-

Concurrency Solutions and
Deadlock
CS 111
Operating System Principles
Peter Rether

\

eeeeee

4 “Outline

* Concurrency 1ssues

— Asynchronous completion
* Other synchronization primitives
* Deadlock

— Causes
— Solution approaches

\

CS 111

Summer 2015

/ [Asynchronous Completion} \

* The second big problem with parallelism
— How to wait for an event that may take a while

— Without wasteful spins/busy-waits

* Examples of asynchronous completions
— Waiting for a held lock to be released
— Waiting for an I/O operation to complete

— Waiting for a response to a network request

— Delaying execution for a fixed period of time

\ /

CS 111 Lecture 6
Summer 2015 Page 3

/ Using Spin Waits to Solve the \

Asynchronous Completion Problem
* Thread A needs something from thread B

— Like the result of a computation
* Thread B 1sn’t done yet
* Thread A stays 1n a busy loop waiting
* Sooner or later thread B completes

* Thread A exits the loop and makes use of B’s
result

* Definitely provides correct behavior, but . . .)

CS 111 Lecture 6
Summer 2015 Page 4

4 Well, Why Not? I

* Waiting serves no purpose for the waiting
thread

— “Waiting” 1s not a “useful computation”
* Spin waits reduce system throughput
— Spinning consumes CPU cycles

— These cycles can’t be used by other threads
— It would be better for waiting thread to “yield”

* They are actually counter-productive

— Delays the thread that will post the completion

\ /

s — Memory traffic slows I/O and other processors s

Summer 2015 Page 5

/ Another Solution \

* Completion blocks

* Create a synchronization object
— Associate that object with a resource or request

* Requester blocks awaiting event on that object
— Yield the CPU until awaited event happens

* Upon completion, the event is “posted”

— Thread that notices/causes event posts the object

* Posting event to object unblocks the waiter
\ - Requester 1s dispatched, and processes the event /

CS 111 Lecture 6
Summer 2015 Page 6

/ Blocking and Unblocking \

* Exactly as discussed 1in scheduling lecture
* Blocking

— Remove specified process from the “ready’ queue
— Yield the CPU (let scheduler run someone else)

* Unblocking

— Return specified process to the “ready” queue
— Inform scheduler of wakeup (possible preemption)
* Only trick 1s arranging to be unblocked

— Because 1t is so embarrassing to sleep forever

* Complexities if multiple entities are blocked on a
resource — Who gets unblocked when it’s freed? /

CS 111 Lecture 6
Summer 2015 Page 7

/ A Possible Problem \

* The sleep/wakeup race condition

Consider this sleep code: And this wakeup code:

{ void wakeup(eventp *e) {

void sleep(eventp *e)
struct proce *p;

while (e->posted == FALSE) {
add to queue (&e->queue,
myproc) ; e->posted = TRUE;
myproc—->runstate |= BLOCKED; p = get from queue (&e->
yvield() ; queue) ; - -
} if (p) {
J p->runstate &= ~BLOCKED;
resched() ;
} /* if !p, nobody’s
waiting */
| /
\ What’s the problem with this?
CS 111 Lecture 6
Page 8

Summer 2015

/ A Sleep/Wakeup Race \

* Let’s say thread B 1s using a resource and
thread A needs to get it

e So thread A will call sleep ()

* Meanwhile, thread B finishes using the
resource
— So thread B will call wakeup ()

* No other threads are waiting for the resource

\ /

CS 111 Lecture
Summer 2015 Page 9

/ The Race At Work
Thread A Thread B

vold sleep(eventp *e) { .
Yep, somebody’s locked it!
while (e->posted == FALSE) {
vold wakeup (eventp *e) {
CONTEXT SWITCH!

struct proce *p;

e->posted = TRUE;

Nope, nobody’s in the queue! ir (p) |

CONTEXT SWITCH! } /* if !p, nobody’s waiting */
’ }

add to gqueue(&e->queue, myproc);
myproc—->runsate |= BLOCKED;
yield();

J The effect?

