4 N

Distributed Computing
CS 111
Operating System Principles
Peter Rether

\

CS 111

Summer 2015

4 “Outline

* Goals and vision of distributed computing

 Basic architectures

— Symmetric multiprocessors

— Single system 1mage distributed systems
— Cloud computing systems

— User-level distributed computing

\

Lecture 13

Page 2

/[Goals of Distributed Computing}\

 Better services

— Scalability
* Some applications require more resources than one computer has

* Should be able to grow system capacity to meet growing demand
— Availability

* Disks, computers, and software fail, but services should be 24x7!
— Improved ease of use, with reduced operating expenses

* Ensuring correct configuration of all services on all systems

* New services

— Applications that span multiple system boundaries

\ — Global resource domains, services decoupled from systems /

s — Complete location transparency Lecture 13
Summer 2015 Page 3

/~ Important Characteristics of ™\

Distributed Systems

* Performance
— Overhead, scalability, availability

* Functionality

— Adequacy and abstraction for target applications
* Transparency

— Compatibility with previous platforms

— Scope and degree of location independence
* Degree of coupling

— How many things do distinct systems agree on?

\ — How is that agreement achieved?

CS 111
Summer 2015

/

Lecture 13
Page 4

/" Loosely and Tightly Coupled ™

Systems
* Tightly coupled systems

— Share a global pool of resources

— Agree on their state, coordinate their actions
* Loosely coupled systems

— Have independent resources

— Only coordinate actions in special circumstances
* Degree of coupling

— Tight coupling: global coherent view, seamless fail-over
* But very difficult to do right

\ — Loose coupling: simple and highly scalable /

s 11 * But a less pleasant system model Lecture 13
Summer 2015 Page 5

/ Globally Coherent Views \

* Everyone sees the same thing
* Usually the case on single machines
* Harder to achieve 1n distributed systems

e How to achieve 1t?

— Have only one copy of things that need single view
* Limits the benefits of the distributed system
* And exaggerates some of their costs

— Ensure multiple copies are consistent

* Requiring complex and expensive consensus protocols

\e Not much of a choice /

CS 111 Lecture 13
Summer 2015 Page 6

/~ Major Classes of Distributed ™

Systems

* Symmetric Multi-Processors (SMP)
— Multiple CPUs, sharing memory and I/O devices
* Single-System Image (SSI) & Cluster Computing

— A group of computers, acting like a single computer

* Loosely coupled, horizontally scalable systems
— Coordinated, but relatively independent systems
— Cloud computing 1s the most widely used version

* Application level distributed computing

— Application level protocols
\ — Distributed middle-ware platforms /

CS 111 Lecture 13
Summer 2015 Page 7

[/Symmetric Multiprocessors (SMI%

* A solution relying on special hardware support

— Which has pluses and minuses

* Primarily for parallel processing

* Core parallelism problem for SMP:
— The memory bandwidth problem

\ /

CS 111 Lecture 13
Summer 2015 Page 8

/ SMP Systems \

* Computers composed of multiple identical compute
engines
— Each computer in SMP system usually called a node

* Sharing memories and devices
 Could run same or different code on all nodes

— Each node runs at i1ts own pace

— Though resource contention can cause nodes to block

* Examples:
— BBN Butterfly parallel processor

— Multi-way Intel servers

\ — To some extent, modern multicore processors

CS 111
Summer 2015

/

Lecture 13
Page 9

/ SMP Goals \

* Price performance
— Lower price per MIP than single machine

* Scalability
— Economical way to build huge systems
— Possibility of increasing machine’s power just by
adding more nodes
* Perfect application transparency

— Runs the same on 16 nodes as on one
\ - Except faster /

CS 111 Lecture 13
Summer 2015 Page 10

/ A Typical SMP Architecture

\

CS 111
Summer 2015

v y v !
CPU 1 CPU 2 CPU 3 CPU 4
cache [cache » cache [¢ » cache

interrupt
controller

I

shared memory & device busses

memory

I

1I

I

device
controller

device
controller

device
controller

/

Lecture 13

Page 11

/ The SMP Price/Performance \

Argument

* A computer 1s much more than a CPU
— Mother-board, disks, controllers, power supplies, case
— CPU might cost 10-15% of the cost of the computer

