
Lecture 13
Page 1

CS 111
Summer 2015

Distributed Computing
CS 111

Operating System Principles
Peter Reiher

Lecture 13
Page 2

CS 111
Summer 2015

Outline

•  Goals and vision of distributed computing
•  Basic architectures

– Symmetric multiprocessors
– Single system image distributed systems
– Cloud computing systems
– User-level distributed computing

Lecture 13
Page 3

CS 111
Summer 2015

Goals of Distributed Computing
•  Better services

–  Scalability
•  Some applications require more resources than one computer has
•  Should be able to grow system capacity to meet growing demand

–  Availability
•  Disks, computers, and software fail, but services should be 24x7!

–  Improved ease of use, with reduced operating expenses
•  Ensuring correct configuration of all services on all systems

•  New services
–  Applications that span multiple system boundaries
–  Global resource domains, services decoupled from systems
–  Complete location transparency

Lecture 13
Page 4

CS 111
Summer 2015

Important Characteristics of
Distributed Systems

•  Performance
–  Overhead, scalability, availability

•  Functionality
–  Adequacy and abstraction for target applications

•  Transparency
–  Compatibility with previous platforms
–  Scope and degree of location independence

•  Degree of coupling
–  How many things do distinct systems agree on?
–  How is that agreement achieved?

Lecture 13
Page 5

CS 111
Summer 2015

Loosely and Tightly Coupled
Systems

•  Tightly coupled systems
–  Share a global pool of resources
–  Agree on their state, coordinate their actions

•  Loosely coupled systems
–  Have independent resources
–  Only coordinate actions in special circumstances

•  Degree of coupling
–  Tight coupling: global coherent view, seamless fail-over

•  But very difficult to do right

–  Loose coupling: simple and highly scalable
•  But a less pleasant system model

Lecture 13
Page 6

CS 111
Summer 2015

Globally Coherent Views
•  Everyone sees the same thing
•  Usually the case on single machines
•  Harder to achieve in distributed systems
•  How to achieve it?

– Have only one copy of things that need single view
•  Limits the benefits of the distributed system
•  And exaggerates some of their costs

– Ensure multiple copies are consistent
•  Requiring complex and expensive consensus protocols

•  Not much of a choice

Lecture 13
Page 7

CS 111
Summer 2015

Major Classes of Distributed
Systems

•  Symmetric Multi-Processors (SMP)
–  Multiple CPUs, sharing memory and I/O devices

•  Single-System Image (SSI) & Cluster Computing
–  A group of computers, acting like a single computer

•  Loosely coupled, horizontally scalable systems
–  Coordinated, but relatively independent systems
–  Cloud computing is the most widely used version

•  Application level distributed computing
–  Application level protocols
–  Distributed middle-ware platforms

Lecture 13
Page 8

CS 111
Summer 2015

Symmetric Multiprocessors (SMP)
•  A solution relying on special hardware support

– Which has pluses and minuses

•  Primarily for parallel processing
•  Core parallelism problem for SMP:

– The memory bandwidth problem

Lecture 13
Page 9

CS 111
Summer 2015

SMP Systems
•  Computers composed of multiple identical compute

engines
–  Each computer in SMP system usually called a node

•  Sharing memories and devices
•  Could run same or different code on all nodes

–  Each node runs at its own pace
–  Though resource contention can cause nodes to block

•  Examples:
–  BBN Butterfly parallel processor
–  Multi-way Intel servers
–  To some extent, modern multicore processors

Lecture 13
Page 10

CS 111
Summer 2015

SMP Goals

•  Price performance
– Lower price per MIP than single machine

•  Scalability
– Economical way to build huge systems
– Possibility of increasing machine’s power just by

adding more nodes
•  Perfect application transparency

– Runs the same on 16 nodes as on one
– Except faster

Lecture 13
Page 11

CS 111
Summer 2015

A Typical SMP Architecture

shared memory & device busses

memory

device
controller

device
controller

device
controller

CPU 1

cache

CPU 2

cache

CPU 3

cache

CPU 4

cache

interrupt
controller

Lecture 13
Page 12

CS 111
Summer 2015

The SMP Price/Performance
Argument

•  A computer is much more than a CPU
–  Mother-board, disks, controllers, power supplies, case
–  CPU might cost 10-15% of the cost of the computer