\ Thread A 1s sleeping But there’s no one to
cs 111 wake him up

Summer 2015

p = get from queue (&e->queue) ;

\

Lecture 6

Page 10

/ Solving the Problem \

* There 1s clearly a critical section 1n sleep ()
— Starting before we test the posted flag

— Ending after we put ourselves on the notify list

* During this section, we need to prevent
— Wakeups of the event
— Other people waiting on the event

* This 1s a mutual-exclusion problem

— Fortunately, we already know how to solve those

\ /

CS 111 Lecture 6
Summer 2015 Page 11

/ [Lock Contention} \

* The riddle of parallel multi-tasking:
— If one task 1s blocked, CPU runs another

— But concurrent use of shared resources 1s difficult

— Critical sections serialize tasks, eliminating
parallelism

* What if everyone needs to share one resource?
— One process gets the resource
— Other processes get in line behind him

— Parallelism 1s eliminated; B runs after A finishes
\ — That resource becomes a bottle-neck /

CS 111 Lecture 6
Summer 2015 Page 12

/ What If It Isn’t That Bad? \

* Say each thread 1s only somewhat likely to need a
resource

* Consider the following system
— Ten processes, each runs once per second
— One resource they all use 5% of time (5ms/sec)
— Half of all time slices end with a preemption
* Chances of preemption while 1n critical section
— Per slice: 2.5%, per sec: 22%, over 10 sec: 92%
* Chances a 2nd process will need resource
— 5% 1n next time slice, 37% 1n next second /

it But once this happens, a line forms Lecture 6

Summer 2015 Page 13

/ Resource Convoys \

* All processes regularly need the resource
— But now there 1s a waiting line
— Nobody can “just use the resource”, must get in
line
* The delay becomes much longer

— We don’t just wait a few u—sec until resource 1s
free

— We must wait until everyone in front of us finishes
— And while we wait, more people get into the line

* Delays rise, throughput falls, parallelism
ceases

* Not merely a theoretical transient response /

CS 111 Lecture 6
Summer 2015 Page 14

/ Resource Convoy Performance\

throughput

convoy

offered load

\ /

CS 111 Lecture 6
Summer 2015 Page 15

/ Avoiding Contention Problems \

* Eliminate the critical section entirely
— Eliminate shared resource, use atomic instructions
* Eliminate preemption during critical section
— By disabling interrupts ... not always an option
* Reduce lingering time 1n critical section
— Minimize amount of code 1n critical section
— Reduce likelihood of blocking 1n critical section
* Reduce frequency of critical section entry
— Reduce use of the serialized resource
\ — Spread requests out over more resources Y,

CS 111 Lecture 6
Summer 2015 Page 16

/ Lock Granularity \

e How much should one lock cover?

— One object or many
— Important performance and usability implications

* Coarse grained - one lock for many objects

— Simpler, and more 1diot-proof
— Results 1n greater resource contention

* Fine grained - one lock per object
— Spreading activity over many locks reduces contention
— Time/space overhead, more locks, more gets/releases
— Error-prone: harder to decide what to lock when

\ — Some operations may require locking multiple objects /

csi (which creates a potential for deadlock) Lecture §
ummer age

-l Other Important 1
Synchronization Primitives |

* Semaphores
* Mutexes

e Monitors

\ /

CS 111 Lecture 6
Summer 2015 Page 18

/ Semaphores \

* Counters for sequence coord. and mutual exclusion

* Can be binary counters or more general
— E.g., if you have multiple copies of the resource

 Call wait () on the semaphore to obtain exclusive
access to a critical section

— For binary semaphores, you wait till whoever had it signals
they are done

* Call signal () when you’re done

* For sequence coordination, signal on a shared
semaphore when you finish first step

\ — Wait before you do second step /

CS 111 Lecture 6
Summer 2015 Page 19

/ Mutexes \

* A synchronization construct to serialize access
to a critical section

* Typically implemented using semaphores
* Mutexes are one per critical section

— Unlike semaphores, which protect multiple copies
of a resource

\ /

CS 111 Lecture 6
Summer 2015 Page 20

/ Monitors \

* An object oriented synchronization primitive
— Sort of very OO mutexes
— Exclusion requirements depend on object/methods
— Implementation should be encapsulated in object
— Clients shouldn't need to know the exclusion rules

* A monitor 1s not merely a lock
— It 1s an object class, with instances, state, and methods
— All object methods protected by a semaphore

* Monitors have some very nice properties

— Easy to use for clients, hides unnecessary details
\ — High confidence of adequate protection /

CS 111 Lecture 6
Summer 2015 Page 21

/ [Deadlock} \

e What 1s a deadlock?

