
Lecture 5 
Page 1 

CS 111 
Summer 2015  

Process Communications, 
Synchronization, and 

Concurrency 
CS 111 

Operating System Principles  
Peter Reiher 



Lecture 5 
Page 2 

CS 111 
Summer 2015  

Outline 

•  Process communications issues 
•  Synchronizing processes 
•  Concurrency issues 

– Critical section synchronization 



Lecture 5 
Page 3 

CS 111 
Summer 2015  

Processes and Communications  

•  Many processes are self-contained 
•  But many others need to communicate 

–  Often complex applications are built of multiple 
communicating processes 

•  Types of communications 
–  Simple signaling 

•  Just telling someone else that something has happened 

–  Messages 
–  Procedure calls or method invocation 
–  Tight sharing of large amounts of data 

•  E.g., shared memory, pipes 



Lecture 5 
Page 4 

CS 111 
Summer 2015  

Some Common Characteristics  
of IPC 

•  Issues of proper synchronization 
– Are the sender and receiver both ready? 
–  Issues of potential deadlock 

•  There are safety issues 
– Bad behavior from one process should not trash 

another process 
•  There are performance issues 

– Copying of large amounts of data is expensive 
•  There are security issues, too 



Lecture 5 
Page 5 

CS 111 
Summer 2015  

Desirable Characteristics of 
Communications Mechanisms 

•  Simplicity 
–  Simple definition of what they do and how to do it 
–  Good to resemble existing mechanism, like a procedure call 
–  Best if they’re simple to implement in the OS 

•  Robust 
–  In the face of many using processes and invocations 
–  When one party misbehaves 

•  Flexibility 
–  E.g., not limited to fixed size, nice if one-to-many possible, etc. 

•  Free from synchronization problems 
•  Good performance 
•  Usable across machine boundaries 



Lecture 5 
Page 6 

CS 111 
Summer 2015  

Blocking Vs. Non-Blocking 
•  When sender uses the communications mechanism, 

does it block waiting for the result? 
–  Synchronous communications 

•  Or does it go ahead without necessarily waiting? 
–  Asynchronous communications 

•  Blocking reduces parallelism possibilities 
–  And may complicate handling errors 

•  Not blocking can lead to more complex programming 
–  Parallelism is often confusing and unpredicatable 

•  Particular mechanisms tend to be one or the other 



Lecture 5 
Page 7 

CS 111 
Summer 2015  

Communications Mechanisms 

•  Shared memory 
•  Messages 
•  RPC 
•  More sophisticated abstractions 

– The bounded buffer 



Lecture 5 
Page 8 

CS 111 
Summer 2015  

Shared Memory 
•  Everyone uses the same pool of RAM anyway 
•  Why not have communications done simply by 

writing and reading parts of the RAM? 
– Sender writes to a RAM location 
– Receiver reads it 
– Give both processes access to memory via their 

domain registers 
•  Conceptually simple 
•  Basic idea cheap to implement 
•  Usually non-blocking 



Lecture 5 
Page 9 

CS 111 
Summer 2015  

Processor	
  	
  

Memory	
  	
  
Network	
  

Disk	
  

Sharing Memory With Domain 
Registers 

Process	
  1	
   Process	
  2	
  

With write 
permission for 

Process 1 

And read 
permission for 

Process 2 



Lecture 5 
Page 10 

CS 111 
Summer 2015  

Using the Shared Domain to 
Communicate 

Processor	
  	
  

Memory	
  	
  
Network	
  

Disk	
  

Process	
  1	
   Process	
  2	
  

Process 1 writes 
some data 

Process 2 then 
reads it 



Lecture 5 
Page 11 

CS 111 
Summer 2015  

Potential Problem #1 With  
Shared Domain Communications 

Processor	
  	
  

Memory	
  	
  
Network	
  

Disk	
  

Process	
  1	
   Process	
  2	
  

How did  
Process 1 know 

this was the 
correct place to 
write the data? 

