
Lecture 7 
Page 1 

CS 111 
Summer 2015  

Memory Management 
CS 111 

Operating System Principles  
Peter Reiher 



Lecture 7 
Page 2 

CS 111 
Summer 2015  

Outline 
•  What is memory management about? 
•  Memory management strategies: 

– Fixed partition strategies 
– Dynamic domains 
– Buffer pools 
– Garbage collection 
– Memory compaction 



Lecture 7 
Page 3 

CS 111 
Summer 2015  

Memory Management 
•  Memory is one of the key assets used in 

computing 
•  In particular, memory abstractions that are 

usable from a running program 
– Which, in modern machines, typically means 

RAM 
•  We have a limited amount of it 
•  Lots of processes want to use it 
•  How do we manage its use? 



Lecture 7 
Page 4 

CS 111 
Summer 2015  

What Is Memory Used For? 

•  Anything that a program needs to access 
– Except control and temporary values, which are 

kept in registers 
•  The code 

– To allow the process to execute instructions 

•  The stack 
– To keep track of its state of execution 

•  The heap 
– To hold dynamically allocated variables 



Lecture 7 
Page 5 

CS 111 
Summer 2015  

Other Uses of Memory 

•  The operating system needs memory itself 
•  For its own code, stack, and dynamic 

allocations 
•  For I/O buffers 
•  To hold per-process control data 
•  The OS shares the same physical memory that 

user processes rely on 
•  The OS provides overall memory management 



Lecture 7 
Page 6 

CS 111 
Summer 2015  

Aspects of the Memory 
Management Problem 

•  Most processes can’t perfectly predict how much 
memory they will use 

•  The processes expect to find their existing data when 
they need it where they left it 

•  The entire amount of data required by all processes 
may exceed physical memory 

•  Switching between processes must be fast 
–  So you can’t much delay for copying data from one place 

to another 

•  The cost of memory management itself must not be 
too high 



Lecture 7 
Page 7 

CS 111 
Summer 2015  

Memory Management Strategies 

•  Fixed partition allocations 
•  Dynamic domains  
•  Paging 
•  Virtual memory 
•  We’ll talk about the last two in the next class 



Lecture 7 
Page 8 

CS 111 
Summer 2015  

Fixed Partition Allocation 
•  Pre-allocate partitions for n processes 

– Usually one partition per process 
• So n partitions 

– Reserving space for largest possible process 
•  Partitions come in one or a few set sizes 
•  Very easy to implement 

– Common in old batch processing systems 
– Allocation/deallocation very cheap and easy 

•  Well suited to well-known job mix 



Lecture 7 
Page 9 

CS 111 
Summer 2015  

Memory Protection and Fixed 
Partitions 

•  Need to enforce the boundaries of each 
partition 

•  To prevent one process from accessing 
another’s memory 

•  Could use hardware similar to domain registers 
for this purpose 

•  On the flip side, hard to arrange for shared 
memory  
– Especially if only one segment per process 



Lecture 7 
Page 10 

CS 111 
Summer 2015  

Problems With Fixed Partition 
Allocation  

•  Presumes you know how much memory will 
be used ahead of time 

•  Limits the number of processes supported to 
the total of their memory requirements 

•  Not great for sharing memory 
•  Fragmentation causes inefficient memory use 



Lecture 7 
Page 11 

CS 111 
Summer 2015  

Fragmentation 

•  A problem for all memory management 
systems 
– Especially bad for fixed partitions 

•  Based on processes not using all the memory 
they requested 

•  As a result, you can’t provide memory for as 
many processes as you theoretically could 



Lecture 7 
Page 12 

CS 111 
Summer 2015  

Fragmentation Example  

Partition 1 
8MB 

Partition 2 
4MB 

Partition 3 
4MB 

process 
A 

(6 MB) process 
B 

(3 MB) 

process 
C 

(2 MB) 

waste 2MB 

waste 2MB waste 1MB 

Total waste = 2MB + 1MB + 2MB = 
5/16MB = 31% 

Let’s say there are three processes, A, B, and C 
Their memory requirements: 