•  Adding CPUs to a computer is very cost-effective
–  A second CPU yields cost of 1.1x, performance 1.9x
–  A third CPU yields cost of 1.2x, performance 2.7x

•  Same argument also applies at the chip level
–  Making a machine twice as fast is ever more difficult
–  Adding more cores to the chip gets ever easier

•  Massive multi-processors are an obvious direction

Lecture 13
Page 13

CS 111
Summer 2015

SMP Operating Systems
•  One processor boots with power on

–  It controls the starting of all other processors

•  Same OS code runs in all processors
– One physical copy in memory, shared by all CPUs

•  Each CPU has its own registers, cache, MMU
– They cooperatively share memory and devices

•  ALL kernel operations must be Multi-Thread-
Safe
– Protected by appropriate locks/semaphores
– Very fine grained locking to avoid contention

Lecture 13
Page 14

CS 111
Summer 2015

Handling Kernel Synchronization
•  Multiple processors are sharing one OS copy
•  What needs to be synchronized?

– Every potentially sharable OS data structure
•  Process descriptors, file descriptors, data buffers,

message queues, etc.
•  All of the devices

•  Could we just lock the entire kernel, instead?
– Yes, but it would be a bottleneck
– Remember lock contention?
– Avoidable by not using coarse-grained locking

Lecture 13
Page 15

CS 111
Summer 2015

SMP Parallelism
•  Scheduling and load sharing

–  Each CPU can be running a different process
–  Just take the next ready process off the run-queue
–  Processes run in parallel
–  Most processes don't interact (other than inside kernel)

•  If they do, poor performance caused by excessive synchronization

•  Serialization
–  Mutual exclusion achieved by locks in shared memory
–  Locks can be maintained with atomic instructions
–  Spin locks acceptable for VERY short critical sections
–  If a process blocks, that CPU finds next ready process

Lecture 13
Page 16

CS 111
Summer 2015

The Challenge of SMP
Performance

•  Scalability depends on memory contention
–  Memory bandwidth is limited, can't handle all CPUs
–  Most references better be satisfied from per-CPU cache
–  If too many requests go to memory, CPUs slow down

•  Scalability depends on lock contention
–  Waiting for spin-locks wastes time
–  Context switches waiting for kernel locks waste time

•  This contention wastes cycles, reduces throughput
–  2 CPUs might deliver only 1.9x performance
–  3 CPUs might deliver only 2.7x performance

Lecture 13
Page 17

CS 111
Summer 2015

Managing Memory Contention

•  Each processor has its own cache
–  Cache reads don’t cause memory contention
–  Writes are more problematic

•  Locality of reference often solves the problems
–  Different processes write to different places

•  Keeping everything coherent still requires a smart
memory controller

•  Fast n-way memory controllers are very expensive
–  Without them, memory contention taxes performance
–  Cost/complexity limits how many CPUs we can add

Lecture 13
Page 18

CS 111
Summer 2015

NUMA

•  Non-Uniform Memory Architectures
•  Another approach to handling memory in SMPs
•  Each CPU gets its own memory, which is on the bus

–  Each CPU has fast path to its own memory

•  Connected by a Scalable Coherent Interconnect
–  A very fast, very local network between memories
–  Accessing memory over the SCI may be 3-20x slower

•  These interconnects can be highly scalable

Lecture 13
Page 19

CS 111
Summer 2015

A Sample NUMA SMP
Architecture

PCI bus

device
controller

device
controller

CPU n+1

cache
local

memory

PCI bridge

CC NUMA
interface

PCI bus

device
controller

device
controller

CPU n

cache
local

memory

PCI bridge

CC NUMA
interface

Scalable Coherent Interconnect

Lecture 13
Page 20

CS 111
Summer 2015

OS Design for NUMA Systems
•  All about local memory hit rates

–  Each processor must use local memory almost exclusively
–  Every outside reference costs us 3-20x performance
–  We need 75-95% hit rate just to break even

