
Lecture 4
Page 1

CS 111
Summer 2015

Scheduling
CS 111

Operating System Principles
Peter Reiher

Lecture 4
Page 2

CS 111
Summer 2015

Outline

•  What is scheduling?
– What are our scheduling goals?

•  What resources should we schedule?
•  Example scheduling algorithms and their

implications

Lecture 4
Page 3

CS 111
Summer 2015

What Is Scheduling?

•  An operating system often has choices about
what to do next

•  In particular:
– For a resource that can serve one client at a time
– When there are multiple potential clients
– Who gets to use the resource next?
– And for how long?

•  Making those decisions is scheduling

Lecture 4
Page 4

CS 111
Summer 2015

OS Scheduling Examples

•  What job to run next on an idle core?
– How long should we let it run?

•  In what order to handle a set of block requests
for a disk drive?

•  If multiple messages are to be sent over the
network, in what order should they be sent?

Lecture 4
Page 5

CS 111
Summer 2015

How Do We Decide
How To Schedule?

•  Generally, we choose goals we wish to achieve
•  And design a scheduling algorithm that is

likely to achieve those goals
•  Different scheduling algorithms try to optimize

different quantities
•  So changing our scheduling algorithm can

drastically change system behavior

Lecture 4
Page 6

CS 111
Summer 2015

The Process Queue
•  The OS typically keeps a queue of processes

that are ready to run
– Ordered by whichever one should run next
– Which depends on the scheduling algorithm used

•  When time comes to schedule a new process,
grab the first one on the process queue

•  Processes that are not ready to run either:
– Aren’t in that queue
– Or are at the end
– Or are ignored by scheduler

Lecture 4
Page 7

CS 111
Summer 2015

Potential Scheduling Goals
•  Maximize throughput

–  Get as much work done as possible
•  Minimize average waiting time

–  Try to avoid delaying too many for too long

•  Ensure some degree of fairness
–  E.g., minimize worst case waiting time

•  Meet explicit priority goals
–  Scheduled items tagged with a relative priority

•  Real time scheduling
–  Scheduled items tagged with a deadline to be met

Lecture 4
Page 8

CS 111
Summer 2015

Different Kinds of Systems,
Different Scheduling Goals

•  Time sharing
–  Fast response time to interactive programs
–  Each user gets an equal share of the CPU

•  Batch
–  Maximize total system throughput
–  Delays of individual processes are unimportant

•  Real-time
–  Critical operations must happen on time
–  Non-critical operations may not happen at all

Lecture 4
Page 9

CS 111
Summer 2015

Preemptive Vs.
Non-Preemptive Scheduling

•  When we schedule a piece of work, we could let it
use the resource until it finishes

•  Could use virtualization to interrupt part way through
–  Allowing other pieces of work to run instead

•  If scheduled work always runs to completion, the
scheduler is non-preemptive

•  If the scheduler temporarily halts running jobs to run
something else, it’s preemptive

•  Cooperative scheduling – when process blocks or
voluntarily releases, schedule someone else

Lecture 4
Page 10

CS 111
Summer 2015

Pros and Cons of
Non-Preemptive Scheduling

+ Low scheduling overhead
+ Tends to produce high throughput
+ Conceptually very simple
− Poor response time for processes
− Bugs can cause machine to freeze up
− If process contains infinite loop, e.g.