How did  
Process 2 know 

this was the 
correct place to 
read the data? 



Lecture 5 
Page 12 

CS 111 
Summer 2015  

Potential Problem #2 With 
Shared Domain Communications  

Processor	
  	
  

Memory	
  	
  
Network	
  

Disk	
  

Process	
  1	
   Process	
  2	
  

What if Process 2 
tries to read the 

data before process 
1 writes it? 

Timing Issues 

Worse, what if 
Process 2 reads the 
data in the middle 

of Process 1 
writing it? 



Lecture 5 
Page 13 

CS 111 
Summer 2015  

Messages 

•  A conceptually simple communications 
mechanism 

•  The sender sends a message explicitly 
•  The receiver explicitly asks to receive it 
•  The message service is provided by the 

operating system 
– Which handles all the “little details” 

•  Usually non-blocking 



Lecture 5 
Page 14 

CS 111 
Summer 2015  

Opera6ng	
  
System	
  

Using Messages 

Processor	
  	
  

Memory	
  	
  
Network	
  

Disk	
  

Process	
  1	
   Process	
  2	
  

SEND RECEIVE 



Lecture 5 
Page 15 

CS 111 
Summer 2015  

Advantages of Messages 
•  Processes need not agree on where to look for things 

–  Other than, perhaps, a named message queue 
•  Clear synchronization points 

–  The message doesn’t exist until you SEND it 
–  The message can’t be examined until you RECEIVE it 
–  So no worries about incomplete communications 

•  Helpful encapsulation features 
–  You RECEIVE exactly what was sent, no more, no less 

•  No worries about size of the communications 
–  Well, no worries for the user; the OS has to worry 

•  Easy to see how it scales to multiple processes 



Lecture 5 
Page 16 

CS 111 
Summer 2015  

Implementing Messages 
•  The OS is providing this communications abstraction 
•  There’s no magic here 

–  Lots of stuff needs to be done behind the scenes by OS 
•  Issues to solve: 

–  Where do you store the message before receipt? 
–  How do you deal with large quantities of messages? 
–  What happens when someone asks to receive before 

anything is sent? 
–  What happens to messages that are never received? 
–  How do you handle naming issues? 
–  What are the limits on message contents? 



Lecture 5 
Page 17 

CS 111 
Summer 2015  

Message Storage Issues 
•  Messages must be stored somewhere while 

waiting delivery 
– Typical choices are either in the sender’s domain 

•  What if sender deletes/overwrites them? 

– Or in a special OS domain 
•  That implies extra copying, with performance costs 

•  How long do messages hang around? 
– Delivered ones are cleared 
– What about those for which no RECEIVE is done? 

•  One choice: delete them when the receiving process 
exits 



Lecture 5 
Page 18 

CS 111 
Summer 2015  

Remote Procedure Calls 
•  A more object-oriented mechanism 
•  Communicate by making procedure calls on 

other processes 
– “Remote” here really means “in another process” 
– Not necessarily “on another machine” 

•  They aren’t in your address space 
– And don’t even use the same code 

•  Some differences from a regular procedure call 
•  Typically blocking 



Lecture 5 
Page 19 

CS 111 
Summer 2015  

 RPC Characteristics 
•  Procedure calls are primary unit of 

computation in most languages 
– Unit of information hiding and interface 

specification 
•  Natural boundary between client and server 

– Turn procedure calls into message send/receives 
•  Requires both sender and receiver to be 

playing the same game 
– Typically both use some particular RPC standard 



Lecture 5 
Page 20 

CS 111 
Summer 2015  

RPC Mechanics 
•  The process hosting the remote procedure 

might be on same computer or a different one 
•  Under the covers, use messages in either case 
•  Resulting limitations: 

– No implicit parameters/returns (e.g. global 
variables) 

– No call-by-reference parameters 
– Much slower than procedure calls (TANSTAAFL) 