•  How can the OS ensure high hit-rates?
–  Replicate shared code pages in each CPU’s memory
–  Assign processes to CPUs, allocate all memory there
–  Migrate processes to achieve load balancing
–  Spread kernel resources among all the CPUs
–  Attempt to preferentially allocate local resources
–  Migrate resource ownership to CPU that is using it

Lecture 13
Page 21

CS 111
Summer 2015

The Key SMP Scaling Problem

•  True shared memory is expensive for large
numbers of processors

•  NUMA systems require a high degree of
system complexity to perform well
– Otherwise, they’re always accessing remote

memory at very high costs
•  So there is a limit to the technology for both

approaches
•  Which explains why SMP is not ubiquitous

Lecture 13
Page 22

CS 111
Summer 2015

Single System Image Approaches
•  Built a distributed system out of many more-

or-less traditional computers
– Each with typical independent resources
– Each running its own copy of the same OS
– Usually a fixed, known pool of machines

•  Connect them with a good local area network
•  Use software techniques to allow them to work

cooperatively
– Often while still offering many benefits of

independent machines to the local users

Lecture 13
Page 23

CS 111
Summer 2015

Motivations for Single System
Image Computing

•  High availability, service survives node/link failures
•  Scalable capacity (overcome SMP contention

problems)
–  You’re connecting with a LAN, not a special hardware

switch
–  LANs can host hundreds of nodes

•  Good application transparency
•  Examples:

–  Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI
–  Enterprise database servers

Lecture 13
Page 24

CS 111
Summer 2015

Why Did This Sound
Like a Good Idea?

•  Programs don’t run on hardware, they run on
top of an operating system

•  All the resources that processes see are already
virtualized

•  Don’t just virtualize a single system’s
resources, virtualize many systems’ resources

•  Applications that run in such a cluster are
(automatically and transparently) distributed

Lecture 13
Page 25

CS 111
Summer 2015

The SSI Vision

Virtual computer with 4x MIPS & memory

one large virtual file system

disk 1A

disk 1B

disk 2A

disk 2B

disk 3A

disk 3B

disk 4A

disk 4B

one global pool of
devices

physical systems

CD1

LP2

CD3

LP3

SCN4

CD1

CD3

LP2

LP3

SCN4

 secondary replicas

 primary copies

proc 101
proc 103
proc 106

lock 1A

proc 202
proc 204
proc 205

proc 301
proc 305
proc 306

lock 3B

proc 403
proc 405
proc 407

processes
 101, 103, 106,
+ 202, 204, 205,
+ 301, 305, 306,
+ 403, 405, 407

locks
 1A, 3B

Lecture 13
Page 26

CS 111
Summer 2015

OS Design for SSI Clusters

•  All nodes agree on the state of all OS resources
–  File systems, processes, devices, locks, IPC ports
–  Any process can operate on any object, transparently

•  They achieve this by exchanging messages
–  Advising one another of all changes to resources

•  Each OS’s internal state mirrors the global state

–  To execute node-specific requests
•  Node-specific requests automatically forwarded to right node

•  The implementation is large, complex, and difficult
•  The exchange of messages can be very expensive

Lecture 13
Page 27

CS 111
Summer 2015

SSI Performance
•  Clever implementation can minimize overhead

–  10-20% overall is not uncommon, can be much worse
•  Complete transparency

–  Even very complex applications “just work”
–  They do not have to be made “network aware”

•  Good robustness
–  When one node fails, others notice and take-over
–  Often, applications won't even notice the failure
–  Each node hardware-independent

•  Failures of one node don’t affect others, unlike some SMP failures

•  Very nice for application developers and customers
–  But they are complex, and not particularly scalable

Lecture 13
Page 28

CS 111
Summer 2015

An Example of SSI Complexity
•  Keeping track of which nodes are up
•  Done in the Locus Operating System through

“topology change”
•  Need to ensure that all nodes know of the identity of

all nodes that are up
•  By running a process to figure it out
•  Complications:

–  Who runs the process? What if he’s down himself?
–  Who do they tell the results to?
–  What happens if things change while you’re running it?
–  What if the system is partitioned?

