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Outline 

•  The role of I/O in operating systems 
•  Organizing systems via modularity 
•  Virtualization and operating systems 



Lecture 2 
Page 3 

CS 111 
Summer 2015  

I/O Architecture 
•  I/O is: 

– Varied 
– Complex 
– Error prone 

•  Bad place for the user to be wandering around 
•  The operating system must make I/O friendlier 
•  Oriented around handling many different 

devices via busses using device drivers 
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Sequential vs. Random  
Access Devices 

•  Sequential access devices 
–  Byte/block N must be read/written before byte/block N+1 
–  May be read/write once, or may be rewindable 
–  Examples: magnetic tape, printer, keyboard 

•  Random access devices 
–  Possible to directly request any desired byte/block 
–  Getting to that byte/block may or may not be instantaneous 
–  Examples: memory, magnetic disk, graphics adaptor 

•  They are used very differently 
–  Requiring different handling by the OS     
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Busses 

•  Something has to hook together the 
components of a computer 
– The CPU, memory, various devices 

•  Allowing data to flow between them 
•  That is a bus 
•  A type of communication link abstraction 
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A Simple Bus 
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Devices and Controllers 
•  Device controllers connect a device to a bus 

–  Communicate control operations to device 
–  Relay status information back to the bus, manage DMA, 

generate device interrupts 
•  Device controllers export registers to the bus 

–  Writing into registers controls device or sends data 
–  Reading from registers obtains data/status 

•  Register access method varies with CPU type 
–  May use special instructions (e.g., x86 IN/OUT) 
–  May be mapped onto bus just like memory 
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Direct Polled I/O 
•  Method of accessing devices via direct CPU control 

–  CPU transfers data to/from device controller registers 
–  Transfers are typically one byte or word at a time 
–  May be accomplished with normal or I/O instructions 

•  CPU polls device until it is ready for data transfer 
–  Received data is available to be read 
–  Previously initiated write operations are completed 

+ Very easy to implement (both hardware and software) 
− CPU intensive, wastes CPU cycles on I/O control 
− Leaves devices idle waiting for CPU when other tasks 

running 
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Direct Memory Access 
•  Essentially, use the bus without CPU control 

–  Move data between memory and device controller 
•  Bus facilitates data flow in all directions between: 

–  CPU, memory, and device controllers 

•  CPU can be the bus-master 
–  Initiating data transfers with memory, device controllers 

•  But device controllers can also master the bus 
–  CPU instructs controller what transfer is desired 
–  Device controller does transfer w/o CPU assistance 
–  Device controller generates interrupt at end of transfer 

•  Interrupts tell CPU when DMA is done 
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Memory Issues 

•  Different types of memory handled in different 
ways 

•  Cache memory usually handled mostly by 
hardware  
– Often OS not involved at all 

•  RAM requires very special handling 
– To be discussed in detail later 

•  Disks and flash drives treated as devices 
– But often with extra OS support 
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Disk Drives 
•  An especially important and complex form of 

I/O device 
– Gradually being replaced by SSDs 

•  Still the primary method of providing stable 
storage 
– Storage meant to last beyond a single power cycle 

of the computer 
•  A place where physics meets computer science 

– Somewhat uncomfortably 
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Some Important Disk 
Characteristics 

•  Disks are random access devices (mostly . . .) 
– With complex usage, performance, and scheduling 

•  Key OS services depend on disk I/O 
– Program loading, file I/O, paging 
– Disk performance drives overall performance 

•  Disk I/O operations are subject to overhead 
– Higher overhead means fewer operations/second 
– Careful scheduling can reduce overhead 
– Clever scheduling can improve throughput, delay
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Disk Drives – A Physical View 
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Disk Drives – A Logical View 

cylinder 
(10 corresponding tracks) 

platter 

surface 

track 

sectors 



Lecture 2 
Page 15 

CS 111 
Summer 2015  

Seek Time 
•  At any moment, the heads are over some track 

– All heads move together, so all over the same track 
on different surfaces 

•  If you want to read another track, you must 
move the heads 

•  The time required to do that is seek time 
•  Seek time is not constant 

– Amount of time to move from one track to another 
depends on start and destination 

– Usually reported as an average 
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Rotational Delay 
•  Once you have the heads over the right track, 

you need to get them to the right sector 
•  The head is over only one sector at a time 
•  If it isn’t the right sector, you have to wait for 

the disk to rotate over that one 
•  Like seek time, not a constant 

– Depends on which sector you’re over 
– And which sector you’re looking for 
– Also usually reported as an average 

•  Also called latency 
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Transfer Time 

•  Once you’re on the correct track and the head’s 
over the right sector, you need to transfer data 

•  You don’t read/write an entire sector at a time 
•  There is some delay associated with reading 

every byte in the sector 
•  All sectors are usually the same size 
•  So transfer time is usually constant 
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Disk Drives and Controllers 

•  The disk drive is not directly connected to the 
bus 

•  It is connected to a disk drive controller 
– Special hardware designed for this task 

•  There may be several disk drives attached to 
the same controller 
– Which then multiplexes its attention between them 

•  Many disks have their controller bundled with 
them (e.g., SCSI disks) 
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Why Is This An Issue 
For the OS? 

