4 N

Scheduling
CS 111
Operating System Principles
Peter Rether

eeeeeee

/ Outline \

* What is scheduling?

— What are our scheduling goals?
e What resources should we schedule?

* Example scheduling algorithms and their
implications

\ /

CS 111 Lecture 4
Summer 2015 Page 2

/ ‘What Is Scheduling?| \

* An operating system often has choices about
what to do next

* In particular:
— For a resource that can serve one client at a time
— When there are multiple potential clients
— Who gets to use the resource next?
— And for how long?

* Making those decisions 1s scheduling

\ /

CS 111 Lecture 4
Summer 2015 Page 3

/" 0S Scheduling Examples)

* What job to run next on an idle core?
— How long should we let 1t run?

* In what order to handle a set of block requests
for a disk drive?

* If multiple messages are to be sent over the
network, in what order should they be sent?

\ /

CS 111 Lecture 4
Summer 2015 Page 4

/ How Do We Decide \
How To Schedule?

* Generally, we choose goals we wish to achieve

* And design a scheduling algorithm that 1s
likely to achieve those goals

* Different scheduling algorithms try to optimize
different quantities

* So changing our scheduling algorithm can
drastically change system behavior

\ /

CS 111 Lecture 4
Summer 2015 Page 5

/ The Process Queue \

* The OS typically keeps a queue of processes
that are ready to run

— Ordered by whichever one should run next
— Which depends on the scheduling algorithm used

* When time comes to schedule a new process,
grab the first one on the process queue

* Processes that are not ready to run either:

— Aren’t 1n that queue

— Or are at the end

s — Or are ignored by scheduler

Summer 2015

/ Potential Scheduling Goals \

* Maximize throughput
— Get as much work done as possible
* Minimize average waiting time
— Try to avoid delaying too many for too long
* Ensure some degree of fairness
— E.g., minimize worst case waiting time
* Meet explicit priority goals
— Scheduled items tagged with a relative priority

Real time scheduling
\ — Scheduled items tagged with a deadline to be met /

CS 111 Lecture 4
Summer 2015 Page 7

\

Different Kinds of Systems,
Different Scheduling Goals

* Time sharing

— Fast response time to interactive programs

— Each user gets an equal share of the CPU
* Batch

— Maximize total system throughput

— Delays of individual processes are unimportant
* Real-time

— Critical operations must happen on time

— Non-critical operations may not happen at all

CS 111

Summer 2015

/

Lecture 4
Page 8

/ ;""""""’"""""Pfé'émptlve Vs.
Non-Preemptive Scheduhng

* If the scheduler tem
something else, 1t’s

CS 111
Summer 2015

° When we schedule a piece of work, we could let it
use the resource until 1t finishes

— Allowing other pieces of work to run instead

* If scheduled work always runs to completion, the
scheduler 1s non-preemptive

* Cooperative schedul
\ voluntarily releases,

1ng — when process blocks or
schedule someone else

* Could use virtualization to interrupt part way through

porarily halts running jobs to run
preemptive

-

Pros and Cons of
Non-Preemptive Scheduling

+ Low scheduling overhead

+ Tends to produce high throughput
+ Conceptually very simple

—Poor response time for processes

—Bugs can cause machine to freeze up

—If process contains infinite loop, e.g.
— Not good fairness (by most definitions)
\ May make real time and priority scheduling

s difficult
Summer 2015

\

Lecture 4

Page 10

/ Pros and Cons of Pre-emptive \
Scheduling

+ Can give good response time
+ Can produce very fair usage

+ Works well with real-time and priority
scheduling

— More complex

—Requires ability to cleanly halt process and
save 1ts state

\~ May not get good throughput)

CS 111 Lecture 4
Summer 2015 Page 11

@:heduling: Policy and Mechanisn}

* The scheduler will move jobs into and out of a
processor (dispatching)

— Requiring various mechanics to do so

* How dispatching 1s done should not depend on
the policy used to decide who to dispatch