Lecture 13
Page 29

CS 111
Summer 2015

Is It Really That Bad?

•  Nodes fail and recovery rarely
•  So something like topology change doesn’t run that

often
•  But consider a more common situation
•  Two processes have the same file open

–  What if they’re on different machines?
–  What if they are parent and child, and share a file pointer?

•  Basic read operations require distributed agreement
–  Or, alternately, we compromise the single image
–  Which was the whole point of the architecture

Lecture 13
Page 30

CS 111
Summer 2015

Scaling and SSI

•  Scaling limits proved not to be hardware
driven
– Unlike SMP machines

•  Instead, driven by algorithm complexity
– Consensus algorithms, for example

•  Design philosophy essentially requires
distributed cooperation
–  So this factor limits scalability

Lecture 13
Page 31

CS 111
Summer 2015

Lessons Learned From SSI

•  Consensus protocols are expensive
–  They converge slowly and scale poorly

•  Systems have a great many resources
–  Resource change notifications are expensive

•  Location transparency encouraged non-locality
–  Remote resource use is much more expensive

•  A very complicated operating system design
–  Distributed objects are much more complex to manage
–  Complex optimizations to reduce the added overheads
–  New modes of failure with complex recovery procedures

Lecture 13
Page 32

CS 111
Summer 2015

Loosely Coupled Systems
•  Characterization:

– A parallel group of independent computers
– Serving similar but independent requests
– Minimal coordination and cooperation required

•  Motivation:
– Scalability and price performance
– Availability – if protocol permits stateless servers
– Ease of management, reconfigurable capacity

•  Examples:
– Web servers, app servers

Lecture 13
Page 33

CS 111
Summer 2015

Horizontal Scalability

•  Each node largely independent
•  So you can add capacity just by adding a node

“on the side”
•  Scalability can be limited by network, instead

of hardware or algorithms
– Or, perhaps, by a load balancer

•  Reliability is high
– Failure of one of N nodes just reduces capacity

Lecture 13
Page 34

CS 111
Summer 2015

Horizontal Scalability Architecture

load balancing switch
with fail-over

web
server

web
server

web
server

web
server

app
server

app
server

app
server

app
server

app
server

content
distribution

server

HA
database
server

WAN to clients

… … web
server

If I need more
web server
capacity,

Lecture 13
Page 35

CS 111
Summer 2015

Elements of Loosely Coupled
Architecture

•  Farm of independent servers
–  Servers run same software, serve different requests
–  May share a common back-end database

•  Front-end switch
–  Distributes incoming requests among available servers
–  Can do both load balancing and fail-over

•  Service protocol
–  Stateless servers and idempotent operations
–  Successive requests may be sent to different servers

Lecture 13
Page 36

CS 111
Summer 2015

Horizontally Scaled Performance
•  Individual servers are very inexpensive

–  Blade servers may be only $100-$200 each
•  Scalability is excellent

–  100 servers deliver approximately 100x performance

•  Service availability is excellent
–  Front-end automatically bypasses failed servers
–  Stateless servers and client retries fail-over easily

•  The challenge is managing thousands of servers
–  Automated installation, global configuration services
–  Self monitoring, self-healing systems
–  Scaling limited by management, not HW or algorithms

Lecture 13
Page 37

CS 111
Summer 2015

What About the Centralized
Resources?

•  The load balancer appears to be centralized
•  And what about the back-end databases?
•  Are these single points of failure for this

architecture?
•  And also limits on performance?
•  Yes, but . . .