* Adding CPUs to a computer 1s very cost-effective

— A second CPU yields cost of 1.1x, performance 1.9x
— A third CPU yields cost of 1.2x, performance 2.7x

* Same argument also applies at the chip level
— Making a machine twice as fast 1s ever more difficult

— Adding more cores to the chip gets ever easier

* Massive multi-processors are an obvious direction

CS 111
Summer 2015

/

Lecture 13
Page 12

/ SMP Operating Systems \

* One processor boots with power on
— It controls the starting of all other processors

* Same OS code runs in all processors
— One physical copy in memory, shared by all CPUs
* Each CPU has its own registers, cache, MMU

— They cooperatively share memory and devices

* ALL kernel operations must be Multi-Thread-
Safe

— Protected by appropriate locks/semaphores

CS 111
Summer 2015

— Very fine grained locking to avoid contention

/

ture 13
Page 13

/Handling Kernel Synchronization\

* Multiple processors are sharing one OS copy

* What needs to be synchronized?
— Every potentially sharable OS data structure

* Process descriptors, file descriptors, data buffers,
message queues, etc.

e All of the devices

* Could we just lock the entire kernel, instead?
— Yes, but it would be a bottleneck
— Remember lock contention?

\ — Avoidable by not using coarse-grained locking Y,

CS 111 Lecture 13
Summer 2015 Page 14

/ SMP Parallelism \

* Scheduling and load sharing

— Each CPU can be running a different process

— Just take the next ready process off the run-queue

— Processes run in parallel

— Most processes don't interact (other than inside kernel)

* If they do, poor performance caused by excessive synchronization

* Serialization

— Mutual exclusion achieved by locks in shared memory

— Locks can be maintained with atomic instructions

— Spin locks acceptable for VERY short critical sections

\ — If a process blocks, that CPU finds next ready process /

CS 111 Lecture 13
Summer 2015 Page 15

/ The Challenge of SMP \
Performance

* Scalability depends on memory contention
— Memory bandwidth 1s limited, can't handle all CPUs
— Most references better be satisfied from per-CPU cache
— If too many requests go to memory, CPUs slow down
* Scalability depends on lock contention
— Waiting for spin-locks wastes time

— Context switches waiting for kernel locks waste time

* This contention wastes cycles, reduces throughput
— 2 CPUs might deliver only 1.9x performance

\ — 3 CPUs might deliver only 2.7x performance /

CS 111 Lecture 13
Summer 2015 Page 16

/ Managing Memory Contention\

* Each processor has its own cache

— Cache reads don’t cause memory contention
— Writes are more problematic

Locality of reference often solves the problems

— Different processes write to different places

* Keeping everything coherent still requires a smart
memory controller

* Fast n-way memory controllers are very expensive

— Without them, memory contention taxes performance

\ — Cost/complexity limits how many CPUs we can add /

CS 111 Lecture 13
Summer 2015 Page 17

4 NUMA N

* Non-Uniform Memory Architectures

* Another approach to handling memory in SMPs

Each CPU gets its own memory, which 1s on the bus
— Each CPU has fast path to its own memory

* Connected by a Scalable Coherent Interconnect
— A very fast, very local network between memories

— Accessing memory over the SCI may be 3-20x slower

* These interconnects can be highly scalable

\ /

CS 111 Lecture 13
Summer 2015 Page 18

A Sample NUMA SMP

CPUn

local

cache

memory

i

I

PCI bridge

I

Architecture

CPU n+1

local

memory

I

PCI bridge

I

PCI bus
CC NUMA device device
interface controller controller

I

PCI bus
CC NUMA device device
interface controller controller

I

Scalable Coherent Interconnect

\

CS 111

/

Lecture 13

Summer 2015

Page 19

/ OS Design for NUMA Systems\

* All about local memory hit rates
— Each processor must use local memory almost exclusively
— Every outside reference costs us 3-20x performance
— We need 75-95% hit rate just to break even