− Not good fairness (by most definitions)
− May make real time and priority scheduling

difficult

Lecture 4
Page 11

CS 111
Summer 2015

Pros and Cons of Pre-emptive
Scheduling

+ Can give good response time
+ Can produce very fair usage
+ Works well with real-time and priority

scheduling
− More complex
− Requires ability to cleanly halt process and

save its state
− May not get good throughput

Lecture 4
Page 12

CS 111
Summer 2015

Scheduling: Policy and Mechanism
•  The scheduler will move jobs into and out of a

processor (dispatching)
– Requiring various mechanics to do so

•  How dispatching is done should not depend on
the policy used to decide who to dispatch

•  Desirable to separate the choice of who runs
(policy) from the dispatching mechanism
– Also desirable that OS process queue structure not

be policy-dependent

Lecture 4
Page 13

CS 111
Summer 2015

Scheduling the CPU

ready queue dispatcher context
switcher CPU

yield (or preemption)

resource
manager resource request resource granted

new
process

Lecture 4
Page 14

CS 111
Summer 2015

Scheduling and Performance

•  How you schedule important system activities
has a major effect on performance

•  Performance has different aspects
– You may not be able to optimize for both

•  Scheduling performance has very different
characteristic under light vs. heavy load

•  Important to understand the performance
basics regarding scheduling

Lecture 4
Page 15

CS 111
Summer 2015

Quantifying Scheduler
Performance

•  Candidate metric: throughput (processes/second)
– But different processes need different run times
– Process completion time not controlled by

scheduler
•  Candidate metric: delay (milliseconds)

– But specifically what delays should we measure?
– Some delays are not the scheduler's fault

•  Time to complete a service request
•  Time to wait for a busy resource

•  Different parties care about these metrics

Lecture 4
Page 16

CS 111
Summer 2015

An Example – Measuring CPU
Scheduling

•  Process execution can be divided into phases
– Time spent running

•  The process controls how long it needs to run
– Time spent waiting for resources or completions

•  Resource managers control how long these take
– Time spent waiting to be run

•  This time is controlled by the scheduler

•  Proposed metric:
– Time that “ready” processes spend waiting for the

CPU

Lecture 4
Page 17

CS 111
Summer 2015

Typical Throughput vs. Load Curve

throughput

offered load

ideal

typical

Maximum possible capacity

Lecture 4
Page 18

CS 111
Summer 2015

Why Don’t We Achieve Ideal
Throughput?

•  Scheduling is not free
–  It takes time to dispatch a process (overhead)
– More dispatches means more overhead (lost time)
– Less time (per second) is available to run processes

•  How to minimize the performance gap
– Reduce the overhead per dispatch
– Minimize the number of dispatches (per second)

•  This phenomenon is seen in many areas
besides process scheduling

Lecture 4
Page 19

CS 111
Summer 2015

Typical Response Time
vs. Load Curve

Delay
(response time) ideal

typical

offered load

Lecture 4
Page 20

CS 111
Summer 2015

Why Does Response Time
Explode?

•  Real systems have finite limits
–  Such as queue size

•  When exceeded, requests are typically dropped
–  Which is an infinite response time, for them
–  There may be automatic retries (e.g., TCP), but they could

be dropped, too
•  If load arrives a lot faster than it is serviced, lots of

stuff gets dropped
•  Unless careful, overheads during heavy load explode
•  Effects like receive livelock can also hurt

Lecture 4
Page 21

CS 111
Summer 2015

Graceful Degradation
•  When is a system “overloaded”?

– When it is no longer able to meet service goals

•  What can we do when overloaded?
– Continue service, but with degraded performance
– Maintain performance by rejecting work
– Resume normal service when load drops to normal

•  What should we not do when overloaded?
– Allow throughput to drop to zero (i.e., stop doing

work)
– Allow response time to grow without limit

Lecture 4
Page 22

CS 111
Summer 2015

Non-Preemptive Scheduling
•  Consider in the context of CPU scheduling
•  Scheduled process runs until it yields CPU
•  Works well for simple systems

– Small numbers of processes
– With natural producer consumer relationships

•  Good for maximizing throughput
•  Depends on each process to voluntarily yield

– A piggy process can starve others
– A buggy process can lock up the entire system

Lecture 4
Page 23

CS 111
Summer 2015

When Should a Process Yield?
•  When it knows it’s not going to make progress

– E.g., while waiting for I/O
– Better to let someone else make progress than sit

in a pointless wait loop
•  After it has had its “fair share” of time

– Which is hard to define
– Since it may depend on the state of everything else

in the system
•  Can’t expect application programmers to do

sophisticated things to decide

Lecture 4
Page 24

CS 111
Summer 2015

Scheduling Other Resources
Non-Preemptively

•  Schedulers aren’t just for the CPU or cores
•  They also schedule use of other system

resources
– Disks
– Networks
– At low level, busses

•  Is non-preemptive best for each such resource?
•  Which algorithms we will discuss make sense

for each?