Lecture 13
Page 38

CS 111
Summer 2015

Handling the Limiting Factors

•  The centralized pieces can be special hardware
– There are very few of them
– So they can use aggressive hardware redundancy

•  Expensive, but only for a limited set

– They can also be high performance machines
•  Some of them have very simple functionality

– Like the load balancer
•  With proper design, their roles can be

minimized, decreasing performance problems

Lecture 13
Page 39

CS 111
Summer 2015

Limited Transparency Clusters

•  Single System Image clusters had problems
–  All nodes had to agree on state of all objects
–  Lots of messages, lots of complexity, poor scalability

•  What if they only had to agree on a few objects?
–  Like cluster membership and global locks
–  Fewer objects, fewer operations, much less traffic
–  Objects could be designed for distributed use

•  Leases, commitment transactions, dynamic server binding

•  Simpler, better performance, better scalability
–  Combines best features of SSI and horizontally scaled

loosely coupled systems

Lecture 13
Page 40

CS 111
Summer 2015

Example: Beowulf Clusters

•  A technology for building high performance
parallel machines out of commodity parts

•  One server machine controlling things
•  Lots of pretty dumb client machines handling

processing
•  A LAN technology connecting them

– Standard message passing between machines

•  Applications must be written for parallelization

Lecture 13
Page 41

CS 111
Summer 2015

Beowulf High Performance
Computing Cluster

task
coordination NFS

server
MPI

Beowulf Head Node

MPI

Beowulf
Slave Node

sub-task

MPI

sub-task

MPI

sub-task

MPI

sub-task …

Message Passing Interface
exchanging information between sub-
tasks

There is no effort at transparency here. Applications are specifically written for
 a parallel execution platform and use a Message Passing Interface to mediate
 exchanges between cooperating computations.

Beowulf
Slave Node

Beowulf
Slave Node

Beowulf
Slave Node

NFS
programs and
data

Lecture 13
Page 42

CS 111
Summer 2015

Cloud Computing
•  The most recent twist on distributed computing
•  Set up a large number of machines all

identically configured
•  Connect them to a high speed LAN

– And to the Internet
•  Accept arbitrary jobs from remote users
•  Run each job on one or more nodes
•  Entire facility probably running mix of single

machine and distributed jobs, simultaneously

Lecture 13
Page 43

CS 111
Summer 2015

Distributed Computing and
Cloud Computing

•  In one sense, these are orthogonal
•  Each job submitted might or might not be

distributed
•  Many of the hard problems of the distributed

ones are the user’s problem, not the system’s
– E.g., proper synchronization and locking

•  But the cloud facility must make
communications easy

Lecture 13
Page 44

CS 111
Summer 2015

What Runs in a Cloud?
•  In principle, anything
•  But general distributed computing is hard
•  So much of the work is run using special tools
•  These tools support particular kinds of parallel/

distributed processing
•  Either embarrassingly parallel jobs
•  Or those using a method like map-reduce
•  Things where the user need not be a distributed

systems expert

Lecture 13
Page 45

CS 111
Summer 2015

Embarrassingly Parallel Jobs
•  Problems where it’s really, really easy to

parallelize them
•  Probably because the data sets are easily

divisible
•  And exactly the same things are done on each

piece
– With no interactions in the midst of computation

•  So you just parcel them out among the nodes
and let each go independently

•  Everyone finishes at more or less same time

Lecture 13
Page 46

CS 111
Summer 2015

The Most Embarrassing of
Embarrassingly Parallel Jobs

•  Say you have a large computation
•  You need to perform it N times, with slightly

different inputs each time
•  Each iteration is expected to take the same

time
•  If you have N cloud machines, write a script to

send one of the N jobs to each
•  You get something like N times speedup

Lecture 13
Page 47

CS 111
Summer 2015

Map-Reduce
•  A computational technique for performing

operations on large quantities of data
– For not-quite embarrassingly parallel operations

•  Basically:
– Divide the data into pieces
– Farm each piece out to a machine
– Collect the results and combine them

•  For example, searching a large data set for
occurrences of a phrase

•  Originally developed by Google

Lecture 13
Page 48

CS 111
Summer 2015

Map-Reduce in Cloud Computing
•  A master node divides the problem among N

cloud machines
•  Each cloud machine performs the map

operation on its data set
•  When all complete, the master performs the

reduce operation on each node’s results
•  Can be divided further

– E.g., a node given a piece of a problem can divide
it into smaller pieces and farm those out