A:  6 MBytes 
B:  3 MBytes 
C:  2 MBytes 

Available partition sizes: 
8 Mbytes 

4 Mbytes 
4 Mbytes 



Lecture 7 
Page 13 

CS 111 
Summer 2015  

Internal Fragmentation 
•  Fragmentation comes in two kinds: 

–  Internal and external 

•  This is an example of internal fragmentation 
– We’ll see external fragmentation later 

•  Wasted space in fixed sized blocks 
– The requestor was given more than he needed 
– The unused part is wasted, can’t be used for others 

•  Internal fragmentation can occur whenever you 
force allocation in fixed-sized chunks 



Lecture 7 
Page 14 

CS 111 
Summer 2015  

More on Internal Fragmentation 

•  Internal fragmentation is caused by a mismatch 
between  
– The chosen sizes of a fixed-sized blocks 
– The actual sizes that programs use 

•  Average waste: 50% of each block 
•  Overall waste reduced by multiple sizes 

– Suppose blocks come in sizes S1 and S2 
– Average waste = ((S1/2) + (S2 - S1)/2)/2 



Lecture 7 
Page 15 

CS 111 
Summer 2015  

Multiple Fixed Partitions 

•  You could allow processes to request multiple 
partitions  
– Of a single or a few sizes 

•  Doesn’t really help the fragmentation problem 
– Now there were more segments to fragment 
– Even if each contained less memory 



Lecture 7 
Page 16 

CS 111 
Summer 2015  

Summary of Fixed Partition 
Allocation  

•  Very simple 
•  Inflexible 
•  Subject to a lot of internal fragmentation 
•  Not used in many modern systems 

– But a possible option for special purpose systems, 
like embedded systems 

– Where we know exactly what our memory needs 
will be 



Lecture 7 
Page 17 

CS 111 
Summer 2015  

Dynamic Domain Allocation 
•  A concept covered in a previous lecture 
•  We’ll just review it here 
•  Domains are regions of memory made 

available to a process 
– Variable sized, usually any size requested 
– Each domain is contiguous in memory addresses 
– Domains have access permissions for the process 
– Potentially shared between processes 

•  Each process could have multiple domains 
– With different sizes and characteristics 



Lecture 7 
Page 18 

CS 111 
Summer 2015  

Problems With Domains 
•  Not relocatable 

– Once a process has a domain, you can’t easily 
move its contents elsewhere 

•  Not easily expandable 
•  Impossible to support applications with larger 

address spaces than physical memory 
– Also can’t support several applications whose total 

needs are greater than physical memory 
•  Also subject to fragmentation 



Lecture 7 
Page 19 

CS 111 
Summer 2015  

Relocation and Expansion 

•  Domains are tied to particular address ranges 
– At least during an execution 

•  Can’t just move the contents of a domain to 
another set of addresses 
– All the pointers in the contents will be wrong 
– And generally you don’t know which memory 

locations contain pointers 
•  Hard to expand because there may not be 

space “nearby” 



Lecture 7 
Page 20 

CS 111 
Summer 2015  

The Expansion Problem 

•  Domains are allocated on request 
•  Processes may ask for new ones later 
•  But domains that have been given are fixed 

– Can’t be moved somewhere else in memory 
•  Memory management system might have 

allocated all the space after a given domain 
•  In which case, it can’t be expanded 



Lecture 7 
Page 21 

CS 111 
Summer 2015  

Illustrating the Problem 
PA 

PB 

PC 

Now Process B wants to 
expand its domain size 

PB 
But if we do that, Process 

B steps on Process C’s 
memory 

We can’t move C’s 
domain out of the way 
And we can’t move B’s 
domain to a free area 

We’re stuck, and must deny an expansion request 
that we have enough memory to handle 



Lecture 7 
Page 22 

CS 111 
Summer 2015  

Address Spaces Bigger Than 
Physical Memory 

•  If a process needs that much memory, how 
could you possibly support it? 

•  Two possibilities: 
1.  It’s not going to use all the memory it’s asked for, 

or at least not all simultaneously 
2.  Maybe we can use something other than physical 

memory to store some of it 
•  Domains are not friendly to either option 



Lecture 7 
Page 23 

CS 111 
Summer 2015  

How To Keep Track of Variable 
Sized Domains? 