* How can the OS ensure high hit-rates?
— Replicate shared code pages in each CPU’s memory
— Assign processes to CPUs, allocate all memory there
— Migrate processes to achieve load balancing
— Spread kernel resources among all the CPUs

\ — Attempt to preferentially allocate local resources /

11— Migrate resource ownership to CPU that 1s using it Lecture 13
Summer 2015 Page 20

/ The Key SMP Scaling Problem\

* True shared memory 1s expensive for large
numbers of processors

* NUMA systems require a high degree of
system complexity to perform well

— Otherwise, they’re always accessing remote
memory at very high costs

* So there 1s a limit to the technology for both
approaches

* Which explains why SMP is not ubiquitous /

CS 111 Lecture 13
Summer 2015 Page 21

(Single System Image Approache$

* Built a distributed system out of many more-
or-less traditional computers

— Each with typical independent resources
— Each running its own copy of the same OS
— Usually a fixed, known pool of machines

* Connect them with a good local area network

* Use software techniques to allow them to work
cooperatively

T Often while still offering many benefits of /
st Independent machines to the local users Lecture 13

Summer 2015 Page 22

/ Motivations for Single System \
Image Computing

* High availability, service survives node/link failures

* Scalable capacity (overcome SMP contention
problems)

— You’re connecting with a LAN, not a special hardware
switch

— LANSs can host hundreds of nodes
* Good application transparency

* Examples:

— Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI
\ — Enterprise database servers Y,

CS 111 Lecture 13
Summer 2015 Page 23

Why Did This Sound
L.ike a Good Idea?

* Programs don’t run on hardware, they run on
top of an operating system

* All the resources that processes see are already
virtualized

* Don’t just virtualize a single system’s
resources, virtualize many systems’ resources

* Applications that run in such a cluster are
(automatically and transparently) distributed

\ /

CS 111 Lecture 13
Summer 2015 Page 24

The SSI Vision

1 ! | 1
1 I 1
“ “ 1 “
“ ! “ A 1
1 “ ! < “
' o -~ 1
1 ! | [75] 1
1 I o p— 1
P S ro “
5 Lo !
| E 15 =
e AR e o
= e 8\ 2!
= a2 =y
1 ! < (=N
L L3 g S
P o B g= W“
' g £ & m 2
1 o |
[1 V .
- Lo e !
1 . p—
8 A S “
“ 6.,.391077 ! 1 O “
. £ SRR S = !
I O 3>4;57%, ' ! A '
_‘n|Aa %mmw4 m“ ! — '
1 Q i s e .)
I B 53§38 o<1 W m
A= R 3 !
S 8+ + + ° ! “ “
“ “ 1 “
L e = S

Lecture 13
Page 25

Summer 2015

/ OS Design for SSI Clusters \

All nodes agree on the state of all OS resources

— File systems, processes, devices, locks, IPC ports
— Any process can operate on any object, transparently

They achieve this by exchanging messages

— Advising one another of all changes to resources

* Each OS’s internal state mirrors the global state

— To execute node-specific requests

* Node-specific requests automatically forwarded to right node

* The implementation 1s large, complex, and difficult

\° The exchange of messages can be very expensive)

CS 111 Lecture 13
Summer 2015 Page 26

/ SSI Performance \

* Clever implementation can minimize overhead

— 10-20% overall 1s not uncommon, can be much worse

* Complete transparency
— Even very complex applications “just work™

— They do not have to be made “network aware”

* (Good robustness
— When one node fails, others notice and take-over
— Often, applications won't even notice the failure

— Each node hardware-independent

 Failures of one node don’t affect others, unlike some SMP failures

\° Very nice for application developers and customers /

cs1i— But they are complex, and not particularly scalable Lecture 13
Summer 2015 Page 27