e A situation where two entities have each
locked some resource

 Each needs the other’s locked resource to
continue

* Neither will unlock till they lock both
resources

* Hence, neither can ever make progress

\

CS 111 Lecture 6
Summer 2015 Page 22

/ Why Are Deadlocks Important?\

* A major peril 1n cooperating parallel processes

— They are relatively common in complex applications
— They result in catastrophic system failures

* Finding them through debugging 1s very difficult
— They happen intermittently and are hard to diagnose

— They are much easier to prevent at design time

* Once you understand them, you can avoid them
— Most deadlocks result from careless/ignorant design

— An ounce of prevention 1s worth a pound of cure

\ /

CS 111 Lecture 6
Summer 2015 Page 23

/ Types of Deadlocks \

\

CS 111
Summer 2015

* Commodity resource deadlocks

— E.g., memory, queue space

 (General resource deadlocks

— E.g., files, critical sections

* Heterogeneous multi-resource deadlocks

— E.g., P1 needs a file P2 holds, P2 needs memory
which P1 is using

 Producer-consumer deadlocks

— E.g., P1 needs a file P2 is creating, P2 needs a
message from P1 to properly create the file

Lec
Page 24

ture 6

\

CS1

/" Four Basic Conditions

For Deadlocks

e Fora deadlock to occur, all of these COIldlthIlS
must hold:

1. Mutual exclusion
2. Incremental allocation
3. No pre-emption

4. Circular waiting

11 Lecture 6

Summer 2015 Page 25

ﬁ)eadlock Conditions: 1. Mutual\

Exclusion
* The resources 1n question can each only be
used by one entity at a time

* If multiple entities can use a resource, then just
give 1t to all of them

* If only one can use 1t, once you’ve given it to
one, no one else gets it

— Until the resource holder releases it

\ /

CS 111 Lecture 6
Summer 2015 Page 26

/ Deadlock Condition 2:

\

CS 111

Incremental Allocation

 Processes/threads are allowed to ask for

resources whenever they want

— As opposed to getting everything they need before
t]

ney start

* If they must pre-allocate all resources, either:

I'hey get all they need and run to completion

T'hey don’t get all they need and abort
* In either case, no deadlock

\

Lecture 6

Summer 2015

Page 27

/~ Deadlock Condition 3: No ™\
Pre-emption

* When an entity has reserved a resource, you
can’t take 1t away from him
— Not even temporarily

* If you can, deadlocks are simply resolved by
taking someone’s resource away
— To give to someone else

* But if you can’t take 1t away from anyone,
you’re stuck

\ /

CS 111 Lecture 6
Summer 2015 Page 28

/ Deadlock Condition 4: Circular\
Waiting
A waits on B which waits on A

* In graph terms, there’s a cycle 1n a graph of
resource requests

e Could involve a lot more than two entities

* But if there 1s no such cycle, someone can
complete without anyone releasing a resource

— Allowing even a long chain of dependencies to
eventually unwind

\ - Maybe not very fast, though . . . /
CS 111 Lecture 6
Summer 2015 Page 29

ﬁktgghthﬁv’ A Wait-For Graph Hmmmm\

but...

Thread 1
acquires a
lock for
Critical
Section A

Thread 1
requests a

lock for
Critical
\ Section B

CS 111

No problem!

|

' Thread 2
‘-\ acquires a
-‘ lock for

, Critical

Critical Critical Scction B
Section Section Thread 2

r:equests a
;lock for

; Critical
/Section A /

Lecture 6

Summer 2015

Page 30

/ [Deadlock AVOidaIlCC} \

* Use methods that guarantee that no deadlock
can occur, by their nature

 Advance reservations

— The problems of under/over-booking
* Practical commodity resource management
* Dealing with rejection

* Reserving critical resources

\ /

CS 111 Lecture 6
Summer 2015 Page 31

/" Avoiding Deadlock Using ™\

Reservations
* Advance reservations for commodity resources
— Resource manager tracks outstanding reservations

— Only grants reservations 1f resources are available
* Over-subscriptions are detected early

— Before processes ever get the resources

* Client must be prepared to deal with failures

— But these do not result in deadlocks

* Dilemma: over-booking vs. under-utilization

\ /

CS 111 Lecture 6
Summer 2015 Page 32

@erbooking Vs. Under Utilization\

* Processes generally cannot perfectly predict
their resource needs

* To ensure they have enough, they tend to ask
for more than they will ever need

e Either the OS:

— Grants requests till everything’s reserved

e In which case most of it won’t be used

— Or grants requests beyond the available amount

\ * In which case sometimes someone won’t get a resource /

CS 111 he reserved Lecture 6
Summer 2015 Page 33

/ Handling Reservation Problems\

e Clients seldom need all resources all the time

* All clients won't need max allocation at the
same time

* Question: can one safely over-book resources?
— For example, seats on an airplane

* What 1s a “safe’ resource allocation?
— One where everyone will be able to complete

— Some people may have to wait for others to complete

\ — We must be sure there are no deadlocks /

CS 111 Lecture 6
Summer 2015 Page 34

/ Commodity Resource
Management 1n Real Systems

 Advanced reservation mechanisms are common

— Unix brk () and sbrk () system calls
— Disk quotas, Quality of Service contracts

* Once granted, system must guarantee reservations
— Allocation failures only happen at reservation time
— Hopefully before the new computation has begun
— Failures will not happen at request time

— System behavior more predictable, easier to handle

 But clients must deal with reservation failures

\ /

CS 111 Lecture 6
Summer 2015 Page 35

/Dealing With Reservation Failures\

* Resource reservation eliminates deadlock

* Apps must still deal with reservation failures

— Application design should handle failures
gracefully
* E.g., refuse to perform new request, but continue
running
— App must have a way of reporting failure to
requester

* E.g., error messages or return codes

\ — App must be able to continue running)

s 11 All critical resources must be reserved at start-up time, ..«
Summer 2015 Page 36

/System Services and Reservations

* System services must never deadlock for memory

* Potential deadlock: swap manager
— Invoked to swap out processes to free up memory
— May need to allocate memory to build I/O request
— If no memory available, unable to swap out processes

— So 1t can’t free up memory, and system wedges

* Solution:
— Pre-allocate and hoard a few request buffers
— Keep reusing the same ones over and over again

— Little bit of hoarded memory 1s a small price to pay to
avoid deadlock /

st That’s just one example system service, of course recues

Summer 2015 Page 37

/ [Deadlock Prevention} \

 Deadlock avoidance tries to ensure no lock
ever causes deadlock

* Deadlock prevention tries to assure that a
particular lock doesn’t cause deadlock

* By attacking one of the four necessary
conditions for deadlock

* If any one of these conditions doesn’t hold, no

deadlock
\ /

CS 111 Lecture 6
Summer 2015 Page 38

/ Four Basic Conditions \
For Deadlocks

* For a deadlock to occur, these conditions must
hold:

1. Mutual exclusion
2. Incremental allocation
3. No pre-emption

4. Circular waiting

\ /

CS 111 Lecture 6
Summer 2015 Page 39

/ 1. Mutual Exclusion \

* Deadlock requires mutual exclusion
— P1 having the resource precludes P2 from getting it

* You can't deadlock over a shareable resource
— Perhaps maintained with atomic instructions

— Even reader/writer locking can help
* Readers can share, writers may be handled other ways

* You can't deadlock on your private resources

— Can we give each process its own private
\ resource?)

CS 111 Lecture 6
Summer 2015 Page 40

/ 2. Incremental Allocation \

* Deadlock requires you to block holding resources
while you ask for others
1. Allocate all of your resources 1n a single operation

— If you can’t get everything, system returns failure and
locks nothing

— When you return, you have all or nothing

2. Non-blocking requests
— Arequest that can't be satisfied immediately will fail

3. Daisallow blocking while holding resources

— You must release all held locks prior to blocking

\ — Reacquire them again after you return /

CS 111 Lecture 6
Summer 2015 Page 41

/Releasing Locks Before Blocking\

* Could be blocking for a reason not related to
resource locking

* How can releasing locks before you block
help?

* Won’t the deadlock just occur when you
attempt to reacquire them?