•  Often used for client/server computing 



Lecture 5 
Page 21 

CS 111 
Summer 2015  

RPC Operations 
•  Client application links to local procedures 

– Calls local procedures, gets results 
– All RPC implementation is inside those procedures 

•  Client application does not know about details 
– Does not know about formats of messages 
– Does not worry about sends, timeouts, resends 
– Does not know about external data representation 

•  All generated automatically by RPC tools 
– The key to the tools is the interface specification 

•  Failure in callee doesn’t crash caller 



Lecture 5 
Page 22 

CS 111 
Summer 2015  

Bounded Buffers 
•  A higher level abstraction than shared domains 

or simple messages 
•  But not quite as high level as RPC 
•  A buffer that allows writers to put messages in 
•  And readers to pull messages out 
•  FIFO 
•  Unidirectional  

– One process sends, one process receives 

•  With a buffer of limited size 



Lecture 5 
Page 23 

CS 111 
Summer 2015  

SEND and RECEIVE With 
Bounded Buffers 

•  For SEND(), if buffer is not full, put the 
message into the end of the buffer and return 
–  If full, block waiting for space in buffer 
– Then add message and return 

•  For RECEIVE(), if buffer has one or more 
messages, return the first one put in 
–  If there are no messages in buffer, block and wait 

until one is put in 



Lecture 5 
Page 24 

CS 111 
Summer 2015  

Practicalities of Bounded Buffers 
•  Handles problem of not having infinite space 
•  Ensures that fast sender doesn’t overwhelm 

slow receiver  
•  Provides well-defined, simple behavior for 

receiver 
•  But subject to some synchronization issues 

– The producer/consumer problem 
– A good abstraction for exploring those issues 



Lecture 5 
Page 25 

CS 111 
Summer 2015  

The Bounded Buffer 

Process	
  1	
   Process	
  2	
  

A fixed size buffer 

Process 1 is the writer Process 2 is the reader 

Process 1 
SENDs a 
message 

through the 
buffer 

Process 2 
RECEIVEs
a message 
from the 
buffer 

More 
messages 
are sent 

And 
received 

What could 
possibly go 

wrong? 



Lecture 5 
Page 26 

CS 111 
Summer 2015  

One Potential Issue 

Process	
  1	
   Process	
  2	
  

What if the buffer is full? 

But the 
sender wants 

to send 
another 

message? 

The sender will need 
to wait for the 

receiver to catch up 
An issue of sequence 

coordination 

Another sequence 
coordination 

problem if receiver 
tries to read from an 

empty buffer 



Lecture 5 
Page 27 

CS 111 
Summer 2015  

Handling Sequence Coordination 
Issues 

•  One party needs to wait 
– For the other to do something 

•  If the buffer is full, process 1’s SEND must 
wait for process 2 to do a RECEIVE 

•  If the buffer is empty, process 2’s RECEIVE 
must wait for process 1 to SEND 

•  Naively, done through busy loops 
– Check condition, loop back if it’s not true 
– Also called spin loops 



Lecture 5 
Page 28 

CS 111 
Summer 2015  

Implementing the Loops 

•  What exactly are the processes looping on? 
•  They care about how many messages are in the 

bounded buffer 
•  That count is probably kept in a variable 

–  Incremented on SEND 
– Decremented on RECEIVE 
– Never to go below zero or exceed buffer size 

•  The actual system code would test the variable 



Lecture 5 
Page 29 

CS 111 
Summer 2015  

A Potential Danger 

Process	
  1	
   Process	
  2	
  

BUFFER_COUNT

4	
  
Process 1 checks 
BUFFER_COUNT

4

Process 2 checks 
BUFFER_COUNT

4

Process 1 wants to 
SEND

Process 2 wants to 
RECEIVE

5	
  

5 3

3	
  

Concurrency’s a bitch 



Lecture 5 
Page 30 

CS 111 
Summer 2015  

Why Didn’t You Just Say 
BUFFER_COUNT=BUFFER_COUNT-1? 

