4 N

Memory Management
CS 111
Operating System Principles
Peter Rether

eeeeeee

/ [Outline} \

* What is memory management about?

* Memory management strategies:
— Fixed partition strategies
— Dynamic domains
— Buffer pools
— Garbage collection

— Memory compaction

\ /

CS 111 Lecture 7
Summer 2015 Page 2

/ [Memory Management} \

* Memory is one of the key assets used in
computing

* In particular, memory abstractions that are
usable from a running program

— Which, in modern machines, typically means
RAM

* We have a limited amount of it

* Lots of processes want to use it

\e How do we manage 1ts use? /

CS 111 Lecture 7
Summer 2015 Page 3

/ What Is Memory Used For? \

* Anything that a program needs to access

— Except control and temporary values, which are
kept 1n registers

 The code

— To allow the process to execute instructions

 The stack

— To keep track of its state of execution

* The heap
\ To hold dynamically allocated variables /

CS 111 Lecture 7
Summer 2015 Page 4

/ Other Uses of Memory

CS 111

Summer 2015

* The operating system needs memory itself

For 1ts own code, stack, and dynamic
allocations

For I/O bufters
To hold per-process control data

The OS shares the same physical memory that

user processes rely on

\' The OS provides overall memory management)

\

Lecture 7

Page 5

/ Aspects of the Memory \
Management Problem

* Most processes can’t perfectly predict how much
memory they will use

* The processes expect to find their existing data when
they need 1t where they left it

* The entire amount of data required by all processes
may exceed physical memory

* Switching between processes must be fast

— So you can’t much delay for copying data from one place
to another

* The cost of memory management itself must not be /
CS 111 tOO high Lecture 7

Summer 2015 Page 6

/[Memory Management Strategies}\

* Fixed partition allocations
* Dynamic domains

* Paging
* Virtual memory
 We’ll talk about the last two 1n the next class

\ /

CS 111 Lecture 7
Summer 2015 Page 7

* Pre-allocate partitions for n processes

— Usually one partition per process
* So n partitions

e Partitions come 1n one or a few set sizes

* Very easy to implement
—Common 1n old batch processing systems

* Well suited to well-known job mix

CS 111
Summer 2015

—Reserving space for largest possible process

— Allocation/deallocation very cheap and easy

/ Memory Protection and Fixed \

Partitions
* Need to enforce the boundaries of each
partition
* To prevent one process from accessing
another’s memory

* Could use hardware similar to domain registers
for this purpose

* On the flip side, hard to arrange for shared
memory

\ Especially if only one segment per process /

CS 111
Summer 2015 Page 9

/ Problems With Fixed Partition \

Allocation

* Presumes you know how much memory will
be used ahead of time

* Limits the number of processes supported to
the total of their memory requirements

* Not great for sharing memory
* Fragmentation causes inefficient memory use

\ /

CS 111 Lecture 7
Summer 2015 Page 10

/ Fragmentation \

* A problem for all memory management
systems

— Especially bad for fixed partitions

* Based on processes not using all the memory
they requested

* As aresult, you can’t provide memory for as
many processes as you theoretically could

\ /

CS 111 Lecture 7
Summer 2015 Page 11

/ Fragmentation Example \

Let’s say there are three processes, A, B, and C
Their memory requirements: Available partition sizes:

A: 6 MBytes 8 Mbytes
B: 3 MBytes 4 Mbytes
waste 2MB C: 2 MBytes 4 Mbytes

Total waste = 2MB + 1MB + 2MB =
5/16MB = 31%

waste 1MB waste 2MB

\ Partition 1 Partition 2 Partition 3 /

CS 111 SMB 4MB 4MB Lecture 7
Summer 2015 Page 12

/ Internal Fragmentation \

* Fragmentation comes 1n two kinds:

— Internal and external

* This 1s an example of internal fragmentation

— We’ll see external fragmentation later

* Wasted space in fixed sized blocks

— The requestor was given more than he needed

— The unused part 1s wasted, can’t be used for others

* Internal fragmentation can occur whenever you
\ force allocation in fixed-sized chunks)

CS 111 Lecture 7
Summer 2015 Page 13

/ More on Internal Fragmentation\

* Internal fragmentation 1s caused by a mismatch
between

— The chosen sizes of a fixed-sized blocks

— The actual sizes that programs use

* Average waste: 50% of each block

* Overall waste reduced by multiple sizes

— Suppose blocks come 1n sizes S1 and S2
— Average waste = ((S1/2) + (S2 - S1)/2)/2