— When you reacquire them, you will be required to
do so in a single all-or-none transaction

— Such a transaction does not involve hold-and-
\ block, and so cannot result in a deadlock /

CS 111 Lecture 6
Summer 2015 Page 42

/ 3. No Pre-emption \

* Deadlock can be broken by resource confiscation
— Resource “leases” with time-outs and “lock breaking”

— Resource can be seized & reallocated to new client

* Revocation must be enforced
— Invalidate previous owner's resource handle

— If revocation 1s not possible, kill previous owner

* Some resources may be damaged by lock breaking

— Previous owner was in the middle of critical section

— May need mechanisms to audit/repair resource

* Resources must be designed with revocation in mind /

CS 111 Lecture 6
Summer 2015 Page 43

/ When Can The OS “Seize” a \

Resource?
* When it can revoke access by invalidating a
process’ resource handle

— If process has to use a system service to access the
resource, that service can no longer honor requests
* When 1s 1t not possible to revoke a process’
access to a resource?

— If the process has direct access to the object
* E.g., the object 1s part of the process’ address space

\ * Revoking access requires destroying the address space /

Cs 111 Usually killing the process Lecture 6
Summer 2015 Page 44

/ 4. Circular Dependencies \

* Use fotal resource ordering
— All requesters allocate resources in same order
— First allocate R1 and then R2 afterwards
— Someone else may have R2 but he doesn't need R1

e Assumes we know how to order the resources

— Order by resource type (e.g. groups before
members)

— Order by relationship (e.g. parents before children)

* May require complex and inefficient releasing
\ and re-acquiring of locks /

CS 111 Lecture 6
Summer 2015 Page 45

KV hich Approach Should You Use?\

 There 1s no one universal solution to all deadlocks

— Fortunately, we don't need one solution for all resources
— We only need a solution for each resource

* Solve each individual problem any way you can
— Make resources sharable wherever possible
— Use reservations for commodity resources
— Ordered locking or no hold-and-block where possible
— As a last resort, leases and lock breaking

* OS must prevent deadlocks in all system services

\ — Applications are responsible for their own behavior /

CS 111 Lecture 6
Summer 2015 Page 46

/ One More Deadlock “Solution”

* Ignore the problem
* In many cases, deadlocks are very improbable

* Doing anything to avoid or prevent them might
be very expensive

* So just forget about them and hope for the best
* But what 1f the best doesn’t happen?

\ /

CS 111 Lecture 6
Summer 2015 Page 47

@eadlock Detection and Recove@

e Allow deadlocks to occur
* Detect them once they have happened

— Preferably as soon as possible after they occur

* Do something to break the deadlock and allow
someone to make progress

* Is this a good approach?

— Either 1n general or when you don’t want to avoid
or prevent

\ /

CS 111 Lecture 6
Summer 2015 Page 48

/Implementing Deadlock Detection\

* Need to 1dentify all resources that can be
locked

* Need to maintain wait-for graph or equivalent
structure

* When lock requested, structure 1s updated and
checked for deadlock

— In which case, might it not be better just to reject
the lock request?

\ — And not let the requester block? /

CS 111 Lecture 6
Summer 2015 Page 49

/ Deadlock Detection and Health \
Monitoring

* Deadlock detection seldom makes sense
— It is extremely complex to implement
— Only detects “true deadlocks” for a known resources
— Not always clear cut what you should do 1f you detect one

* Service/application “health monitoring” makes more
sense
— Monitor application progress/submit test transactions

— If response takes too long, declare service “hung”

* Health monitoring is easy to implement

\" It can detect a wide range of problems /

csin - Deadlocks, live-locks, infinite loops & waits, crashes Lecture 6
ummer age

/ Related Problems Health
Monitoring Can Handle

* Live-lock
— Process is running, but won't free R1 until it gets message
— Process that will send the message 1s blocked for R1
* Sleeping Beauty, waiting for “Prince Charming”
— A process 1s blocked, awaiting some completion
— But, for some reason, it will never happen
* Neither of these 1s a true deadlock
— Wouldn't be found by deadlock detection algorithm

— Both leave the system just as hung as a deadlock

* Health monitoring handles them /

CS 111 Lecture 6
Summer 2015 Page 51

CS 111

/ How To Monitor Process Health\

e ook for obvious failures

— Process exits or core dumps

* Passive observation to detect hangs
— Is process consuming CPU time, or 1s it blocked?
— Is process doing network and/or disk 1/0?

* External health monitoring

— “Pings”, null requests, standard test requests

e Internal instrumentation

\ White box audits, exercisers, and monitoring /

Lecture 6

Summer 2015 Page 52

/~ What To Do With “Unhealthy” ™
Processes?