•  These are system operations 
•  Occurring at a low level 
•  Using variables not necessarily in the 

processes’ own address space 
– Perhaps even RAM memory locations 

•  The question isn’t, can we do it right? 
•  The question is, what must we do if we are to 

do it right? 



Lecture 5 
Page 31 

CS 111 
Summer 2015  

One Possible Solution 
•  Use separate variables to hold the number of 

messages put into the buffer 
•  And the number of messages taken out 
•  Only the sender updates the IN variable 
•  Only the receiver updates the OUT variable 
•  Calculate buffer fullness by subtracting OUT from 
IN

•  Won’t exhibit the previous problem 
•  When working with concurrent processes, it’s safest 

to only allow one process to write each variable 



Lecture 5 
Page 32 

CS 111 
Summer 2015  

Multiple Writers and Races 

•  What if there are multiple senders and 
receivers sharing the buffer? 

•  Other kinds of concurrency issues can arise 
– Unfortunately, in non-deterministic fashion 
– Depending on timings, they might or might not 

occur 
– Without synchronization between threads/

processes, we have no control of the timing 
– Any action interleaving is possible 



Lecture 5 
Page 33 

CS 111 
Summer 2015  

A Multiple Sender Problem 
Process	
  1	
  

Process	
  2	
  

Process	
  3	
  

Processes 1 and 3 are senders 

Process 2 is a receiver 

The buffer starts empty 

0

IN

Process 1 
wants to 
SEND 

Process 3 
wants to 
SEND 

There’s plenty of room in 
the buffer for both 

But . . .  

11
We’re in trouble: 

We overwrote 
process 1’s message 



Lecture 5 
Page 34 

CS 111 
Summer 2015  

The Source of the Problem 
•  Concurrency again 
•  Processes 1 and 3 executed concurrently 
•  At some point they determined that buffer 

slot 1 was empty 
– And they each filled it 
– Not realizing the other would do so 

•  Worse, it’s timing dependent 
– Depending on ordering of events 



Lecture 5 
Page 35 

CS 111 
Summer 2015  

Process 1 Might Overwrite  
Process 3 Instead 

Process	
  1	
  

Process	
  3	
  

Process	
  2	
  

0

IN

100



Lecture 5 
Page 36 

CS 111 
Summer 2015  

Or It Might Come Out Right 
Process	
  1	
  

Process	
  3	
  

Process	
  2	
  

0

IN

1012



Lecture 5 
Page 37 

CS 111 
Summer 2015  

Race Conditions 
•  Errors or problems occurring because of this 

kind of concurrency 
•  For some ordering of events, everything is fine 
•  For others, there are serious problems 
•  In true concurrent situations, either result is 

possible 
•  And it’s often hard to predict which you’ll get 
•  Hard to find and fix 

– A job for the OS, not application programmers 



Lecture 5 
Page 38 

CS 111 
Summer 2015  

How Can The OS Help? 

•  By providing abstractions not subject to race 
conditions 

•  One can program race-free concurrent code 
–  It’s not easy 

•  So having an expert do it once is better than 
expecting all programmers to do it themselves 

•  An example of the OS hiding unpleasant 
complexities 



Lecture 5 
Page 39 

CS 111 
Summer 2015  

Locks 

•  A way to deal with concurrency issues 
•  Many concurrency issues arise because 

multiple steps aren’t done atomically 
–  It’s possible for another process to take actions in 

the middle 
•  Locks prevent that from happening 
•  They convert a multi-step process into 

effectively a single step one 



Lecture 5 
Page 40 

CS 111 
Summer 2015  

What Is a Lock? 
•  A shared variable that coordinates use of a 

shared resource 
– Such as code or other shared variables 

•  When a process wants to use the shared 
resource, it must first ACQUIRE the lock 
– Can’t use the resource till ACQUIRE succeeds 

•  When it is done using the shared resource, it 
will RELEASE the lock 

•  ACQUIRE and RELEASE are the fundamental 
lock operations 



Lecture 5 
Page 41 

CS 111 
Summer 2015  

Using Locks in Our Multiple 
Sender Problem 

Process	
  1	
  

Process	
  3	
  

IN

0

To use the buffer properly, a process must: 
1.  Read the value of IN
2.  If IN < BUFFER_SIZE, store message
3.  Add 1 to IN

WITHOUT 
INTERRUPTION! 