* Desirable to separate the choice of who runs
(policy) from the dispatching mechanism

— Also desirable that OS process queue structure not
be policy-dependent

\

CS 111 Lecture 4
Summer 2015 Page 12

/ Scheduling the CPU \

yield (or preemption)

Q resource granted

context
: CPU
switcher
-‘ resource request
new
process

\ /

CS 111 Lecture 4
Summer 2015 Page 13

__

/ ‘Scheduling and Performance \

N e e e e e e e o e e e e e e e . ——_ — — — =

* How you schedule important system activities
has a major effect on performance

* Performance has different aspects
— You may not be able to optimize for both

* Scheduling performance has very different
characteristic under light vs. heavy load

* Important to understand the performance
basics regarding scheduling

\ /

CS 111 Lecture 4
Summer 2015 Page 14

/" Quantifying Scheduler ™\

Performance
* Candidate metric: throughput (processes/second)

— But different processes need different run times

— Process completion time not controlled by
scheduler

* Candidate metric: delay (milliseconds)
— But specifically what delays should we measure?

— Some delays are not the scheduler's fault
* Time to complete a service request

* Time to wait for a busy resource

it Different parties care about these metrics Lecture 4

Summer 2015 Page 15

/ An Example — Measuring CPU \
Scheduling

* Process execution can be divided into phases
— Time spent running
* The process controls how long it needs to run

— Time spent waiting for resources or completions
* Resource managers control how long these take

— Time spent waiting to be run
* This time 1s controlled by the scheduler

* Proposed metric:

T Time that “ready” processes spend waiting for the /
CS 111 CPU Lecture 4

Summer 2015 Page 16

ﬁypical Throughput vs. Load Cur\%

throughput

\

CS 111

Maximum possible capacity

l

typical

offered load

Summer 2015

Lecture 4
Page 17

/~ Why Don’t We Achieve Ideal ™\
Throughput?

* Scheduling is not free
— It takes time to dispatch a process (overhead)

— More dispatches means more overhead (lost time)
— Less time (per second) 1s available to run processes

* How to minimize the performance gap
— Reduce the overhead per dispatch

— Minimize the number of dispatches (per second)

* This phenomenon 1s seen in many areas
\ besides process scheduling /

CS 111 Lecture 4
Summer 2015 Page 18

/~ Typical Response Time

\

CS 111

Summer 2015

Delay

(response time)

vs. Load Curve

typical

\

offered load

Lecture 4

Page 19

/ Why Does Response Time \
Explode?

* Real systems have finite limits
— Such as queue size
* When exceeded, requests are typically dropped

— Which 1s an infinite response time, for them

— There may be automatic retries (e.g., TCP), but they could
be dropped, too

e [fload arrives a lot faster than 1t 1s serviced, lots of
stuff gets dropped

* Unless careful, overheads during heavy load explode

\¢ Effects like receive livelock can also hurt y

CS 111 Lecture 4
Summer 2015 Page 20

/ Graceful Degradation \

* When 1s a system “overloaded”?

— When 1t 1s no longer able to meet service goals

* What can we do when overloaded?
— Continue service, but with degraded performance
— Maintain performance by rejecting work

— Resume normal service when load drops to normal

* What should we not do when overloaded?

— Allow throughput to drop to zero (i.e., stop doing
work)

<, — Allow response time to grow without limit L

Summer 2015 Page 21

/ Non-Preemptive Scheduling] \

* Consider 1n the context of CPU scheduling

* Scheduled process runs until 1t yields CPU
* Works well for simple systems

— Small numbers of processes

— With natural producer consumer relationships
* Good for maximizing throughput

* Depends on each process to voluntarily yield

— A piggy process can starve others

\ —A buggy process can lock up the entire system /

CS 111 Lecture 4
Summer 2015 Page 22

/ When Should a Process Yield? \

* When 1t knows it’s not going to make progress
— E.g., while waiting for I/0

— Better to let someone else make progress than sit
in a pointless wait loop

e After 1t has had its “fair share” of time
— Which i1s hard to define

— Since 1t may depend on the state of everything else
in the system

* Can’t expect application programmers to do
sophisticated things to decide /

CS 111 Lecture 4
Summer 2015 Page 23

/" Scheduling Other Resources ™\

Non-Preemptively
* Schedulers aren’t just for the CPU or cores
* They also schedule use of other system
resources
— Disks
— Networks

— At low level, busses

* Is non-preemptive best for each such resource?