\ /

CS 111 Lecture 7
Summer 2015 Page 14

/ Multiple Fixed Partitions \

* You could allow processes to request multiple
partitions
— Of a single or a few sizes
* Doesn’t really help the fragmentation problem
— Now there were more segments to fragment

— Even 1f each contained less memory

\ /

CS 111 Lecture 7
Summer 2015 Page 15

Summary of Fixed Partition \

Allocation
* Very simple
* Inflexible
* Subject to a lot of internal fragmentation

* Not used 1n many modern systems

— But a possible option for special purpose systems,
like embedded systems

— Where we know exactly what our memory needs
will be

\ /

CS 111 Lecture 7
Summer 2015 Page 16

__

* A concept covered 1n a previous lecture
* We’ll just review 1t here

* Domains are regions of memory made
available to a process
— Variable sized, usually any size requested
— Each domain 1s contiguous in memory addresses
— Domains have access permissions for the process
— Potentially shared between processes

\° Each process could have multiple domains

s — With different sizes and characteristics Lecture 7

Summer 2015 Page 17

/ Problems With Domains \

 Not relocatable

— Once a process has a domain, you can’t easily
move its contents elsewhere

* Not easily expandable

* Impossible to support applications with larger
address spaces than physical memory

— Also can’t support several applications whose total
needs are greater than physical memory

\° Also subject to fragmentation

CS 111

Lecture 7
Summer 2015 Page 18

/ Relocation and Expansion \

* Domains are tied to particular address ranges
— At least during an execution

* Can’t just move the contents of a domain to
another set of addresses

— All the pointers 1n the contents will be wrong

— And generally you don’t know which memory
locations contain pointers

* Hard to expand because there may not be
\ space “nearby” /

CS 111 Lecture 7
Summer 2015 Page 19

/ The Expansion Problem \

* Domains are allocated on request
* Processes may ask for new ones later

* But domains that have been given are fixed

— Can’t be moved somewhere else in memory

* Memory management system might have
allocated all the space after a given domain

* In which case, 1t can’t be expanded

\ /

CS 111 Lecture 7
Summer 2015 Page 20

\

CS 111
Summer 2015

[llustrating the Problem \

Now Process B wants to
expand its domain size

But 1f we do that, Process
B steps on Process C’s
memory
We can’t move C’s
domain out of the way

And we can’t move B’s
domain to a free area
We’re stuck, and must deny an expansion request
that we have enough memory to handle /

Lecture 7

Page 21

/ Address Spaces Bigger Than \

\

Physical Memory

* If a process needs that much memory, how
could you possibly support it?
* Two possibilities:

1. It’s not going to use all the memory 1t’s asked for,
or at least not all simultaneously

2. Maybe we can use something other than physical
memory to store some of it

* Domains are not friendly to either option

CS 111 Lecture 7
Summer 2015 Page 22

/ How To Keep Track of Variable\
S1zed Domains?

Start with one large “heap” of memory

* Maintain a free list

— Systems data structure to keep track of pieces of
unallocated memory

* When a process requests more memory:
— Find a large enough chunk of memory
— Carve off a piece of the requested size
— Put the remainder back on a free [ist

* When a process frees memory
\ — Put 1t back on the free list /

CS 111 Lecture 7
Summer 2015 Page 23

/ Managing the Free List \

* Fixed sized blocks are easy to track
— A bit map indicating which blocks are free

* Variable chunks require more information
— A linked list of descriptors, one per chunk

— Each descriptor lists the size of the chunk and
whether it 1s free

— Each has a pointer to the next chunk on list
— Descriptors often kept at front of each chunk

\¢ Allocated memory may have descriptors too /

CS 111 Lecture 7
Summer 2015 Page 24

/ The Free List \
e A

List might
contain all
memory

fragments

...or only
fragments
that are

\ free /

CS 111 Lecture 7
Summer 2015 Page 25

1h'h

/ Free Chunk Carving \

1. Find a large enough free chunk -

2. Reduce its len to requested size I

3.Create a new header for
residual chunk

4. Insert the new chunk into the
list

5. Mark the carved piece as in use !

\ /

CS 111 Lecture 7
Summer 2015 Page 26

-

Variable Domain and \

Fragmentation

* Variable sized domains not as subject to
internal fragmentation
— Unless requestor asked for more than he will use
— Which is actually pretty common