So associate a lock with those steps 



Lecture 5 
Page 42 

CS 111 
Summer 2015  

The Lock in Action 
Process	
  1	
  

Process	
  3	
   IN

0

Process 1 executes ACQUIRE on the lock 
Let’s assume it succeeds 
Now process 1 executes the code 

associated with the lock 

1.  Read the value of IN

IN = 0

2.  If IN < BUFFER_SIZE, store message

0 < 5 ✔

3.  Add 1 to IN

1

Process 1 now executes RELEASE on the lock 



Lecture 5 
Page 43 

CS 111 
Summer 2015  

What If Process 3  
Intervenes? 

Process	
  1	
  

Process	
  3	
   IN

0

IN = 0

Let’s say process 1 has the lock already 
And has read IN

Now, before process 1 can execute any 
more code, process 3 tries to SEND

Before process 3 can go ahead, it needs the lock 

ACQUIRE()

But that ACQUIRE fails, since process 1 
already has the lock 

So process 1 can safely complete the SEND

1



Lecture 5 
Page 44 

CS 111 
Summer 2015  

Locking and Atomicity 

•  Locking is one way to provide the property of 
atomicity for compound actions 
– Actions that take more than one step 

•  Atomicity has two aspects: 
– Before-or-after atomicity 
– All-or-nothing atomicity 

•  Locking is most useful for providing before-
or-after atomicity 



Lecture 5 
Page 45 

CS 111 
Summer 2015  

Before-Or-After Atomicity 
•  As applied to a set of actions A 
•  If they have before-or-after atomicity, 
•  For all other actions, each such action either: 

– Happened before the entire set of A 
– Or happened after the entire set of A 

•  In our bounded buffer example, either the 
entire buffer update occurred first 

•  Or the entire buffer update came later 
•  Not partly before, partly after 



Lecture 5 
Page 46 

CS 111 
Summer 2015  

Using Locks to Avoid Races 

•  Software designer must find all places where a 
race condition might occur 
–  If he misses one, he may get errors there 

•  He must then properly use locks for all 
processes that could cause the race 
–  If he doesn’t do it right, he might get races anyway 

•  Since neither is trivial to get right, OS should 
provide abstractions to handle proper locking 



Lecture 5 
Page 47 

CS 111 
Summer 2015  

Parallelism and Concurrency 
•  Running parallel threads of execution has many 

benefits and is increasingly important 
•  Making use of parallelism implies concurrency 

–  Multiple actions happening at the same time 
–  Or perhaps appearing to do so 

•  That’s difficult, because if two execution streams are 
not synchronized 

–  Results depend on the order of instruction execution 
–  Parallelism makes execution order non-deterministic 
–  Understanding possible outcomes of the computation 

becomes combinatorially intractable 



Lecture 5 
Page 48 

CS 111 
Summer 2015  

Solving the Parallelism Problem 

•  There are actually two interdependent 
problems 
– Critical section serialization 
– Notification of asynchronous completion 

•  They are often discussed as a single problem 
– Many mechanisms simultaneously solve both 
– Solution to either requires solution to the other 

•  But they can be understood and solved 
separately 



Lecture 5 
Page 49 

CS 111 
Summer 2015  

The Critical Section Problem 
•  A critical section is a resource that is shared by 

multiple threads 
– By multiple concurrent threads, processes or CPUs 
– By interrupted code and interrupt handler 

•  Use of the resource changes its state 
– Contents, properties, relation to other resources 