* Which algorithms we will discuss make sense
for each?

CS 111 Lecture 4
Summer 2015 Page 24

/~ Non-Preemptive Scheduling ™\
Algorithms

e First come first served
* Shortest job next
e Real time schedulers

\ /

CS 111 Lecture 4
Summer 2015 Page 25

__

__

* The simplest of all scheduling algorithms

* Run first process on ready queue

— Until 1t completes or yields
* Then run next process on queue
— Until it completes or yields

* Highly variable delays

— Depends on process implementations

\° All processes will eventually be served)

CS 111 Lecture 4
Summer 2015 Page 26

/F 1irst Come First Served Example\

\

CS 111
Summer 2015

Dispatch Order 0,1,2 3 4
Process Duration Start Time End Time
0 390 0 350
1 125 390 475
2 475 475 950
3 290 950 1200
4 I6 1200 1275
Total 1275
Average wait 995

Note: Average 1s worse than total/5 because four other processes had
to wait for the slow-poke who ran first.

/

Lecture 4
Page 27

/ When Would First Come First \

Served Work Well?

* FCFS scheduling 1s very simple
* It may deliver very poor response time
* Thus 1t makes the most sense:

1. In batch systems, where response time 1s not
important

2. In embedded (e.g. telephone or set-top box)

systems where computations are brief and/or exist
in natural producer/consumer relationships

\ /

CS 111 Lecture 4
Summer 2015 Page 28

/" Shortest Job First

* Find the shortest task on ready queue
— Run 1t until it completes or yields

* Find the next shortest task on ready queue

— Run 1t until it completes or yields

* Yields minimum average queuing delay
— This can be very good for interactive response time

— But it penalizes longer jobs

\ /

CS 111 Lecture 4
Summer 2015 Page 29

/ Shortest Job First Example \

Dispatch Order 41.3,0,2
Process Duration Start Time End Time
4 75 0 75
1 125 75 200
3 250 200 450
0 350 450 800
2 475 800 1275
Total 1275
Average wait 305
\ Note: Even though total time remained unchanged, reordering /

the processes significantly reduced the average wait time.
CS 111 Lecture 4

Summer 2015 Page 30

/ Is Shortest Job First Practical? \

* How can we know how long a job 1s going to run?

— Processes predict for themselves?
— The system predicts for them?

* How fair 1s SJF scheduling?

— The smaller jobs will always be run first
— New small jobs cut 1n line, ahead of older longer jobs
— Will the long jobs ever run?

* Only 1f short jobs stop arriving ... which could be never

e This 1s called starvation

\ — It 1s caused by discriminatory scheduling /

CS 111 Lecture 4
Summer 2015 Page 31

/ What If the Prediction 1s Wrong‘.ﬁ

* Regardless of who made it

* In non-preemptive system, we have little choice:
— Continue running the process until it yields
 If prediction 1s wrong, the purpose of Shortest-Job-
First scheduling 1s defeated
— Response time suffers as a result
* Few computer systems attempt to use Shortest-Job-
First scheduling

— But grocery stores and banks do use it

* 10-item-or-less registers

\ * Simple deposit & check cashing windows /

CS 111 Lecture 4
Summer 2015 Page 32

/ Is Starvation Really That Bad? \

* If optimizing for response time, it may make
sense to preferentially schedule shorter jobs

— The long jobs are “inappropriate” for this type of
system

— And inconvenience many other jobs
 If a job 1s mnappropriate for our system,
perhaps we should refuse to run 1t

— But making 1t wait for an indefinitely long period
of time doesn’t sound like reasonable behavior