— But at least memory manager gave him no more

than he requested

* Unlike fixed sized partitions, though, subject
to another kind of fragmentation

\ — External fragmentation

CS 111
Summer 2015

Lecture 7
Page 27

/ External Fragmentation

\

CS 111

Summer 2015

We gradually build up small, unusable memory
chunks scattered through memory

~

Lecture 7

Page 28

/External Fragmentation: Causes
and Effects

 Each allocation creates lett-over chunks

— Over time they become smaller and smaller

* The small left-over fragments are useless
— They are too small to satisfy any request
— A second form of fragmentation waste

* Solutions:

— Try not to create tiny fragments

— Try to recombine fragments into big chunks

\ /

CS 111 Lecture 7
Summer 2015 Page 29

/ How To Avoid Creating Small \

Fragments?

* Be smart about which free chunk of memory
you use to satisfy a request

* But being smart costs time

e Some choices:
— Best fit
— Worst fit
— First fit
— Next fit

\ /

CS 111 Lecture 7
Summer 2015 Page 30

-

\

CS 111
Summer 2015

Best Fit

o Search for the “best fit” chunk

— Smallest size greater than or equal to requested

S1Z¢e

* Advantages:
— Might find a perfect fit

* Disadvantages:
— Have to search entire list every time
— Quickly creates very small fragments

\

Lecture 7

Page 31

-

\

CS 111
Summer 2015

Worst Fit

e Search for the “worst fit” chunk

— Largest size greater than or equal to requested size

* Advantages:

— Tends to create very large fragments

... for a while at least

* Disadvantages:

— Still have to search entire list every time

\

Lecture 7

Page 32

/ First Fit

\

CS 111

Summer 2015

* Take first chunk you find that 1s big enough
* Advantages:

— Very short searches

— Creates random sized fragments

* Disadvantages:

— The first chunks quickly fragment
— Searches become longer
— Ultimately 1t fragments as badly as best fit

\

Lecture 7

Page 33

-~

After each
search, set
guess pointer
to chunk after
the one we
chose.

That is the
point at which
we will begin
our next
search.

\

CS 111
Summer 2015

Next Fit

~

Lecture 7

Page 34

/ Next Fit Properties \

* Some advantages of each approach
— Short searches (maybe shorter than first fit)

— Spreads out fragmentation (like worst fit)
* But more fragmentation than best fit

* (Guess pointers are a general technique
— Think of them as a lazy (non-coherent) cache
— If they are right, they save a lot of time
— If they are wrong, the algorithm still works

\ T They can be used in a wide range of problems)

CS 111 Lecture 7
Summer 2015 Page 35

-

* Counters forces of external fragmentation

CS 111
Summer 2015

Coalescing Domains

* All variable sized domain allocation
algorithms have external fragmentation

— Some get 1t faster, some spread 1t out
* We need a way to reassemble fragments
— Check neighbors whenever a chunk is freed

— Recombine free neighbors whenever possible
— Free list can be designed to make this easier

* E.g., where are the neighbors of this chunk?

\

/

Lecture 7

Page 36

/ Free Chunk Coalescing \

free, so coalesce

= !'5
—»
—> e O o
forwards.

chunk i1s free,
so coalesce
backwards.
CS 111
Summer 2015

=

Next chunk is also

Lecture 7
Page 37

/ Fragmentation and Coalescing \

* Opposing processes that operate 1n parallel
— Which of the two processes will dominate?

* What fraction of space 1s typically allocated?
— Coalescing works better with more free space

* How fast is allocated memory turned over?
— Chunks held for long time cannot be coalesced

* How variable are requested chunk sizes?
— High variability increases fragmentation rate

* How long will the program execute?

\ — Fragmentation, like rust, gets worse with time)

CS 111 Lecture 7
Summer 2015 Page 38

/ Coalescing and Free List \
Implementation

* To coalesce, we must know whether the previous and
next chunks are also free

* If the neighbors are guaranteed to be 1n the free list,
we can look at them and see 1f they are free

e [f allocated chunks are not 1n the free list, we must
look at the free chunks before and after us
— And see 1f they are our contiguous neighbors

— This suggests that the free list must be maintained in
address order

\ /

CS 111 Lecture 7
Summer 2015 Page 39

/Variable S1zed Domain Summar}x

* Eliminates internal fragmentation

— Each chunk 1s custom made for requestor

* Implementation 1s more expensive
— Long searches of complex free lists
— Carving and coalescing

* External fragmentation 1s inevitable

— Coalescing can counteract the fragmentation

e Must we choose the lesser of two evils?

