematic =~ ™\
For the OS?

* When you go to disk, it could be fast or slow
— If you go to disk a lot, that matters

* The OS can make choices that make 1t faster or
slower
— Deciding where to put a piece of data on disk

— Deciding when to perform an I/0

— Reordering multiple I/0s to minimize seek time
and latency

T Perhaps optimistically performing I/Os that)
st haven’t been requested Lecture 9

Summer 2015 Page 36

e A file 1s a named collection of information

* Primary roles of file system:
— To store and retrieve data
— To manage the media/space where data 1s stored

* Typical operations:
— Where 1s the first block of this file?
— Where 1s the next block of this file?
— Where 1s block 35 of this file?
— Allocate a new block to the end of this file
\ — Free all blocks associated with this file /

CS 111 Lecture 9
Summer 2015 Page 37

-

\

CS 111

* Essentially a question of how you managed the
space on your disk

* Space management on disk 1s complex

— There are millions of blocks and thousands of files

— Poor management leads to poor performance

* Must track the space assigned to each file

— On-disk, master data structure for each file Leoture 9

Files are continuously created and destroyed

Files can be extended after they have been written

Finding Data On Disks \

Data placement on disk has performance effects

Summer 2015

Page 38

/ On-Disk File Control Structures\

* On-disk description of important attributes of a file
— Particularly where its data is located

* Virtually all file systems have such data structures
— Different implementations, performance & abilities

— Implementation can have profound effects on what the file
system can do (well or at all)

* A core design element of a file system

* Paired with some kind of in-memory representation
of the same information

\ /

CS 111 Lecture 9
Summer 2015 Page 39

/ The Basic File Control \

Structure Problem
* A file typically consists of multiple data blocks

* The control structure must be able to find them
* Preferably able to find any of them quickly

— I.e., shouldn’t need to read the entire file to find a
block near the end

* Blocks can be changed

 New data can be added to the file
— Or old data deleted

CS\I; Files can be sparsely populated LT

Summer 2015 Page 40

/ The In-Memory Representation\

* On file open, create an in-memory structure

* Not an exact copy of the disk version

— The disk version points to disk sectors

— The 1n-memory version points to RAM pages

* Or indicates that the block 1sn’t in memory
— Also keeps track of which blocks are dirty and
which aren’t
* Handles 1ssues of multiple processes sharing
\ an open file stmultaneously y

CS 111 Lecture 9
Summer 2015 Page 41

-

\

CS 111
Summer 2015

[File System Structure }

* How do I organize a disk into a file system?
— Linked extents

* The DOS FAT file system

— File index blocks

* Unix System V file system

\

Lecture 9

Page 42

/ Basics of File System Structure\

* Most file systems live on disks

 Disk volumes are divided into fixed-sized blocks
— Many sizes are used: 512, 1024, 2048, 4096, 8192 ...

Most blocks will be used to store user data

* Some will be used to store organizing “meta-data”
— Description of the file system (e.g., layout and state)
— File control blocks to describe individual files
— Lists of free blocks (not yet allocated to any file)

All operating systems have such data structures

\ — Different OSes and file systems have very different goals /

cs1i1 — These result in very different implementations Lecture 9
Summer 2015 Page 43

/ The Boot Block \

* The O™ block of a disk is usually reserved for
the boot block

— Code allowing the machine to boot an OS
* Not usually under the control of a file system
— It typically 1gnores the boot block entirely

e Not all disks are bootable

— But the 0™ block is usually reserved, “just in case”

* So file systems start work at block 1

CS 111 Lecture 9
Summer 2015 Page 44

/ Managing Allocated Space \

* A core activity for a file system, with various choices

* What if we give each file same amount of space?

— Internal fragmentation ... just like memory

What 1f we allocate just as much as file needs?

— External fragmentation, compaction ... just like memory

* Perhaps we should allocate space in “pages”

— How many chunks can a file contain?

The file control data structure determines this

— It only has room for so many pointers, then file 1s “full”

* So how do we want to organize the space 1n a file? /

CS 111 Lecture 9
Summer 2015 Page 45

/" Linked Extents N

__

* A simple answer

File control block contains exactly one pointer
— To the first chunk of the file
— Each chunk contains a pointer to the next chunk

— Allows us to add arbitrarily many chunks to each file

* Pointers can be in the chunks themselves

— This takes away a little of every chunk
— To find chunk N, you have to read the first N-1 chunks

* Pointers can be 1n auxiliary “chunk linkage” table
\ — Faster searches, especially if table kept in memory /