•  Start with one large “heap” of memory 
•  Maintain a free list 

–  Systems data structure to keep track of pieces of 
unallocated memory 

•  When a process requests more memory: 
–  Find a large enough chunk of memory 
–  Carve off a piece of the requested size 
–  Put the remainder back on a free list 

•  When a process frees memory 
–  Put it back on the free list 



Lecture 7 
Page 24 

CS 111 
Summer 2015  

Managing the Free List 

•  Fixed sized blocks are easy to track 
– A bit map indicating which blocks are free 

•  Variable chunks require more information 
– A linked list of descriptors, one per chunk 
– Each descriptor lists the size of the chunk and 

whether it is free 
– Each has a pointer to the next chunk on list 
– Descriptors often kept at front of each chunk 

•  Allocated memory may have descriptors too 



Lecture 7 
Page 25 

CS 111 
Summer 2015  

The Free List 
head 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

U 
S 
E 
D 

L 
E 
N 

N 
E 
X 
T 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

U 
S 
E 
D 

L 
E 
N 

N 
E 
X 
T 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

… 

List might 
contain all 
memory 
fragments 

…or only 
fragments 
that are 
free 



Lecture 7 
Page 26 

CS 111 
Summer 2015  

Free Chunk Carving 
U 
S 
E 
D 

L 
E 
N 

N 
E 
X 
T 

U 
S 
E 
D 

N 
E 
X 
T 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

… 

L 
E 
N 

N 
E 
X 
T 

F 
R 
E 
E 

L 
E 
N 

U 
S 
E 
D 

1. Find a large enough free chunk 

2. Reduce its len to requested size 

3.Create a  new header for 
residual chunk 

4. Insert the new chunk into the 
list 

5. Mark the carved piece as in use 



Lecture 7 
Page 27 

CS 111 
Summer 2015  

Variable Domain and 
Fragmentation 

•  Variable sized domains not as subject to 
internal fragmentation 
– Unless requestor asked for more than he will use 
– Which is actually pretty common 
– But at least memory manager gave him no more 

than he requested 
•  Unlike fixed sized partitions, though, subject 

to another kind of fragmentation 
– External fragmentation 



Lecture 7 
Page 28 

CS 111 
Summer 2015  

External Fragmentation 
PA 

PB 

PC 

PA 

PC 

PD 

PE 

PC 

PD 

PE 

PF 

We gradually build up small, unusable memory 
chunks scattered through memory 



Lecture 7 
Page 29 

CS 111 
Summer 2015  

External Fragmentation: Causes 
and Effects 

•  Each allocation creates left-over chunks 
– Over time they become smaller and smaller 

•  The small left-over fragments are useless 
– They are too small to satisfy any request 
– A second form of fragmentation waste 

•  Solutions: 
– Try not to create tiny fragments 
– Try to recombine fragments into big chunks 



Lecture 7 
Page 30 

CS 111 
Summer 2015  

How To Avoid Creating Small 
Fragments? 

•  Be smart about which free chunk of memory 
you use to satisfy a request 

•  But being smart costs time 
•  Some choices: 

– Best fit 
– Worst fit 
– First fit 
– Next fit 



Lecture 7 
Page 31 

CS 111 
Summer 2015  

Best Fit 

•  Search for the “best fit” chunk 
– Smallest size greater than or equal to requested 

size 
•  Advantages: 

– Might find a perfect fit 

•  Disadvantages: 
– Have to search entire list every time 
– Quickly creates very small fragments 



Lecture 7 
Page 32 

CS 111 
Summer 2015  

Worst Fit 

•  Search for the “worst fit” chunk 
– Largest size greater than or equal to requested size 

•  Advantages: 
– Tends to create very large fragments 

 … for a while at least 
•  Disadvantages: 

– Still have to search entire list every time 



Lecture 7 
Page 33 

CS 111 
Summer 2015  

First Fit 

•  Take first chunk you find that is big enough 
•  Advantages: 

– Very short searches 
– Creates random sized fragments 

•  Disadvantages: 
– The first chunks quickly fragment 
– Searches become longer 
– Ultimately it fragments as badly as best fit 



Lecture 7 
Page 34 

CS 111 
Summer 2015  

Next Fit 
head 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

U 
S 
E 
D 

L 
E 
N 

N 
E 
X 
T 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

U 
S 
E 
D 

L 
E 
N 

N 
E 
X 
T 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

… 

After each 
search, set 
guess pointer 
to chunk after 
the one we 
chose. 

guess 
pointer 

That is the 
point at which 
we will begin 
our next 
search. 