* Kill and restart “all of the affected software”
* How many and which processes to kill?
— As many as necessary, but as few as possible
— The hung processes may not be the ones that are broken
 How will kills and restarts affect current clients?
— That depends on the service APIs and/or protocols
— Apps must be designed for cold/warm/partial restarts
* Highly available systems define restart groups
— Groups of processes to be started/killed as a group

\ — Define inter-group dependencies (restart B after A) /

CS 111 Lecture 6
Summer 2015 Page 53

/ Failure Recovery Methodology\

Retry 1f possible ... but not forever

— Client should not be kept waiting indefinitely
— Resources are being held while waiting to retry

Roll-back failed operations and return an error

* Continue with reduced capacity or functionality
— Accept requests you can handle, reject those you can't

Automatic restarts (cold, warm, partial)

 Escalation mechanisms for failed recoveries

— Restart more groups, reboot more machines

CS 111 Lecture 6
Summer 2015 Page 54

/[Priority Inversion and Deadlock}\

* Priority inversion isn’t necessarily deadlock, but it’s
related
— A low priority process P1 has mutex M1 and 1s preempted
— A high priority process P2 blocks for mutex M1
— Process P2 is effectively reduced to priority of P1

* Solution: mutex priority inheritance
— Check for problem when blocking for mutex
— Compare priority of current mutex owner with blocker

— Temporarily promote holder to blocker's priority

\ — Return to normal priority after mutex 1s released /

CS 111 Lecture 6
Summer 2015 Page 55

/ Priority Inversion on Mars \
-y - = '

* A real priority inversion problem occurred on
the Mars Pathfinder rover

* Caused serious problems with system resets
\« Difficult to find /

CS 111 Lecture 6
Summer 2015 Page 56

ﬁl’ he Pathfinder Priority Inversion\

* Special purpose hardware running VxWorks
real time OS

* Used preemptive priority scheduling
— So a high priority task should get the processor

* Multiple components shared an “information
bus”

— Used to communicate between components

— Essentially a shared memory region

\ Protected by a mutex /

CS 111 Lecture 6
Summer 2015 Page 57

/ A Tale of Three Tasks \

* A high priority bus management task (at P1) needed
to run frequently
— For brief periods, during which it locked the bus

* A low priority meteorological task (at P3) ran
occasionally

— Also for brief periods, during which it locked the bus

* A medium priority communications task (at P2) ran
rarely
— But for a long time when it ran
— But 1t didn’t use the bus, so 1t didn’t need the lock

\e P1>P2>P3

CS 111
Summer 2015

Lecture 6
Page 58

/ What Went Wrong? \

\

CS1

Summer 2015

* Rarely, the following happened:

— The meteorological task ran and acquired the lock

— And then the bus management task would run
— It would block waiting for the lock
* Don’t pre-empt low priority if you’re blocked anyway
* Since meteorological task was short, usually
not a problem

* But if the long communications task woke up
in that short interval, what would happen?

11

Lecture 6
Page 59

/ The Priority Inversion at Work \

N

A HI GH PRIORITY TASK DOESN’T RUN
AND A LOWER PRIORITY TASK DOES

CS 111
Summer 2015

B

B’s priority of P1 is higher than C’s, but B can’t
run because it’s waiting on a lock held by M

C

Lock Bus

But M won’t run again until C completes

M can’t interrupt C, since it only has priority P3
M won’t release the lock until it runs again

Time

Lecture 6
Page 60

/ The Ultimate Effect \

* A watchdog timer would go off every so often
— At a high priority
— It didn’t need the bus

— A health monitoring mechanism

* If the bus management task hadn’t run for a
long time, something was wrong

* So the watchdog code reset the system

* Every so often, the system would reboot

\ /

CS 111 Lecture 6
Summer 2015 Page 61

/ Solving the Problem

* This was a priority inversion

— The lower priority communications task ran before the
higher priority bus management task

* That needed to be changed
* How?

* Temporarily increase the priority of the
meteorological task

1t
— So the communications task wouldn’t preempt it

\ — Priority inheritance: a general solution to this kind of
Cs 111 problem

— While the high priority bus management task was block by

\

Lecture 6

Summer 2015

Page 62

/ The Fix in Action \

When M releases the
T lock 1t loses high

A

Tasks run m proper priority order and
Pathfinder can keep exploring Mars!

t C

B now gets the lock
and unblocks

CS 111 Tlme Lecture 6

Summer 2015 Page 63