– Then it does a reduce before returning to its master

Lecture 13
Page 49

CS 111
Summer 2015

An Important Lesson From Map-
Reduce

•  Map-reduce is powerful, widely used, and
successful

•  It is not fully general
•  BUT, by recognizing that many important

computations don’t require generality
•  It allows efficient, correct distributed

computations for wide range of applications
•  The lesson: utility is usually more important

than generality

Lecture 13
Page 50

CS 111
Summer 2015

Do-It-Yourself Distributed
Computing in the Cloud

•  Generally, you can submit any job you want to
the cloud

•  If you want to run a SSI or horizontally scaled
loosely coupled system, be their guest
– Assuming you pay, of course

•  They’ll offer basic system tools
•  You’ll do the distributed system heavy lifting
•  Wouldn’t it be nice if you had some

middleware to help . . . ?

Lecture 13
Page 51

CS 111
Summer 2015

Distribution at the
Application Level

•  This course has focused on the OS as a “platform”
–  OS services have evolved to meet application needs
–  SMP creates a scalable distributed OS platform
–  SSI clusters are a robust distributed OS platform

•  There are limitations to such a platform
–  Architectural limitations on scalability
–  A legacy of single-system semantics
–  Heterogeneity is a fundamental fact of life

•  Who said “applications must be written to an OS?”
–  Perhaps there are other, more suitable, platforms

Lecture 13
Page 52

CS 111
Summer 2015

A Different Paradigm

•  We tried to make remote services appear local
– This failed for the reasons that Deutch laid out

•  We don't want to distinguish local from remote
– Doing so is awkward, constraining, and poor

abstraction
•  What’s our other option?
•  What if we made all services seem remote?

Lecture 13
Page 53

CS 111
Summer 2015

Embracing Remote Services

•  Design interactions for remote services
•  Provide:

– Discovery
– Rendezvous
– Leases
– Rebinding
– And other features to deal with Deutsch's fallacies

•  And then provide efficient local implementations
–  Minimizing performance penalty for local resources

Lecture 13
Page 54

CS 111
Summer 2015

Alternatives to Distributed
Operating Systems

•  Network aware applications
–  That register themselves with network name services
–  Exchange services by sending messages
–  Monitor the comings and goings of their partners

•  Distributed middleware
–  To provide convenient, distributed objects and services
–  Examples:

•  Platforms: RPC, COM/.NET, Java Beans
•  Environments: Erlang, Rational Rose, Ruby on Rails
•  Services: TIBCO pub/sub messaging

Lecture 13
Page 55

CS 111
Summer 2015

RPC As an Underlying Paradigm
•  Procedure calls are already a fundamental paradigm

–  Primary unit of computation in most languages
–  Unit of information hiding in most methodologies
–  Primary level of interface specification

•  RPC is a natural boundary between client and server
–  Turn procedure calls into message send/receives

•  A few limitations
–  No implicit parameters/returns (e.g., global variables)
–  No call-by-reference parameters
–  Much slower than procedure calls (TANSTAAFL)
–  Partial failure far more likely than local procedure calls

Lecture 13
Page 56

CS 111
Summer 2015

Key Features of RPC
•  Client application links against local procedures

–  Calls local procedures, gets results
•  All RPC implementation is inside those procedures
•  Client application does not know about RPC details

–  Does not know about formats of messages
–  Does not worry about sends, timeouts, resents
–  Does not know about external data representation

•  All of this is generated automatically by RPC tools
–  Canonical versions of converting calls to messages

•  The key to the tools is the interface specification

Lecture 13
Page 57

CS 111
Summer 2015

Objects – Another Key Paradigm
•  Not inherently distributed, but . . .
•  A dominant application development paradigm
•  Good interface/implementation separation

–  All we can know about object is through its methods
–  Implementation and private data opaquely encapsulated

•  Powerful programming model
–  Polymorphism ... methods adapt themselves to clients
–  Inheritance ... build complex objects from simple ones
–  Instantiation ... trivial to create distinct object instances

•  Objects are not intrinsically location sensitive
–  You don’t reference them, you call them

Lecture 13
Page 58

CS 111
Summer 2015

Local Objects and Distributed
Computing

•  Local objects are supported by compilers,
inside an address space
– Compiler generates code to instantiate new objects
– Compiler generates calls for method invocations