\ /

., — Especially without feedback to job’s submitter | 7,

Summer 2015 Page 33

/" Real Time Schedulers

\

’

* For certain systems, some things must happen
at particular times

— E.g., industrial control systems

— If you don’t rivet the widget before the conveyer
belt moves, you have a worthless widget

* These systems must schedule on the basis of
real-time deadlines

* Can be either hard or soft

CS 111 Lecture 4
Summer 2015 Page 34

/ Hard Real Time Schedulers \

* The system absolutely must meet i1ts deadlines

* By definition, system fails if a deadline 1s not
met

— E.g., controlling a nuclear power plant . . .
* How can we ensure no missed deadlines?
* Typically by very, very careful analysis

— Make sure no possible schedule causes a deadline
to be missed

\ — By working it out ahead of time)

st — Then scheduler rigorously follows deadlines Lecture 4

Summer 2015 Page 35

/ Ensuring Hard Deadlines \

* Must have deep understanding of the code
used in each job

— You know exactly how long 1t will take

* Vital to avoid non-deterministic timings

— Even 1f the non-deterministic mechanism usually
speeds things up

— You’re screwed 1f 1t ever slows them down
* Typically means you do things like turn off
\ interrupts

% And scheduler is non-preemptive Lectune 4

Summer 2015 Page 36

/ How Does a Hard Real Time \
System Schedule?

* There 1s usually a very carefully pre-defined
schedule

 No actual decisions made at run time
e It’s all been worked out ahead of time
* Not necessarily using any particular algorithm

* The designers may have just tinkered around to
make everything “fit”

\ /

CS 111 Lecture 4
Summer 2015 Page 37

/ Soft Real Time Schedulers \

* Highly desirable to meet your deadlines

* But some (or any) of them can occasionally be
missed

* Goal of scheduler 1s to avoid missing deadlines
— With the understanding that you might

* May have different classes of deadlines
— Some “harder” than others

\' Need not require quite as much analysis y

CS 111 Lecture 4
Summer 2015 Page 38

/ Soft Real Time Schedulers and \

Non-Preemption
* Not as vital that tasks run to completion to
meet their deadline

— Also not as predictable, since you probably did
less careful analysis

* In particular, a new task with an earlier
deadline might arrive

* If you don’t pre-empt, you might not be able to
meet that deadline

\ /

CS 111 Lecture 4
Summer 2015 Page 39

/ What If You Don’t Meet a \

Deadline?
* Depends on the particular type of system

* Might just drop the job whose deadline you
missed

* Might allow system to fall behind
* Might drop some other job 1n the future

* At any rate, i1t will be well defined 1n each
particular system

\ /

CS 111 Lecture 4
Summer 2015 Page 40

What Algorithms Do You
Use For Soft Real Time?

e Most common 1s Earliest Deadline First
* Each job has a deadline associated with it

— Based on a common clock
* Keep the job queue sorted by those deadlines

* Whenever one job completes, pick the first one
off the queue

* Perhaps prune the queue to remove jobs whose
deadlines were missed

\e Goal 1s to minimize total lateness /

CS 111 Lecture 4
Summer 2015 Page 41

/ Example of a Soft Real Time \

Scheduler
* A video playing device
 Frames arrive

— From disk or network or wherever

* Ideally, each frame should be rendered “on
time”
— To achieve highest user-perceived quality

* If you can’t render a frame on time, might be
better to skip it entirely

\ " — Rather than fall further behind /

CS 111 Lecture 4
Summer 2015 Page 42

/ [Preemptive Scheduling J \

* Again 1n the context of CPU scheduling

* A thread or process 1s chosen to run

* It runs until either 1t yields

* Or the OS decides to interrupt it

* At which point some other process/thread runs

* Typically, the interrupted process/thread 1s
restarted later

\ /

CS 111 Lecture 4
Summer 2015 Page 43

ﬂlplications of Forcing Preemptioh

* A process can be forced to yield at any time

— If a higher priority process becomes ready
* Perhaps as a result of an I/O completion interrupt