/ An Example of SSI Complexity\

* Keeping track of which nodes are up

* Done i1n the Locus Operating System through
“topology change”

* Need to ensure that all nodes know of the 1dentity of
all nodes that are up

* By running a process to figure it out

* Complications:
— Who runs the process? What if he’s down himself?
— Who do they tell the results to?
— What happens if things change while you’re running it?
\ — What 1f the system 1is partitioned? /

CS 111 Lecture 13
Summer 2015 Page 28

/ Is It Really That Bad? \

* Nodes fail and recovery rarely

* So something like topology change doesn’t run that
often

 But consider a more common situation

* Two processes have the same file open
— What if they’re on different machines?
— What if they are parent and child, and share a file pointer?

* Basic read operations require distributed agreement

— Or, alternately, we compromise the single image
— Which was the whole point of the architecture /

CS 111 Lecture 13
Summer 2015 Page 29

/ Scaling and SSI \

* Scaling limits proved not to be hardware
driven
— Unlike SMP machines

* Instead, driven by algorithm complexity
— Consensus algorithms, for example

* Design philosophy essentially requires
distributed cooperation
— So this factor limits scalability

\ /

CS 111 Lecture 13
Summer 2015 Page 30

/ [Lessons [Learned From SSI \

* Consensus protocols are expensive
— They converge slowly and scale poorly
* Systems have a great many resources

— Resource change notifications are expensive

* Location transparency encouraged non-locality

— Remote resource use 1s much more expensive

* A very complicated operating system design

— Distributed objects are much more complex to manage

— Complex optimizations to reduce the added overheads

\ — New modes of failure with complex recovery procedures /

CS 111 Lecture 13
Summer 2015 Page 31

/ [Loosely Coupled Systems} \

 Characterization:

— A parallel group of independent computers
— Serving similar but independent requests
— Minimal coordination and cooperation required

* Motivation:
— Scalability and price performance

— Availability — 1f protocol permits stateless servers
— Ease of management, reconfigurable capacity

e Examples:
N /

st — Web servers, app servers Lecture 13

Summer 2015 Page 32

/" Horizontal Scalability

* Each node largely independent

* So you can add capacity just by adding a node
“on the side”

* Scalability can be limited by network, instead
of hardware or algorithms

— Or, perhaps, by a load balancer
« Reliability is high

— Failure of one of N nodes just reduces capacity

CS 111 Lecture 13
Summer 2015 Page 33

/Horizontal Scalability Architectula

If I need more WAN to chients
web server ﬁ
‘ . load balancing switch
capacity, with fail-over
web web web web web app app app app app
server | | server || server || server || server server | | server | | server | | server | | server
content HA
distribution database
server server
CS 111 Lecture 13

Summer 2015 Page 34

/" Elements of Loosely Coupled ™\
Architecture

* Farm of independent servers
— Servers run same software, serve different requests

— May share a common back-end database

* Front-end switch
— Distributes incoming requests among available servers

— Can do both load balancing and fail-over

* Service protocol

— Stateless servers and idempotent operations

— Successive requests may be sent to different servers

\ /

CS 111 Lecture 13
Summer 2015 Page 35

/Horizontally Scaled Performance\

* Individual servers are very inexpensive
— Blade servers may be only $100-$200 each

* Scalability 1s excellent
— 100 servers deliver approximately 100x performance

* Service availability 1s excellent
— Front-end automatically bypasses failed servers
— Stateless servers and client retries fail-over easily
* The challenge 1s managing thousands of servers

— Automated installation, global configuration services

— Self monitoring, self-healing systems

\ — Scaling limited by management, not HW or algorithms /

CS 111 Lecture 13
Summer 2015 Page 36

/ What About the Centralized \

Resources?
* The load balancer appears to be centralized

 And what about the back-end databases?

* Are these single points of failure for this
architecture?

* And also limits on performance?
* Yes, but. ..