•  When you go to disk, it could be fast or slow 
–  If you go to disk a lot, that matters 

•  The OS can make choices that make it faster or 
slower 
– Deciding where to put a piece of data on disk 
– Deciding when to perform an I/O 
– Reordering multiple I/Os to minimize seek time 

and latency 
– Perhaps optimistically performing I/Os that 

haven’t been requested 
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Optimizing Disk I/O 
•  Don't start I/O until disk is on-cylinder or near sector 

–  I/O ties up the controller, locking out other operations 
–  Other drives seek while one drive is doing I/O 

•  Minimize head motion 
–  Do all possible reads in current cylinder before moving 
–  Make minimum number of trips in small increments 

•  Encourage efficient data requests 
–  Have lots of requests to choose from 
–  Encourage cylinder locality 
–  Encourage largest possible block sizes 
–  All by OS design choices, not influencing programs/users 
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Algorithms to Control  
Head Movement 

•  First come, first served 
– Just do them in the order they happen 

•  Shortest seek time first 
– Always go with the request that’s closest to the 

current head position 
– Since requests keep arriving, can cause starvation 

•  Scan/Look (AKA the Elevator Algorithm) 
– Service all requests in one direction, then go in the 

other direction 
– No starvation, but may take longer 
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Head Travel With Various 
Algorithms 

Scan/Look (elevator algorithm) 
76 124 137 201 269 29 17 12 

48 13 64 68 240 12 5 

total head motion: 450 cylinders 

First Come First Served 
76 124 17 269 201 29 137 12 

48 107 252 68 172 108 125 

total head motion: 880 cylinders 

Shortest Seek First 
76 29 17 12 124 137 201 269 

47 12 5 112 13 64 68 

total head motion: 321 cylinders 
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Modularity 
•  Most useful abstractions an OS wants to offer 

can’t be directly realized by hardware 
•  Modularity is one technique the OS uses to 

provide better abstractions 
•  Divide up the overall system you want into 

well-defined communicating pieces 
•  Critical issues: 

– Which pieces to treat as modules 
– How to organize the modules 
–  Interfaces to modules 
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What Does An OS Do? 
•  At minimum, it enables one to run applications 

– Preferably several on the same machine 
– Preferably several at the same time 

•  At abstract level, what do we need to do that? 
–  Interpreters (to run the code) 
– Memory (to store the code and data) 
– Communications links (to communicate between 

apps and pieces of the system)  
•  This suggests the kinds of modules we’ll need 
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Starting Simple 
•  We want to run multiple programs 

– Without interference between them 
– Protecting one from the faults of another 

•  We’ve got a multicore processor to do so 
– More cores than programs 

•  We have RAM, a bus, a disk, other simple 
devices 

•  What abstractions should we build to ensure 
that things go well? 
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A Simple System 
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   Program	
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   Program	
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   Program	
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Memory	
  

Disk	
  

Network	
  

A machine boundary 
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Exploiting Modularity 
•  We’ll obviously have several SW elements to 

support the different user programs 
•  Desirable for each to be modular and self-

contained 
– With controlled interactions 

•  Gives cleaner organization 
•  Easier to prevent problems from spreading 
•  Easier to understand what’s going on  
•  Easier to control each program’s behavior 
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Subroutine Modularity 

•  Why not just organize the system as a set of 
subroutines? 
– All in the same address space 

•  A simplifying assumption 
•  Allowing easy in-memory communication 

•  System subroutines call user program 
subroutines as needed 
– And vice versa 

•  Soft modularity 
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How Would This Work? 
•  Each program is a self-contained set of subroutines 

–  Subroutines in the program call each other 
–  But not subroutines in other programs 

•  Shared services offered by other subroutines 
–  Which any program can call 

•  Perhaps some “master routine” that calls subroutines 
in the various programs 

•  Soft because no OS HW/SW enforces modularity 
–  Important resources (like the stack) are shared 
–  Only proper program behavior protects one program from 

the mistakes of another 
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Illustrating the Problem 
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Now Program 4 is in trouble 
Even though it did nothing wrong itself 
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Hardening the Modularity 
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Perhaps in very different places 