\ /

CS 111 Lecture 7
Summer 2015 Page 40

/" Another Option N

___ -

* Fixed partition allocations result 1n internal
fragmentation

— Processes don’t use all of the fixed partition

* Dynamic domain allocations result in external
fragmentation

— The elements on the memory free list get smaller
and less useful

e Can we strike a balance 1n between?

\ /

CS 111 Lecture 7
Summer 2015 Page 41

/ A Special Case for Fixed \
Allocations 5

Internal fragmentation results from
mismatches between chunk sizes and request
sizes (which we have assumed to be randomly

distributed).

But if we look at what actually
happens, it turns out that memory
frequency allocation requests aren’t random at

all.

\ 64 256 IK 4K /

CS 111 Lecture 7
Summer 2015 Page 42

/ Why Aren’t Memory Request \
S1zes Randomly Distributed?

* In real systems, some sizes are requested much
more often than others

* Many key services use fixed-size buffers
— File systems (for disk 1/0)
— Network protocols (for packet assembly)

— Standard request descriptors

* These account for much transient use

— They are continuously allocated and freed

\ OS might want to handle them specially

CS 111 Lecture 7
Summer 2015 Page 43

-

Bufter Pools \

 If there are popular sizes,

— Reserve special pools of fixed size buffers
— Satisfy matching requests from those pools

* Benefit: improved efficiency

— Much simpler than variable domain allocation

* Eliminates searching, carving, coalescing

— Reduces (or eliminates) external fragmentation

* But we must know how much to reserve
— Too little, and the buffer pool will become a bottleneck

— Too much, and we will have a lot of unused buffer space

\° Only satisfy perfectly matching requests

st — Otherwise, back to internal fragmentation

Summer 2015

/

Lecture 7
Page 44

/ How Are Buffer Pools Used? \

* Process requests a piece of memory for a
special purpose
— E.g., to send a message

* System supplies one element from buffer pool

* Process uses it, completes, frees memory
— Maybe explicitly
— Maybe implicitly, based on how such buffers are
used

\ * E.g., sending the message will free the buffer “behind /

cs 111 the process’ back” once the message 1s gone Lecture 7
Summer 2015 Page 45

/Dynamically S1zing Buffer Pools\

* If we run low on fixed sized buffers
— Get more memory from the free list
— Carve 1t up into more fixed sized buffers

 If our free buffer list gets too large
— Return some buffers to the free list

If the free list gets dangerously low
— Ask each major service with a buffer pool to return space

* This can be tuned by a few parameters:
— Low space (need more) threshold
— High space (have too much) threshold
— Nominal allocation (what we free down to)

* Resulting system 1s highly adaptive to changing loads

\ /

CS 111 Lecture 7
Summer 2015 Page 46

/ Lost Memory \

* One problem with buffer pools 1s memory
leaks
— The process 1s done with the memory
— But doesn’t free 1t

* Also a problem when a process manages its
OWNn memory space

— E.g., 1t allocates a big area and maintains 1ts own
free list

\- Long running processes with memory leaks
s can waste huge amounts of memory

Summer 2015

Lecture 7
Page 47

/ Garbage Collection \

* One solution to memory leaks
* Don’t count on processes to release memory
* Monitor how much free memory we’ve got

* When we run low, start garbage collection
— Search data space finding every object pointer
— Note address/size of all accessible objects

— Compute the compliment (what 1s 1naccessible)

— Add all inaccessible memory to the free list

\

CS 111 Lecture 7
Summer 2015 Page 48

/" How Do We Find All I
Accessible Memory?

* Object oriented languages often enable this
— All object references are tagged

— All object descriptors include size information

* It 1s often possible for system resources

— Where all possible references are known
(E.g., we know who has which files open)

* How about for the general case?

\ /

CS 111 Lecture 7
Summer 2015 Page 49

/ General Garbage Collection \

* Well, what would you need to do?
* Find all the pointers in allocated memory
* Determine “how much™ each points to

* Determine what was and was not still pointed
to

* Free what 1sn’t pointed to
 Why might that be difficult?

\ /

CS 111 Lecture 7
Summer 2015 Page 50

/Problems With General Garbage ™

-

CS 111

Collection
A location 1n the data or stack segments might

seem to contain addresses, but ...