Lecture 4
Page 25

CS 111
Summer 2015

Non-Preemptive Scheduling
Algorithms

•  First come first served
•  Shortest job next
•  Real time schedulers

Lecture 4
Page 26

CS 111
Summer 2015

First Come First Served

•  The simplest of all scheduling algorithms
•  Run first process on ready queue

–  Until it completes or yields

•  Then run next process on queue
– Until it completes or yields

•  Highly variable delays
– Depends on process implementations

•  All processes will eventually be served

Lecture 4
Page 27

CS 111
Summer 2015

First Come First Served Example

Note: Average is worse than total/5 because four other processes had
to wait for the slow-poke who ran first.

Total 1275
595

Lecture 4
Page 28

CS 111
Summer 2015

When Would First Come First
Served Work Well?

•  FCFS scheduling is very simple
•  It may deliver very poor response time
•  Thus it makes the most sense:

1.  In batch systems, where response time is not
important

2.  In embedded (e.g. telephone or set-top box)
systems where computations are brief and/or exist
in natural producer/consumer relationships

Lecture 4
Page 29

CS 111
Summer 2015

Shortest Job First

•  Find the shortest task on ready queue
– Run it until it completes or yields

•  Find the next shortest task on ready queue
– Run it until it completes or yields

•  Yields minimum average queuing delay
– This can be very good for interactive response time
– But it penalizes longer jobs

Lecture 4
Page 30

CS 111
Summer 2015

Shortest Job First Example

Note: Even though total time remained unchanged, reordering
 the processes significantly reduced the average wait time.

305
Total 1275

Lecture 4
Page 31

CS 111
Summer 2015

Is Shortest Job First Practical?

•  How can we know how long a job is going to run?
–  Processes predict for themselves?
–  The system predicts for them?

•  How fair is SJF scheduling?
–  The smaller jobs will always be run first
–  New small jobs cut in line, ahead of older longer jobs
–  Will the long jobs ever run?

•  Only if short jobs stop arriving ... which could be never

•  This is called starvation
–  It is caused by discriminatory scheduling

Lecture 4
Page 32

CS 111
Summer 2015

What If the Prediction is Wrong?
•  Regardless of who made it
•  In non-preemptive system, we have little choice:

–  Continue running the process until it yields
•  If prediction is wrong, the purpose of Shortest-Job-

First scheduling is defeated
–  Response time suffers as a result

•  Few computer systems attempt to use Shortest-Job-
First scheduling
–  But grocery stores and banks do use it

•  10-item-or-less registers
•  Simple deposit & check cashing windows

Lecture 4
Page 33

CS 111
Summer 2015

Is Starvation Really That Bad?
•  If optimizing for response time, it may make

sense to preferentially schedule shorter jobs
– The long jobs are “inappropriate” for this type of

system
–  And inconvenience many other jobs

•  If a job is inappropriate for our system,
perhaps we should refuse to run it
– But making it wait for an indefinitely long period

of time doesn’t sound like reasonable behavior
– Especially without feedback to job’s submitter

Lecture 4
Page 34

CS 111
Summer 2015

Real Time Schedulers

•  For certain systems, some things must happen
at particular times
– E.g., industrial control systems
–  If you don’t rivet the widget before the conveyer

belt moves, you have a worthless widget
•  These systems must schedule on the basis of

real-time deadlines
•  Can be either hard or soft

Lecture 4
Page 35

CS 111
Summer 2015

Hard Real Time Schedulers
•  The system absolutely must meet its deadlines
•  By definition, system fails if a deadline is not

met
– E.g., controlling a nuclear power plant . . .