— If running process's priority 1s lowered

* Perhaps as a result of having run for too long
* Interrupted process might not be in a “clean” state
— Which could complicate saving and restoring its state
* Enables enforced “fair share” scheduling
* Introduces gratuitous context switches

— Not required by the dynamics of processes

\» Creates potential resource sharing problems y

CS 111 Lecture 4
Summer 2015 Page 44

* Need a way to get control away from process

— E.g., process makes a sys call, or clock interrupt

* Consult scheduler before returning to process
— Has any ready process had its priority raised?
— Has any process been awakened?
— Has current process had its priority lowered?

* Scheduler finds highest priority ready process

— If current process, return as usual
T If not, yield on behalf of current process and /
csin switch to higher priority process Lecture 4

Summer 2015 Page 45

/ Clock Interrupts \

* Modern processors contain a clock

* A peripheral device
— With limited powers

* Can generate an interrupt at a fixed time
interval

* Which temporarily halts any running process

* Good way to ensure that runaway process
doesn’t keep control forever

* Key technology for preemptive scheduling)

CS 111 Lecture 4
Summer 2015 Page 46

Goal fair share scheduling

— All processes offered equal shares of CPU and experience
similar queue delays

All processes are assigned a nominal time slice
— Usually the same sized slice for all

* Each process 1s scheduled 1n turn
— Runs until it blocks, or its time slice expires

— Then put at the end of the process queue

Then the next process 1s run

\, /

« % Eventually, each process reaches front of queue Lot 4

Summer 2015 Page 47

/~ Properties of Round Robin ™\
Scheduling

* All processes get relatively quick chance to do
some computation

— At the cost of not finishing any process as quickly
— A big win for interactive processes

 Far more context switches

— Which can be expensive

* Runaway processes do relatively little harm

— Only take 1/nt™ of the overall cycles

\ /

CS 111 Lecture 4
Summer 2015 Page 48

/ Round Robin and I/O Interrupts\

* Processes get halted by round robin scheduling
if their time slice expires

* If they block for I/O (or anything else) on their
own, they halt themselves

* Thus, some percentage of the time round robin
acts no differently than FIFO

— When 1I/0O occurs 1n a process and it blocks

\ /

CS 111 Lecture 4
Summer 2015 Page 49

/ Round Robin Example \

Assume a 50 msec time slice (or guantum)

Dispatch Order: 0,1,2,3,4,0,1,2, ...
Process | Length | 1st | 2nd | 3d | 4th | 5th | 6th | 7th | 8th | Finish | Switches
0 350 0 | 250 | 475 | 650 | 800 | 950 | 1050 1100 7
1 125 50 | 300 | 525 525 3
2 475 100 | 350 | 550 | 700 | 850 | 1000 | 1100 | 1250 | 1275 10
3 250 150 | 400 | 600 | 750 | 900 900 5
4 75 200 | 450 475 2
Average waiting time: 100 msec 1275| 27
\ First process completed: 475 msec /
cs 111 Lecture 4

Summer 2015 Page 50

/ Comparing Example to Non- \

Preemptive Examples
* Context switches: 27 vs. 5 (for both FIFO and SJF)

— Clearly more expensive

* First job completed: 475 msec vs.
— 75 (shortest job first)
— 350 (FIFO)

— Clearly takes longer to complete some process

* Average waiting time: 100 msec vs.
— 350 (shortest job first)

— 595 (FIFO)
\ — For first opportunity to compute /

csin — Clearly more responsive Lecture 4
Summer 2015 Page 51

/ Choosing a Time Slice \

* Performance of a preemptive scheduler
depends heavily on how long time slice 1s

* Long time slices avoid too many context
switches

— Which waste cycles
— So better throughput and utilization

* Short time slices provide better response time
to processes

S\H'l How to balance? /

C Lecture 4
Summer 2015 Page 52

/ Costs of a Context Switch \

* Entering the OS
— Taking interrupt, saving registers, calling scheduler
* Cycles to choose who to run

— The scheduler/dispatcher does work to choose

* Moving OS context to the new process

— Switch stack, non-resident process description

* Switching process address spaces
— Map-out old process, map-in new process

* Losing instruction and data caches

\ — QGreatly slowing down the next hundred instructions /

CS 111 Lecture 4
Summer 2015 Page 53

/ Characterizing Costs of

a Time Slice Choice

What % of CPU use does a process get?