•  This doesn't work in a distributed environment
– All objects are no longer in a single address space
– Different machines use different binary

representations
– You can’t make a call across machine boundaries

Lecture 13
Page 59

CS 111
Summer 2015

Merging the Paradigms

•  Implement method calls with RPC, instead of
local procedure calls

•  The concept of an object hides what’s inside,
anyway
– You shouldn’t use global variables and calls by

reference with them, anyway
•  The mechanics are a bit more complicated than

simply RPC, though

Lecture 13
Page 60

CS 111
Summer 2015

Invoking Remote Object Methods

•  Compile OO program with proxy object
implementation
–  Defines the same interface (methods and properties)
–  All method invocations go through the local proxy

•  Local implementation is proxy for remote server
–  Translate parameters into a standard representation
–  Send request message to remote object server
–  Get response and translate it to local representation
–  Return result to caller

•  Client cannot tell that object is not local

Lecture 13
Page 61

CS 111
Summer 2015

Proxies for Distributed Objects
proxy object description

no
instance

data

real object description

real
instance

data

rpc method #1

rpc method #2

rpc method #3

real method #1

real method #2

real method #3

RPC server

RPC client

RPC
skeleton

Lecture 13
Page 62

CS 111
Summer 2015

Dynamic Object Binding
•  How can we compile to a binary when some of the

objects (and their implementations) are remote?
•  Local objects are compiled into an application and are

fully known at compile time
•  Distributed objects must be bound at some later time
•  These objects are provided by servers

–  The available servers change from minute to minute
–  New object classes can be created in real time
–  So the “later time” is run time

•  We need a run-time object “match-maker”
–  Like DLLs on steroids

Lecture 13
Page 63

CS 111
Summer 2015

Object Request Brokers (ORBs)
•  ORBs are the matchmakers
•  A local portal to the domain of available objects
•  A registry for available object implementations

–  Object implementers register with the broker
•  Meeting place for object clients and implementers

–  Clients go to broker to obtain services of new objects
•  A local interface to remote object components

–  Clients reference all remote objects through local ORB
•  A router between local and remote requests

–  ORBs pass messages between clients and servers
•  A repository for object interface definitions

Lecture 13
Page 64

CS 111
Summer 2015

But Still TANSTAAFL
•  Moving distribution out of OS doesn’t change

the fact that distributed computing is complex
•  It avoids having to ensure that everything local

is invisibly distributed
•  But those remote application-level objects still:

– Need synchronization
– Need to reach consensus
– Need to handle partial failures

•  Advantage is you can customize it to your
needs

Lecture 13
Page 65

CS 111
Summer 2015

Evolution of System Services
•  Operating systems started out on single computers

–  This biased the definition of system services
•  Networking was added on afterwards

–  Some system services are still networking-naïve
–  New APIs were required to exploit networking
–  Many applications remained networking-impaired

•  New programming paradigms embrace the network
–  Focus on services and interfaces, not implementations
–  Goal is to make distributed applications easier to write

•  Increasingly, system services offered by the network

Lecture 13
Page 66

CS 111
Summer 2015

The Changing Role of
Operating Systems

•  Traditionally, operating systems:
–  Abstracted heterogeneous hardware into useful services
–  Managed system resources for user-mode processes
–  Ensured resource integrity and trusted resource sharing
–  Provided a powerful platform for application developers

•  Now,
–  The notion of a self-contained system is fading
–  New programming platforms:

•  Are instruction set and operating system independent
•  Encompass and embrace distributed computing
•  Provide much higher level objects and services

•  But they still depend on powerful underlying
operating systems

Lecture 13
Page 67

CS 111
Summer 2015

Distributed Systems - Summary

•  Different distributed system models support:
–  Different degrees of transparency

•  Do applications see a network or single system image?

–  Different degrees of coupling
•  Making multiple computers cooperate is difficult
•  Doing it without shared memory is even worse

•  Distributed systems always face a trade-off between
performance, independence, and robustness
–  Cooperating redundant nodes offer higher availability
–  Communication and coordination are expensive
–  Mutual dependency creates more modes of failure