•  How can we ensure no missed deadlines?
•  Typically by very, very careful analysis

– Make sure no possible schedule causes a deadline
to be missed

– By working it out ahead of time
– Then scheduler rigorously follows deadlines

Lecture 4
Page 36

CS 111
Summer 2015

Ensuring Hard Deadlines
•  Must have deep understanding of the code

used in each job
– You know exactly how long it will take

•  Vital to avoid non-deterministic timings
– Even if the non-deterministic mechanism usually

speeds things up
– You’re screwed if it ever slows them down

•  Typically means you do things like turn off
interrupts

•  And scheduler is non-preemptive

Lecture 4
Page 37

CS 111
Summer 2015

How Does a Hard Real Time
System Schedule?

•  There is usually a very carefully pre-defined
schedule

•  No actual decisions made at run time
•  It’s all been worked out ahead of time
•  Not necessarily using any particular algorithm
•  The designers may have just tinkered around to

make everything “fit”

Lecture 4
Page 38

CS 111
Summer 2015

Soft Real Time Schedulers

•  Highly desirable to meet your deadlines
•  But some (or any) of them can occasionally be

missed
•  Goal of scheduler is to avoid missing deadlines

– With the understanding that you might
•  May have different classes of deadlines

– Some “harder” than others

•  Need not require quite as much analysis

Lecture 4
Page 39

CS 111
Summer 2015

Soft Real Time Schedulers and
Non-Preemption

•  Not as vital that tasks run to completion to
meet their deadline
– Also not as predictable, since you probably did

less careful analysis
•  In particular, a new task with an earlier

deadline might arrive
•  If you don’t pre-empt, you might not be able to

meet that deadline

Lecture 4
Page 40

CS 111
Summer 2015

What If You Don’t Meet a
Deadline?

•  Depends on the particular type of system
•  Might just drop the job whose deadline you

missed
•  Might allow system to fall behind
•  Might drop some other job in the future
•  At any rate, it will be well defined in each

particular system

Lecture 4
Page 41

CS 111
Summer 2015

What Algorithms Do You
Use For Soft Real Time?

•  Most common is Earliest Deadline First
•  Each job has a deadline associated with it

– Based on a common clock

•  Keep the job queue sorted by those deadlines
•  Whenever one job completes, pick the first one

off the queue
•  Perhaps prune the queue to remove jobs whose

deadlines were missed
•  Goal is to minimize total lateness

Lecture 4
Page 42

CS 111
Summer 2015

Example of a Soft Real Time
Scheduler

•  A video playing device
•  Frames arrive

– From disk or network or wherever

•  Ideally, each frame should be rendered “on
time”
– To achieve highest user-perceived quality

•  If you can’t render a frame on time, might be
better to skip it entirely
– Rather than fall further behind

Lecture 4
Page 43

CS 111
Summer 2015

Preemptive Scheduling
•  Again in the context of CPU scheduling
•  A thread or process is chosen to run
•  It runs until either it yields
•  Or the OS decides to interrupt it
•  At which point some other process/thread runs
•  Typically, the interrupted process/thread is

restarted later

Lecture 4
Page 44

CS 111
Summer 2015

Implications of Forcing Preemption
•  A process can be forced to yield at any time

–  If a higher priority process becomes ready
•  Perhaps as a result of an I/O completion interrupt

–  If running process's priority is lowered
•  Perhaps as a result of having run for too long

•  Interrupted process might not be in a “clean” state
–  Which could complicate saving and restoring its state

•  Enables enforced “fair share” scheduling
•  Introduces gratuitous context switches

–  Not required by the dynamics of processes
•  Creates potential resource sharing problems

Lecture 4
Page 45

CS 111
Summer 2015

Implementing Preemption
•  Need a way to get control away from process

– E.g., process makes a sys call, or clock interrupt

•  Consult scheduler before returning to process
– Has any ready process had its priority raised?
– Has any process been awakened?
– Has current process had its priority lowered?