Each program has its own machine 
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System Services In This Model 
•  Some activities are local to each program 
•  Other services are intended to be shared 

– Like a file system 

•  This functionality can be provided by a client/
server model 

•  The system services are provided by the server 
•  The user programs are clients 
•  The client sends message to server to get help 
•  OS uses HW/SW to enforce boundaries 
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Benefits of Hard Modularity 
•  With hard modularity, something beyond good 

behavior enforces module boundaries 
•  Here, the physical boundaries of the machine 
•  A client machine literally cannot touch the 

memory of the server 
– Or of another client machine 

•  No error or attack can change that 
– Though flaws in the server can cause problems 

•  Provides stronger guarantees all around 
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Downsides of Hard Modularity 
•  The hard boundaries prevent low-cost 

optimizations 
•  In client/server organizations, doing anything 

with another program requires messages 
–  Inherently more expensive than memory accesses 

•  If the boundary sits between components 
requiring fast interactions, possibly very bad 

•  Must either give programs pieces of resources 
or time multiplex use of resources 
– More complexity to do this right 
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Virtualization 

•  Provide the illusion of a complete resource to 
each program that uses it 
– Hide hard modularity’s time/space divisions 

•  Possible to provide an entire virtual machine 
per process 

•  Use shared hardware to instantiate the various 
virtual devices or machines 

•  System software (i.e., the operating system) 
and perhaps special hardware handle it 
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The Virtualization Concept 
Program	
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The Trick in Virtualization 

•  All the virtual machines share the same 
physical hardware 

•  But each thinks it has its own machine 
•  Must be sure that one virtual machine doesn’t 

affect behavior of the others 
–  Intentionally or accidentally 

•  With the least possible performance penalty 
– Given that there will be a penalty merely for 

sharing at all 
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Performance and Virtualization 
•  To achieve good performance, can’t run many 

instructions “virtualized” 
– Most instructions must go directly to the processor 
– Rather than be mapped into multiple instructions 

via virtualization 
•  Similarly for access to other HW 

– Can’t afford to put lots of virtualization SW in the 
usual path 

•  The trick is to virtualize the minimal set of 
accesses 
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Abstractions for Virtualizing 
Computers 

•  Some kind of interpreter abstraction 
– A thread 

•  Some kind of communications abstraction 
– Bounded buffers 

•  Some kind of memory abstraction 
– Virtual memory 

•  For a virtualized architecture, the operating 
system provides these kinds of abstractions 
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Threads 
•  Encapsulates the state of a running 

computation 
•  So what does it need? 

– Something that describes what computation is to 
be performed 

– Something that describes where it is in the 
computation 

– Something that maintains the state of the 
computation’s data 
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OS Handling of Threads 
•  One (or more) threads per running program 
•  The OS chooses which thread to run 

– To share a processor, the OS must be able to 
cleanly stop and start threads 

•  While one thread is using a processor, no other 
thread should interfere with its use 

•  To run a thread, OS must: 
– Load its code and data into memory 
– Set up HW control structures (e.g., the PC) 
– Transfer control to the thread 
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Time Slicing Virtualization 
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Wait a Minute . . .? 
•  How does the OS do all that? 
•  It’s just a program itself 

– With its own interpreter, memory, etc. 

•  It must use the same physical resources as all 
the other threads 

•  Basically, the OS itself is a thread 
•  It creates and manages other threads 
•  Using privileged supervisor mode to safely and 

temporarily break virtualization boundaries 
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The OS and Virtualization 
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Providing Contained Environments 

•  What must a thread manager control to keep 
each thread isolated from the others? 

•  Well, what can each thread do? 
– Run instructions 

•  Make sure it can only run its own 

– Access some memory 
•  Make sure it can only access its own 

– Communicate to other threads 
•  Make sure communication uses a safe abstraction 
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What Does This Boil Down To? 
•  Running threads have access to certain processor 

registers 
–  Program counter, stack pointer, others 
–  Thread manager must ensure those are all set correctly 

•  Running threads have access to some or all pieces of 
physical memory 
–  Thread manager must ensure that a thread can only touch 

its own physical memory 

•  Running threads can request services (like 
communications) 
–  Thread manager must provide safe access to those services 
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Setting Up a User-Level VM 
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Protecting Threads 
•  Normal threads usually run in user mode 
•  Which means they can’t touch certain things 

–  In particular, each others’ stuff 

•  For certain kinds of resources, that’s a problem 
– What if two processes both legitimately need to 

write to the screen? 
– Do we allow unrestricted writing and hope for the 

best? 
– Don’t allow them to write at all? 