Lecture 7 
Page 35 

CS 111 
Summer 2015  

Next Fit Properties 
•  Some advantages of each approach 

– Short searches (maybe shorter than first fit) 
– Spreads out fragmentation (like worst fit) 

•  But more fragmentation than best fit 
•  Guess pointers are a general technique 

– Think of them as a lazy (non-coherent) cache 
–  If they are right, they save a lot of time 
–  If they are wrong, the algorithm still works 
– They can be used in a wide range of problems  



Lecture 7 
Page 36 

CS 111 
Summer 2015  

Coalescing Domains 

•  All variable sized domain allocation 
algorithms have external fragmentation 
– Some get it faster, some spread it out 

•  We need a way to reassemble fragments 
– Check neighbors whenever a chunk is freed 
– Recombine free neighbors whenever possible 
– Free list can be designed to make this easier 

•  E.g., where are the neighbors of this chunk? 

•  Counters forces of external fragmentation 



Lecture 7 
Page 37 

CS 111 
Summer 2015  

Free Chunk Coalescing 
head 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

U 
S 
E 
D 

L 
E 
N 

N 
E 
X 
T 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

U 
S 
E 
D 

L 
E 
N 

N 
E 
X 
T 

F 
R 
E 
E 

L 
E 
N 

N 
E 
X 
T 

… 

Previous 
chunk is free, 
so coalesce 
backwards. 

Next chunk is also 
free, so coalesce 
forwards. 

F 
R 
E 
E 

FREE 



Lecture 7 
Page 38 

CS 111 
Summer 2015  

Fragmentation and Coalescing 
•  Opposing processes that operate in parallel 

– Which of the two processes will dominate? 
•  What fraction of space is typically allocated? 

– Coalescing works better with more free space 
•  How fast is allocated memory turned over? 

– Chunks held for long time cannot be coalesced 
•  How variable are requested chunk sizes? 

– High variability increases fragmentation rate 
•  How long will the program execute? 

– Fragmentation, like rust, gets worse with time 



Lecture 7 
Page 39 

CS 111 
Summer 2015  

Coalescing and Free List 
Implementation 

•  To coalesce, we must know whether the previous and 
next chunks are also free 

•  If the neighbors are guaranteed to be in the free list, 
we can look at them and see if they are free 

•  If allocated chunks are not in the free list, we must 
look at the free chunks before and after us 
–  And see if they are our contiguous neighbors 
–  This suggests that the free list must be maintained in 

address order 



Lecture 7 
Page 40 

CS 111 
Summer 2015  

Variable Sized Domain Summary 

•  Eliminates internal fragmentation 
– Each chunk is custom made for requestor 

•  Implementation is more expensive 
– Long searches of complex free lists 
– Carving and coalescing 

•  External fragmentation is inevitable 
– Coalescing can counteract the fragmentation 

•  Must we choose the lesser of two evils? 



Lecture 7 
Page 41 

CS 111 
Summer 2015  

Another Option 
•  Fixed partition allocations result in internal 

fragmentation 
– Processes don’t use all of the fixed partition 

•  Dynamic domain allocations result in external 
fragmentation 
– The elements on the memory free list get smaller 

and less useful 
•  Can we strike a balance in between? 



Lecture 7 
Page 42 

CS 111 
Summer 2015  

A Special Case for Fixed 
Allocations 

frequency 

4K 256 64 1K 

Internal fragmentation results from 
mismatches between chunk sizes and request 
sizes (which we have assumed to be randomly 
distributed). 

But if we look at what actually 
happens, it turns out that memory 
allocation requests aren’t random at 
all. 



Lecture 7 
Page 43 

CS 111 
Summer 2015  

Why Aren’t Memory Request  
Sizes Randomly Distributed? 