•  Correctness depends on execution order 
– When scheduler runs/preempts which threads 
– Relative timing of asynchronous/independent 

events 



Lecture 5 
Page 50 

CS 111 
Summer 2015  

The Asynchronous Completion 
Problem 

•  Parallel activities happen at different speeds 
•  Sometimes one activity needs to wait for another to 

complete 
•  The asynchronous completion problem is how to 

perform such waits without killing performance 
–  Without wasteful spins/busy-waits 

•  Examples of asynchronous completions 
–  Waiting for a held lock to be released 
–  Waiting for an I/O operation to complete 
–  Waiting for a response to a network request 
–  Delaying execution for a fixed period of time 



Lecture 5 
Page 51 

CS 111 
Summer 2015  

Critical Sections 

•  What is a critical section? 
•  Functionality whose proper use in parallel 

programs is critical to correct execution 
•  If you do things in different orders, you get 

different results 
•  A possible location for undesirable non-

determinism 



Lecture 5 
Page 52 

CS 111 
Summer 2015  

Basic Approach to Critical Sections 
•  Serialize access 

– Only allow one thread to use it at a time 
– Using some method like locking 

•  Won’t that limit parallelism? 
– Yes, but . . . 

•  If true interactions are rare, and critical 
sections well defined, most code still parallel 

•  If there are actual frequent interactions, there 
isn’t any real parallelism possible 
– Assuming you demand correct results 



Lecture 5 
Page 53 

CS 111 
Summer 2015  

Critical Section Example 1:  
Updating a File 

Process 1 Process 2 
remove(“database”); 
fd = create(“database”); 
write(fd,newdata,length); 
close(fd); 

fd = open(“database”,READ); 
count = read(fd,buffer,length); 

remove(“database”); 
fd = create(“database”); 

fd = open(“database”,READ); 
count = read(fd,buffer,length); 

write(fd,newdata,length); 
close(fd); 

−  This result could not occur with any sequential execution 
•  Process 2 reads an empty database 



Lecture 5 
Page 54 

CS 111 
Summer 2015  

Critical Section Example 2:   
Multithreaded Banking Code 

load r1, balance   // = 100 
load r2, amount1 // = 50 
add r1, r2              // = 150 
store r1, balance  // = 150 

Thread 1 Thread 2 
load r1, balance    // = 100 
load r2, amount2 // = 25  
sub r1, r2               // = 75 
store r1, balance   // = 75 

load r1, balance   // = 100 
load r2, amount1 // = 50 
add r1, r2            // = 150 

100 balance 

r1 

r2 

50 amount1 25 amount2 

100 150 

load r1, balance    // = 100 

100 

load r2, amount2 // = 25  

25 
75 

sub r1, r2              // = 75 
store r1, balance   // = 75 

75 

store r1, balance  // = 150 

50 

CONTEXT SWITCH!!! 

CONTEXT SWITCH!!! 

150 

The $25 debit was lost!!! 



Lecture 5 
Page 55 

CS 111 
Summer 2015  

These Kinds of Interleavings  
Seem Pretty Unlikely 

•  To cause problems, things have to happen 
exactly wrong 

•  Indeed, that’s true 
•  But modern machines execute a billion 

instructions per second 
•  So even very low probability events can 

happen with frightening frequency 
•  Often, one problem blows up everything that 

follows 



Lecture 5 
Page 56 

CS 111 
Summer 2015  

Can’t We Solve the Problem By 
Disabling Interrupts? 

•  Much of our difficulty is caused by a poorly timed 
interrupt  
–  Our code gets part way through, then gets interrupted 
–  Someone else does something that interferes 
–  When we start again, things are messed up 

•  Why not temporarily disable interrupts to solve those 
problems? 
–  Can’t be done in user mode 
–  Harmful to overall performance 
–  Dangerous to correct system behavior 



Lecture 5 
Page 57 

CS 111 
Summer 2015  

Another Approach 
•  Avoid shared data whenever possible 

–  No shared data, no critical section 
–  Not always feasible 

•  Eliminate critical sections with atomic instructions 
–  Atomic (uninteruptable) read/modify/write operations 
–  Can be applied to 1-8 contiguous bytes 
–  Simple: increment/decrement, and/or/xor 
–  Complex: test-and-set, exchange, compare-and-swap 
–  What if we need to do more in a critical section? 