•  Instead, trap to supervisor mode 
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Trapping to Supervisor Mode 
•  To allow a program safe access to shared 

resources 
•  The trap goes to trusted code 

– Not under control of the program 
•  And performs well-defined actions 

–  In ways that are safe 

•  E.g., program not allowed to write to the 
screen directly 
– But traps to OS code that writes it safely 
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Modularity and Memory 
•  Clearly, programs must have access to memory 
•  We need abstractions that give them the 

required access 
– But with appropriate safety 

•  What we’ve really got (typically) is RAM 
•  RAM is pretty nice 

– But it has few built-in protections 

•  So we want an abstraction that provides RAM 
with safety 
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What’s the Safety Issue? 

•  We have multiple threads running 
•  Each requires some memory 
•  Modern architectures typically have one big 

pool of RAM 
•  How can we share the same pool of RAM 

among multiple processes? 
– Giving each what it needs 
– Not allowing any to harm the others 
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Domains 

•  A simple memory abstraction 
•  Give each process access to some range of the 

physical memory 
–  Its domain 
– Different domain for each process 

•  Allow process to read/write/execute memory 
in its domain 

•  And not touch any memory outside its domain 
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Mapping Domains 
Program	
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What Do Domains Require? 
•  Threads will issue instructions 

– Perhaps using arbitrary memory addresses 

•  Only honor addresses in the thread’s domain 
– Any other address should be caught as an error 

•  Hard modularity here requires HW support 
•  E.g., a domain register 

– Specifies the domain associated with the thread 
currently using the processor 

– By listing the low and high addresses that bound 
the domain 
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The Memory Manager 
•  Hardware or software that enforces the bounds 

of the domain register 
•  When thread reads or writes an address, 

memory manager checks the domain register 
•  If within bounds, do the memory operation 
•  If not, throw an illegal memory reference 

exception 
– Trapping to supervisor mode 

•  Only trusted code (i.e., the OS) can change the 
domain register 
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The Domain Register Concept 
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Multiple Domains 

•  Limiting a process to a single domain is not 
too convenient 

•  The concept is easy to extend 
– Simply allow multiple domains per process 

•  Obvious way to handle this is with multiple 
domain registers 
– One per allocated domain 
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The Multiple Domain Concept 
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Handling Multiple Domains  
•  Programs can request more domains 

– But the OS must set them up 

•  What does the program get to ask for? 
– A specific range of addresses? 
– Or a domain of a particular size? 

•  Latter is easier  
– What if requested set of addresses are already used 

by another program? 
– Memory manager can choose a range of addresses 

of requested size 
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Domains and Access Permissions 
•  One can typically do three types of things with a 

memory address 
–  Read its contents 
–  Write a new value to it 
–  Execute an instruction located there 

•  System can provide useful effects if it does not allow 
all modes of use to all addresses 

•  Typically handled on a per-domain basis 
–  E.g., read-only domains 

•  Requires extra bits in domain registers 
•  And other hardware support 



Lecture 2 
Page 61 

CS 111 
Summer 2015  

What If Program Uses a Domain 
Improperly? 

•  E.g., it tries to write to a read-only domain 
•  A permission error exception 

– Different than an illegal memory reference 
exception 

•  But also handled by a similar mechanism 
•  Probably want it to be handled by somewhat 

different code in the OS 
•  Remember discussion of trap handling in 

previous lecture? 
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Do We Really Need to Switch 
Processes for OS Services? 

•  When we trap or make a request for a domain, 
must we change processes? 
– We lose context doing so 

•  Instead, run the OS code for the process 
– Which requires changing to supervisor mode 
– Context for process is still available 

•  But what about safety? 
– Use domain access modes to ensure safety 

•  We don’t do this for all OS services . . . 
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Domains in Kernel Mode 
•  Allow user threads to access certain privileged 

domains 
– Like code to handle hardware traps 
– Code must be in a user-accessible domain 

•  But can’t allow arbitrary access to those 
privileged domains 

•  A supervisor (AKA kernel) mode access bit is 
set on such domains 
– So thread only accesses them when in kernel mode 
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How Does a Thread Get  
to Kernel Mode? 

•  Can’t allow thread to arbitrarily put itself in 
kernel mode any time 
– Since it might do something unsafe 

•  Instead, allow entry to kernel mode only in 
specific ways 
–  In particular, only at specific instructions 
– These are called gates 
– Typically implemented in hardware using 

instruction like SVC (supervisor call) 