— Are they truly pointers, or might they be other data
types whose values happen to resemble addresses?

— Even 1f they are truly pointers, are they themselves
still accessible?

— We might be able to infer this (recursively) for
pointers in dynamically allocated structures ...

— But what about pointers in statically allocated
(potentially global) areas?

And how much 1s “pointed to,” one word or a)
mllllon? Lecture 7

Summer 2015 Page 51

CS 111
Summer 2015

* Garbage collection 1s just another way to free
memory
— Doesn’t greatly help or hurt fragmentation

* Ongoing activity can starve coalescing

— Chunks reallocated before neighbors become free

* We could stop accepting new allocations

— But resulting convoy on memory manager would trash
throughput

* We need a way to rearrange active memory

\ — Re-pack all processes in one end of memory /
— Create one big chunk of free space at other end

Lecture 7

Page 52

/ Memory Compaction \
R

Now let’s
. compact!
swap device P
Largest
free block
Largest
free bloc w
\ An obvious /
CS 111 lmp rovemen t! Lecture 7

Summer 2015 Page 53

ﬁll This Requires Is Relocation . \

* W

\

CS 111

o All

References in the code segment

* The ability to move a process
— From region where 1t was 1nitially loaded

Into a new and different region of memory

hat’s so hard about that?
| addresses 1n the program will be wrong

* Calls and branches to other parts of the code
* References to variables in the data segment

— Plus new pointers created during execution

* That point into data and stack segments

Summer 2015

Lecture 7
Page 54

/ The Relocation Problem \

* It 1s not generally feasible to re-relocate a
process
— Maybe we could relocate references to code

* If we kept the relocation information around

— But how can we relocate references to data?
* Pointer values may have been changed

* New pointers may have been created

e We could never find/fix all address references

— Like the general case of garbage collection

* Can we make processes location independent? /

CS 111 Lecture 7
Summer 2015 Page 55

Virtual Address Spaces

0x00000000

shared code private data

Virtual address space
(as seen by process)

private stack

OxFFFFFFFF

address translation unit
(magical)

Physical address space
(as on CPU/memory bus)

CS 111

Summer 2015

Lecture 7
Page 56

/ Memory Segment Relocation \

* A natural model
— Process address space 1s made up of multiple segments

— Use the segment as the unit of relocation

— Long tradition, from the IBM system 360 to Intel x86
architecture

* Computer has special relocation registers
— They are called segment base registers

— They point to the start (in physical memory) of each
segment

— CPU automatically adds base register to every address

* OS uses these to perform virtual address translation
— Set base register to start of region where program is loaded
\ — If program 1s moved, reset base registers to new location /

cs11 — Program works no matter where its segments are loaded recture 7
Summer 2015 Page 57

0x00000000

How Does Segment
Relocation Work?

Virtual address space

shared code

private data

"

private stack

OxFFF! FFFF

code base register

data base .egister

aux base rugister

stack base register

CS 111

physicalss virtugl + base,,

g

Physical memory

stack

code

data

DLL

Summer 2015

Lecture 7
Page 58

/ Relocating a Segment \

The virtual address of the

stack doesn’t change]
000000000 Let’s say we need to

shared code o
move the stack 1in
physical memory

private data

private stack

OxFFF] FFFF

code base register data base .egister

aux base register stack base register Phy sical memory

physical = virtual + base,, stack

code data

We just change the
value 1n the stack bLL y
cs 111 base register Lecture 7

Summer 2015 Page 59

/ Relocation and Safety \

* Arelocation mechanism (like base registers) 1s good
— It solves the relocation problem
— Enables us to move process segments in physical memory
— Such relocation turns out to be insufficient

* We also need protection
— Prevent process from reaching outside its allocated memory
* E.g., by overrunning the end of a mapped segment
* Segments also need a length (or limit) register
— Specifies maximum legal offset (from start of segment)
— Any address greater than this 1s 1llegal (in the hole)
— CPU should report 1t via a segmentation exception (trap)

\ /

CS 111 Lecture 7
Summer 2015 Page 60

/ How Much of Our Problem \

Does Relocation Solve?
* We can use variable sized domains

— Cutting down on internal fragmentation

* We can move domains around
— Which helps coalescing be more effective

— But still requires contiguous chunks of data for
segments

— So external fragmentation i1s still a problem

* We need to get rid of the requirement of
\ contiguous segments /

CS 111 Lecture 7
Summer 2015 Page 61