•  Scheduler finds highest priority ready process
–  If current process, return as usual
–  If not, yield on behalf of current process and

switch to higher priority process

Lecture 4
Page 46

CS 111
Summer 2015

Clock Interrupts
•  Modern processors contain a clock
•  A peripheral device

– With limited powers

•  Can generate an interrupt at a fixed time
interval

•  Which temporarily halts any running process
•  Good way to ensure that runaway process

doesn’t keep control forever
•  Key technology for preemptive scheduling

Lecture 4
Page 47

CS 111
Summer 2015

Round Robin Scheduling
Algorithm

•  Goal - fair share scheduling
–  All processes offered equal shares of CPU and experience

similar queue delays

•  All processes are assigned a nominal time slice
–  Usually the same sized slice for all

•  Each process is scheduled in turn
–  Runs until it blocks, or its time slice expires
–  Then put at the end of the process queue

•  Then the next process is run
•  Eventually, each process reaches front of queue

Lecture 4
Page 48

CS 111
Summer 2015

Properties of Round Robin
Scheduling

•  All processes get relatively quick chance to do
some computation
– At the cost of not finishing any process as quickly
– A big win for interactive processes

•  Far more context switches
– Which can be expensive

•  Runaway processes do relatively little harm
– Only take 1/nth of the overall cycles

Lecture 4
Page 49

CS 111
Summer 2015

Round Robin and I/O Interrupts

•  Processes get halted by round robin scheduling
if their time slice expires

•  If they block for I/O (or anything else) on their
own, they halt themselves

•  Thus, some percentage of the time round robin
acts no differently than FIFO
– When I/O occurs in a process and it blocks

Lecture 4
Page 50

CS 111
Summer 2015

Round Robin Example
Assume a 50 msec time slice (or quantum)

Dispatch Order: 0, 1, 2, 3, 4, 0, 1, 2, . . .

Process Length 1st 2nd 3d 4th 5th 6th 7th 8th Finish Switches

0 350 0 250 475 650 800 950 1050 1100 7

1 125 50 300 525 525 3

2 475 100 350 550 700 850 1000 1100 1150 1275 10 1200 1250

3 250 150 400 600 750 900 900 5

4 75 200 450 475 2 4

1

3

0

1275 27

2

Average waiting time: 100 msec

First process completed: 475 msec

Lecture 4
Page 51

CS 111
Summer 2015

Comparing Example to Non-
Preemptive Examples

•  Context switches: 27 vs. 5 (for both FIFO and SJF)
–  Clearly more expensive

•  First job completed: 475 msec vs.
–  75 (shortest job first)
–  350 (FIFO)
–  Clearly takes longer to complete some process

•  Average waiting time: 100 msec vs.
–  350 (shortest job first)
–  595 (FIFO)
–  For first opportunity to compute
–  Clearly more responsive

Lecture 4
Page 52

CS 111
Summer 2015

Choosing a Time Slice

•  Performance of a preemptive scheduler
depends heavily on how long time slice is

•  Long time slices avoid too many context
switches
– Which waste cycles
– So better throughput and utilization

•  Short time slices provide better response time
to processes

•  How to balance?