* Depends on workload

— More processes 1n queue = fewer slices/second
CPU share = time_slice * slices/second

— 2% = 20ms/sec = 2ms/slice * 10 slices/sec

— 2% = 20ms/sec = Sms/slice * 4 slices/sec

Natural rescheduling interval
— When a typical process blocks for resources or I/O

— Ideally, fair-share would be based on this period

\ — Only time-slice-end 1f process runs too long

CS 111
Summer 2015

/

Lecture 4
Page 54

/" Multi-queue Scheduling

* One time slice length may not fit all processes

* Create multiple ready queues
— Short quantum (foreground) tasks that finish
quickly
* Short but frequent time slices, optimize response time

— Long quantum (background) tasks that run longer
* Longer but infrequent time slices, minimize overhead

— Different queues may get different shares of the
CPU

\ /

CS 111 Lecture 4
Summer 2015 Page 55

/How Do I Know What Queue To\

Put New Process Into?

 Start all processes 1n short quantum queue
— Move downwards 1f too many time-slice ends
— Move back upwards if too few time slice ends
— Processes dynamically find the right queue
* If you also have real time tasks, you know
what belongs there
— Start them 1n real time queue and don’t move them

\ /

CS 111 Lecture 4
Summer 2015 Page 56

/" Multiple Queue Scheduling

- _

50%

25%

medium quantum queue
#yield =10 tS, . = 2mS #tse = 50

05%

\

CS 111 Lecture 4
Summer 2015 Page 57

/ Priority Scheduling Algorithm N

* Sometimes processes aren’t all equally
important

* We might want to preferentially run the more
important processes first

* How would our scheduling algorithm work
then?

* Assign each job a priority number

* Run according to priority number

\

CS 111 Lecture 4
Summer 2015 Page 58

/ Priority and Preemption \

* If non-preemptive, priority scheduling 1s just
about ordering processes

* Much like shortest job first, but ordered by
priority instead

* But what 1f scheduling i1s preemptive?

* In that case, when new process 1s created, it
might preempt running process

— If 1ts priority 1s higher

\ /

CS 111 Lecture 4
Summer 2015 Page 59

/ Priority Scheduling Example \

550 Time

Process | Priority | Length

0 10 350

1 30 125

2 40 475

3 20 250

4 50 75

Process 4 completes

\ So we go back to process 2

CS 111

Process 3’s priority 1s lower than
running process

Process 4’s priority 1s higher than
running process

Summer 2015

/

Lecture 4
Page 60

/Problems With Priority Scheduling \

* Possible starvation
* Can a low priority process ever run?
* If not, 1s that really the effect we wanted?

* May make more sense to adjust priorities

— Processes that have run for a long time have
priority temporarily lowered

— Processes that have not been able to run have
priority temporarily raised

\ /

CS 111 Lecture 4
Summer 2015 Page 61

/ Priority Scheduling in Linux \

* Each process in Linux has a priority

— Called a nice value

— A soft priority describing the share of the CPU that
a process should get

* Commands can be run to change process
priorities

* Anyone can request lower priority for his
processes

\o Only privileged user can request higher /

CS 111 Lecture 4
Summer 2015 Page 62

/" Priority Scheduling in Windows)

* 32 different priority levels
— Half for regular tasks, half for soft real time
— Real time scheduling requires special privileges
— Using a multi-queue approach

* Users can choose from 5 of these priority
levels

* Kernel adjusts priorities based on process
behavior

\ Goal of improving responsiveness /
CS 111 Lecture 4
Summer 2015 Page 63