•  Use atomic instructions to implement locks  
–  Use the lock operations to protect critical sections 



Lecture 5 
Page 58 

CS 111 
Summer 2015  

Atomic Instructions – Compare  
and Swap 

A C description of machine instructions 
bool compare_and_swap( int *p, int old, int new ) { 
if (*p == old) {  /* see if value has been changed  */ 

*p = new;   /* if not, set it to new value   */ 
return( TRUE);  /* tell caller he succeeded   */ 

} else    /* value has been changed   */ 
 return( FALSE);  /* tell caller he failed    */ 

} 

if (compare_and_swap(flag,UNUSED,IN_USE) { 
 /* I got the critical section! */ 

} else { 
 /* I didn’t get it.  */ 

} 



Lecture 5 
Page 59 

CS 111 
Summer 2015  

Solving Problem #2 With  
Compare and Swap 

Again, a C implementation 
int current_balance; 
writecheck( int amount ) { 
int oldbal, newbal; 
do { 

oldbal = current_balance; 
newbal = oldbal - amount; 
if (newbal < 0) return (ERROR); 

} while (!compare_and_swap( &current_balance, oldbal, newbal)) 
... 
} 



Lecture 5 
Page 60 

CS 111 
Summer 2015  

Why Does This Work? 
•  Remember, compare_and_swap() is atomic 
•  First time through, if no concurrency,  

–  oldbal == current_balance 
–  current_balance was changed to newbal by 
compare_and_swap() 

•  If not, 
–  current_balance changed after you read it 
– So compare_and_swap() didn’t change 
current_balance and returned FALSE 

– Loop, read the new value, and try again 



Lecture 5 
Page 61 

CS 111 
Summer 2015  

Will This Really Solve  
the Problem? 

•  If compare & swap fails, loop back and re-try 
–  If there is a conflicting thread isn’t it likely to 

simply fail again? 
•  Only if preempted during a four instruction 

window 
– By someone executing the same critical section 

•  Extremely low probability event 
– We will very seldom go through the loop even 

twice 



Lecture 5 
Page 62 

CS 111 
Summer 2015  

Limitation of Atomic Instructions 

•  They only update a small number of contiguous bytes 
–  Cannot be used to atomically change multiple locations 

•  E.g., insertions in a doubly-linked list 

•  They operate on a single memory bus 
–  Cannot be used to update records on disk 
–  Cannot be used across a network 

•  They are not higher level locking operations 
–  They cannot “wait” until a resource becomes available 
–  You have to program that up yourself 

•  Giving you extra opportunities to screw up 



Lecture 5 
Page 63 

CS 111 
Summer 2015  

Implementing Locks 
•  Create a synchronization object 

–  Associated it with a critical section 
–  Of a size that an atomic instruction can manage 

•  Lock the object to seize the critical section 
–  If critical section is free, lock operation succeeds 
–  If critical section is already in use, lock operation fails 

•  It may fail immediately 
•  It may block until the critical section is free again 

•  Unlock the object to release critical section 
–  Subsequent lock attempts can now succeed 
–  May unblock a sleeping waiter 



Lecture 5 
Page 64 

CS 111 
Summer 2015  

Criteria for Correct Locking 

•  How do we know if a locking mechanism is correct? 
•  Four desirable criteria: 

1.  Correct mutual exclusion 
-  Only one thread at a time has access to critical section 

2.  Progress 
-  If resource is available, and someone wants it, they get it 

3.  Bounded waiting time 
-  No indefinite waits, guaranteed eventual service 

4.  And (ideally) fairness 
-  E.g. FIFO 