•  In real systems, some sizes are requested much 
more often than others 

•  Many key services use fixed-size buffers 
– File systems (for disk I/O) 
– Network protocols (for packet assembly) 
– Standard request descriptors 

•  These account for much transient use 
– They are continuously allocated and freed 

•  OS might want to handle them specially 



Lecture 7 
Page 44 

CS 111 
Summer 2015  

Buffer Pools 
•  If there are popular sizes, 

–  Reserve special pools of fixed size buffers 
–  Satisfy matching requests from those pools 

•  Benefit: improved efficiency 
–  Much simpler than variable domain allocation 

•  Eliminates searching, carving, coalescing 

–  Reduces (or eliminates) external fragmentation 

•  But we must know how much to reserve 
–  Too little, and the buffer pool will become a bottleneck  
–  Too much, and we will have a lot of unused buffer space 

•  Only satisfy perfectly matching requests 
– Otherwise, back to internal fragmentation 



Lecture 7 
Page 45 

CS 111 
Summer 2015  

How Are Buffer Pools Used? 
•  Process requests a piece of memory for a 

special purpose 
– E.g., to send a message 

•  System supplies one element from buffer pool 
•  Process uses it, completes, frees memory 

– Maybe explicitly 
– Maybe implicitly, based on how such buffers are 

used 
•  E.g., sending the message will free the buffer “behind 

the process’ back” once the message is gone 



Lecture 7 
Page 46 

CS 111 
Summer 2015  

Dynamically Sizing Buffer Pools 
•  If we run low on fixed sized buffers 

–  Get more memory from the free list 
–  Carve it up into more fixed sized buffers 

•  If our free buffer list gets too large 
–  Return some buffers to the free list 

•  If the free list gets dangerously low 
–  Ask each major service with a buffer pool to return space 

•  This can be tuned by a few parameters: 
–  Low space (need more) threshold 
–  High space (have too much) threshold 
–  Nominal allocation (what we free down to) 

•  Resulting system is highly adaptive to changing loads 



Lecture 7 
Page 47 

CS 111 
Summer 2015  

Lost Memory 
•  One problem with buffer pools is memory 

leaks 
– The process is done with the memory 
– But doesn’t free it 

•  Also a problem when a process manages its 
own memory space 
– E.g., it allocates a big area and maintains its own 

free list 
•  Long running processes with memory leaks 

can waste huge amounts of memory 



Lecture 7 
Page 48 

CS 111 
Summer 2015  

Garbage Collection 

•  One solution to memory leaks 
•  Don’t count on processes to release memory 
•  Monitor how much free memory we’ve got 
•  When we run low, start garbage collection 

– Search data space finding every object pointer 
– Note address/size of all accessible objects 
– Compute the compliment (what is inaccessible) 
– Add all inaccessible memory to the free list 



Lecture 7 
Page 49 

CS 111 
Summer 2015  

How Do We Find All  
Accessible Memory? 

•  Object oriented languages often enable this 
– All object references are tagged 
– All object descriptors include size information 

•  It is often possible for system resources 
– Where all possible references are known  

•   (E.g., we know who has which files open) 

•  How about for the general case? 



Lecture 7 
Page 50 

CS 111 
Summer 2015  

General Garbage Collection 

•  Well, what would you need to do? 
•  Find all the pointers in allocated memory 
•  Determine “how much” each points to 
•  Determine what was and was not still pointed 

to 
•  Free what isn’t pointed to 
•  Why might that be difficult? 



Lecture 7 
Page 51 

CS 111 
Summer 2015  

Problems With General Garbage 
Collection 

•  A location in the data or stack segments might 
seem to contain addresses, but ... 
– Are they truly pointers, or might they be other data 

types whose values happen to resemble addresses? 
– Even if they are truly pointers, are they themselves 

still accessible?   
– We might be able to infer this (recursively) for 

pointers in dynamically allocated structures … 
– But what about pointers in statically allocated 

(potentially global) areas?   
•  And how much is “pointed to,” one word or a 

million? 
–      



Lecture 7 
Page 52 

CS 111 
Summer 2015  

Compaction and Relocation 
•  Garbage collection is just another way to free 

memory 
–  Doesn’t greatly help or hurt fragmentation 

•  Ongoing activity can starve coalescing 
–  Chunks reallocated before neighbors become free 

•  We could stop accepting new allocations 
–  But resulting convoy on memory manager would trash 

throughput 
•  We need a way to rearrange active memory 

–  Re-pack all processes in one end of memory 
–  Create one big chunk of free space at other end 



Lecture 7 
Page 53 

CS 111 
Summer 2015  

Memory Compaction 

swap device 

PC 

PE 

PF 

PD 

Largest 
free block 

Now let’s 
compact! 