Lecture 4
Page 53

CS 111
Summer 2015

Costs of a Context Switch
•  Entering the OS

–  Taking interrupt, saving registers, calling scheduler
•  Cycles to choose who to run

–  The scheduler/dispatcher does work to choose

•  Moving OS context to the new process
–  Switch stack, non-resident process description

•  Switching process address spaces
–  Map-out old process, map-in new process

•  Losing instruction and data caches
–  Greatly slowing down the next hundred instructions

Lecture 4
Page 54

CS 111
Summer 2015

Characterizing Costs of
a Time Slice Choice

•  What % of CPU use does a process get?
•  Depends on workload

–  More processes in queue = fewer slices/second
•  CPU share = time_slice * slices/second

–  2% = 20ms/sec = 2ms/slice * 10 slices/sec
–  2% = 20ms/sec = 5ms/slice * 4 slices/sec

•  Natural rescheduling interval
–  When a typical process blocks for resources or I/O
–  Ideally, fair-share would be based on this period
–  Only time-slice-end if process runs too long

Lecture 4
Page 55

CS 111
Summer 2015

Multi-queue Scheduling
•  One time slice length may not fit all processes
•  Create multiple ready queues

– Short quantum (foreground) tasks that finish
quickly
•  Short but frequent time slices, optimize response time

– Long quantum (background) tasks that run longer
•  Longer but infrequent time slices, minimize overhead

– Different queues may get different shares of the
CPU

Lecture 4
Page 56

CS 111
Summer 2015

How Do I Know What Queue To
Put New Process Into?

•  Start all processes in short quantum queue
– Move downwards if too many time-slice ends
– Move back upwards if too few time slice ends
– Processes dynamically find the right queue

•  If you also have real time tasks, you know
what belongs there
– Start them in real time queue and don’t move them

Lecture 4
Page 57

CS 111
Summer 2015

Multiple Queue Scheduling

tsmax = ∞
real time queue

#tse = ∞ #yield = ∞

tsmax = 500us
short quantum queue

#tse = 10 #yield = ∞

tsmax = 2ms
medium quantum queue

#tse = 50 #yield = 10

tsmax = 5ms
long quantum queue

#tse = ∞ #yield = 20

share
scheduler

20%

50%

25%

05%

Lecture 4
Page 58

CS 111
Summer 2015

Priority Scheduling Algorithm

•  Sometimes processes aren’t all equally
important

•  We might want to preferentially run the more
important processes first

•  How would our scheduling algorithm work
then?

•  Assign each job a priority number
•  Run according to priority number

Lecture 4
Page 59

CS 111
Summer 2015

Priority and Preemption

•  If non-preemptive, priority scheduling is just
about ordering processes

•  Much like shortest job first, but ordered by
priority instead

•  But what if scheduling is preemptive?
•  In that case, when new process is created, it

might preempt running process
–  If its priority is higher

Lecture 4
Page 60

CS 111
Summer 2015

Priority Scheduling Example

Process Length

0 350

1 125

2 475

Priority

10

30

40

3 250 20

4 75 50

0 200

Process 3’s priority is lower than
running process

Process 4’s priority is higher than
running process

300

Process 4 completes

4

375

So we go back to process 2

550 Time

Lecture 4
Page 61

CS 111
Summer 2015

Problems With Priority Scheduling

•  Possible starvation
•  Can a low priority process ever run?
•  If not, is that really the effect we wanted?
•  May make more sense to adjust priorities

– Processes that have run for a long time have
priority temporarily lowered

– Processes that have not been able to run have
priority temporarily raised

Lecture 4
Page 62

CS 111
Summer 2015

Priority Scheduling in Linux

•  Each process in Linux has a priority
– Called a nice value
– A soft priority describing the share of the CPU that

a process should get
•  Commands can be run to change process

priorities
•  Anyone can request lower priority for his

processes
•  Only privileged user can request higher

Lecture 4
Page 63

CS 111
Summer 2015

Priority Scheduling in Windows

•  32 different priority levels
– Half for regular tasks, half for soft real time
– Real time scheduling requires special privileges
– Using a multi-queue approach

•  Users can choose from 5 of these priority
levels

•  Kernel adjusts priorities based on process
behavior
– Goal of improving responsiveness