CS 111 Lecture 9
Summer 2015 Page 46

/ The DOS File System

block 05,

block 15,

block 25,

\

CS 111

boot block

Cluster size and FAT length
are specified in the BPB

Data clusters begin
immediately after the end
of the FAT

Root directory begins in
the first data cluster

~

Lecture 9

Summer 2015

Page 47

/ DOS File System Overview \

DOS file systems divide space into “clusters”

— Cluster size (multiple of 512) fixed for each file system
— Clusters are numbered 1 though N

File control structure points to first cluster of a file

File Allocation Table (FAT), one entry per cluster
— Contains the number of the next cluster in file
— A 0 entry means that the cluster is not allocated
— A -1 entry means “end of file”

* File system 1s sometimes called “FAT,” after the name
\ of this key data structure /

CS 111 Lecture 9
Summer 2015 Page 48

/ DOS FAT Clusters \

directory entry File Allocation Table

Each FAT entry
corresponds to a
cluster, and
contains the
number of the
next cluster.

-1 = End of File

cluster #3

0 = free cluster

cluster #4

cluster #5

\

CS 111 Lecture 9
Summer 2015 Page 49

/DOS File System Characteristics\

* To find a particular block of a file
— Get number of first cluster from directory entry

— Follow chain of pointers through File Allocation Table

* Entire File Allocation Table is kept in memory
— No disk I/0 1s required to find a cluster
— For very large files the search can still be long

* No support for “sparse” files
— Of a file has a block 7, 1t must have all blocks < n

* Width of FAT determines max file system size

— How many bits describe a cluster address

\ — Originally 8 bits, eventually expanded to 32 / 9
CS 111 Lecture
Summer 2015 Page 50

/" FileIndex Blocks ~ \

-

* A different way to keep track of where a file’s
data blocks are on the disk
* A file control block points to all blocks 1n file

— Very fast access to any desired block
— But how many pointers can the file control block

hold?
* File control block could point at extent
descriptors
\ — But this still gives us a fixed number of extents /

Summer 2015 Page 51

/ Hierarchically Structured File \
Index Blocks

* To solve the problem of file size being limited
by entries 1n file index block

* The basic file index block points to blocks

* Some of those contain pointers which 1n turn
point to blocks

* Can point to many extents, but still a limit to
how many

— But that limit might be a very large number
\ Has potential to adapt to wide range of file sizes Lecmrz 9

CS 111
Summer 2015 Page 52

/ Unix System V File System \

Block 0 Boot block

Block size and number of [-nodes are
Block 1 specified in super block
Block 2

[-node #1 (traditionally) describes the
root directory

Data blocks begin immediately after the
end of the I-nodes.

\ /

CS 111 Lecture 9
Summer 2015 Page 53

/ Unix Inodes and Block Pointers\

Block pointers
(in I-node)

Triple-indirect Double-indirect Indirect blocks Data blocks

\

CS 111 Lecture 9
Summer 2015 Page 54

/ Why Is This a Good Idea? \

* The UNIX pointer structure seems ad hoc and
complicated

* Why not something simpler?
— E.g., all block pointers are triple indirect

* File sizes are not random
— The majority of files are only a few thousand bytes long

* Unix approach allows us to access up to 40Kbytes
(assuming 4K blocks) without extra I/Os

— Remember, the double and triple indirect blocks
must themselves be fetched off disk

\ Also remember, it’s invisible to users /

CS 111 Lecture 9
Summer 2015 Page 55

/How Big a File Can Unix Handle?\

* The on-disk inode contains 13 block pointers
— First 10 point to first 10 blocks of file

— 11th points to an indirect block (which contains pointers to 1024
blocks)

— 12th points to a double indirect block (pointing to 1024 indirect blocks)
— 13th points to a triple indirect block (pointing to 1024 double indirect
blocks)
* Assuming 4k bytes per block and 4-bytes per pointer
— 10 direct blocks = 10 * 4K bytes = 40K bytes
— Indirect block = 1K * 4K = 4M bytes
— Double indirect = 1K * 4M = 4G bytes
— Triple indirect = 1K * 4G = 4T bytes
\ — At the time system was designed, that seemed impossibly large /
— But. ..

CS 111 Lecture 9
Summer 2015 Page 56

/ Unix Inode Performance Issues\

The mode 1s in memory whenever file 1s open
So the first ten blocks can be found with no extra I/O
After that, we must read indirect blocks

— The real pointers are in the indirect blocks

— Sequential file processing will keep referencing it
— Block I/O will keep it 1n the buffer cache

1-3 extra I/O operations per thousand pages

— Any block can be found with 3 or fewer reads

* Index blocks can support “sparse” files

— Not unlike page tables for sparse address spaces /
CS 111 Lecture 9
Summer 2015 Page 57