Largest 
free block 

An obvious 
improvement! 



Lecture 7 
Page 54 

CS 111 
Summer 2015  

All This Requires Is Relocation . . . 
•  The ability to move a process 

– From region where it was initially loaded 
–  Into a new and different region of memory 

•  What’s so hard about that? 
•  All addresses in the program will be wrong 

– References in the code segment 
•  Calls and branches to other parts of the code 
•  References to variables in the data segment 

– Plus new pointers created during execution 
•  That point into data and stack segments 



Lecture 7 
Page 55 

CS 111 
Summer 2015  

The Relocation Problem 
•  It is not generally feasible to re-relocate a 

process 
– Maybe we could relocate references to code 

•  If we kept the relocation information around 

– But how can we relocate references to data? 
•  Pointer values may have been changed 
•  New pointers may have been created 

•  We could never find/fix all address references 
– Like the general case of garbage collection 

•  Can we make processes location independent? 



Lecture 7 
Page 56 

CS 111 
Summer 2015  

Virtual Address Spaces 
0x00000000 

0xFFFFFFFF 

shared code private data 

private stack DLL 1 DLL 2 DLL 3 

Virtual address space  
(as seen by process) 

Physical address space  
(as on CPU/memory bus) 

address translation unit 
(magical) 



Lecture 7 
Page 57 

CS 111 
Summer 2015  

Memory Segment Relocation 
•  A natural model 

–  Process address space is made up of multiple segments 
–  Use the segment as the unit of relocation 
–  Long tradition, from the IBM system 360 to Intel x86 

architecture 
•  Computer has special relocation registers 

–  They are called segment base registers 
–  They point to the start (in physical memory) of each 

segment 
–  CPU automatically adds base register to every address 

•  OS uses these to perform virtual address translation 
–  Set base register to start of region where program is loaded 
–  If program is moved, reset base registers to new location 
–  Program works no matter where its segments are loaded 



Lecture 7 
Page 58 

CS 111 
Summer 2015  

How Does Segment  
Relocation Work? 

0x00000000 

0xFFFFFFFF 

shared code private data 

private stack DLL 1 DLL 2 DLL 3 

Virtual address space  

Physical memory  

code data 

stack 

DLL 

code base register data base register 

stack base register aux base register 

physical = virtual + baseseg  



Lecture 7 
Page 59 

CS 111 
Summer 2015  

Relocating a Segment 

0x00000000 

0xFFFFFFFF 

shared code private data 

private stack DLL 1 DLL 2 DLL 3 

Physical memory  

code data 

stack 

DLL 

code base register data base register 

stack base register aux base register 

physical = virtual + baseseg  

Let’s say we need to 
move the stack in 
physical memory 

The virtual address of the 
stack doesn’t change 

stack base register 

We just change the 
value in the stack 

base register 



Lecture 7 
Page 60 

CS 111 
Summer 2015  

Relocation and Safety 
•  A relocation mechanism (like base registers) is good 

–  It solves the relocation problem 
–  Enables us to move process segments in physical memory 
–  Such relocation turns out to be insufficient 

•  We also need protection 
–  Prevent process from reaching outside its allocated memory 

•  E.g., by overrunning the end of  a mapped segment 

•  Segments also need a length (or limit) register 
–  Specifies maximum legal offset (from start of segment) 
–  Any address greater than this is illegal (in the hole) 
–  CPU should report it via a segmentation exception (trap) 



Lecture 7 
Page 61 

CS 111 
Summer 2015  

How Much of Our Problem  
Does Relocation Solve? 

•  We can use variable sized domains 
– Cutting down on internal fragmentation 

•  We can move domains around 
– Which helps coalescing be more effective 
– But still requires contiguous chunks of data for 

segments 
– So external fragmentation is still a problem 

•  We need to get rid of the requirement of 
contiguous segments  