\ /

CS 111 Lecture 13
Summer 2015 Page 37

/ Handling the Limiting Factors \

* The centralized pieces can be special hardware
— There are very few of them

— So they can use aggressive hardware redundancy

* Expensive, but only for a limited set
— They can also be high performance machines

* Some of them have very simple functionality
— Like the load balancer

* With proper design, their roles can be
\ " minimized, decreasing performance problems /

CS 111 Lecture 13
Summer 2015 Page 38

/" Limited Transparency Clusters \

__

* Single System Image clusters had problems

— All nodes had to agree on state of all objects
— Lots of messages, lots of complexity, poor scalability

* What if they only had to agree on a few objects?
— Like cluster membership and global locks
— Fewer objects, fewer operations, much less traffic
— Objects could be designed for distributed use
* Leases, commitment transactions, dynamic server binding
* Simpler, better performance, better scalability

\ — Combines best features of SSI and horizontally scaled /

Cs 111 loosely coupled systems Lecture 13
Summer 2015 Page 39

/ Example: Beowulf Clusters \

* A technology for building high performance
parallel machines out of commodity parts

* One server machine controlling things

* Lots of pretty dumb client machines handling
processing

* A LAN technology connecting them

— Standard message passing between machines

* Applications must be written for parallelization

\ /

CS 111 Lecture 13
Summer 2015 Page 40

/ Beowulf High Performance \

Computing Cluster

Beowulf Head Node
task
coordination NFS
Message Passing Interface MPI Server
exchanging information between sub-
tasks
NFS
/ programs and
/ data
MPI MPI MPI / MPI
sub-task sub-task sub-task sub-task cee
Beowulf Beowulf Beowulf Beowulf
Slave Node Slave Node Slave Node Slave Node

\ There is no effort at transparency here. Applications are specifically written for

a parallel execution platform and use a Message Passing Interface to mediate
cs 111 exchanges between cooperating computations.

Summer 2015

/

Lecture 13
Page 41

\

CS 111

Summer 2015

a

* The most recent twist on distributed computing

Cloud Computing J \

Set up a large number of machines all
1dentically configured

Connect t
— And tot

hem to a high speed LAN

ne Internet

Accept ar

Run each job on one or more nodes

Entire facility probably running mix of single

vitrary jobs from remote users

machine and distributed jobs, simultaneously /

Lecture 13

Page 42

Distributed Computing and \
Cloud Computing

* In one sense, these are orthogonal

* Each job submitted might or might not be
distributed

* Many of the hard problems of the distributed
ones are the user’s problem, not the system’s

— E.g., proper synchronization and locking

* But the cloud facility must make
communications e€asy

\ /

CS 111 Lecture 13
Summer 2015 Page 43

/ What Runs 1n a Cloud? \

* In principle, anything
* But general distributed computing 1s hard
* So much of the work 1s run using special tools

* These tools support particular kinds of parallel/
distributed processing

* Either embarrassingly parallel jobs

* Or those using a method like map-reduce

* Things where the user need not be a distributed
\ systems expert /

CS 111 Lecture 13
Summer 2015 Page 44

/ Embarrassingly Parallel Jobs \

* Problems where 1t’s really, really easy to

parallelize them

* Probably because the data sets are easily
divisible

* And exactly the same things are done on each
plece

— With no interactions in the midst of computation

* So you just parcel them out among the nodes
and let each go independently /

1® Everyone finishes at more or less same tiIme e s

Summer 2015 Page 45

/ The Most Embarrassing of
Embarrassingly Parallel Jobs

* Say you have a large computation

* You need to perform it N times, with slightly
different inputs each time

* Each 1teration 1s expected to take the same
time

* If you have N cloud machines, write a script to
send one of the N jobs to each

* You get something like N times speedup

\

CS 111 Lecture 13
Summer 2015 Page 46

/ Map-Reduce \

* A computational technique for performing
operations on large quantities of data

— For not-quite embarrassingly parallel operations
* Basically:

— Divide the data into pieces

— Farm each piece out to a machine

— Collect the results and combine them

* For example, searching a large data set for
occurrences of a phrase

CS\I; Originally developed by Google

Summer 2015

Lecture 13
Page 47

/Map-Reduce in Cloud Computing\

* A master node divides the problem among N
cloud machines

* Each cloud machine performs the map
operation on its data set

* When all complete, the master performs the
reduce operation on each node’s results

e Can be divided further

— E.g., anode given a piece of a problem can divide
it into smaller pieces and farm those out

\

sm — Then 1t does a reduce before returning to its masteg,. s

Summer 2015 Page 48

/“An Important Lesson From Map- ™\
Reduce

* Map-reduce 1s powerful, widely used, and
successful

* It 1s not fully general
* BUT, by recognizing that many important
computations don’t require generality

It allows efficient, correct distributed
computations for wide range of applications

* The lesson: utility 1s usually more important
Cs\m than generality Ll

Summer 2015 Page 49

/ Do-It-Yourself Distributed \
Computing in the Cloud

* Generally, you can submit any job you want to
the cloud

* If you want to run a SSI or horizontally scaled
loosely coupled system, be their guest

— Assuming you pay, of course
* They’ll offer basic system tools
* You’ll do the distributed system heavy lifting

\' Wouldn’t 1t be nice 1f you had some
i middleware to help . . . ? et 13

Summer 2015 Page 50

/" [Distribution at the | I
_ Application Level |

* This course has focused on the OS as a “platform™

— OS services have evolved to meet application needs
— SMP creates a scalable distributed OS platform
— SSI clusters are a robust distributed OS platform

* There are limitations to such a platform

— Architectural limitations on scalability
— A legacy of single-system semantics

— Heterogeneity 1s a fundamental fact of life

* Who said “applications must be written to an OS?”

\ — Perhaps there are other, more suitable, platforms /

CS 111 Lecture 13
Summer 2015 Page 51

/ A Different Paradigm \

* We tried to make remote services appear local
— This failed for the reasons that Deutch laid out

* We don't want to distinguish local from remote

— Doing so 1s awkward, constraining, and poor
abstraction

* What’s our other option?
 What if we made all services seem remote?

\ /

CS 111 Lecture 13
Summer 2015 Page 52

/ Embracing Remote Services \

* Design interactions for remote services

* Provide:

— Discovery

— Rendezvous

— Leases

— Rebinding

— And other features to deal with Deutsch's fallacies
* And then provide efficient local implementations

\ — Minimizing performance penalty for local resources /

CS 111 Lecture 13
Summer 2015 Page 53

/ Alternatives to Distributed \
Operating Systems

* Network aware applications
— That register themselves with network name services
— Exchange services by sending messages
— Monitor the comings and goings of their partners

* Distributed middleware

— To provide convenient, distributed objects and services

— Examples:
e Platforms: RPC, COM/.NET, Java Beans
* Environments: Erlang, Rational Rose, Ruby on Rails
* Services: TIBCO pub/sub messaging

\ /

CS 111 Lecture 13
Summer 2015 Page 54

/RPC As an Underlying Paradigm\

* Procedure calls are already a fundamental paradigm
— Primary unit of computation in most languages
— Unit of information hiding in most methodologies

— Primary level of interface specification

* RPC 1s a natural boundary between client and server

— Turn procedure calls into message send/receives

* A few limitations
— No implicit parameters/returns (e.g., global variables)
— No call-by-reference parameters
— Much slower than procedure calls (TANSTAAFL)

\ — Partial failure far more likely than local procedure calls /

CS 111 Lecture 13
Summer 2015 Page 55

/ Key Features of RPC \

* Client application links against local procedures

— Calls local procedures, gets results

All RPC implementation 1s inside those procedures

Client application does not know about RPC details
— Does not know about formats of messages
— Does not worry about sends, timeouts, resents

— Does not know about external data representation

All of this 1s generated automatically by RPC tools

— Canonical versions of converting calls to messages

* The key to the tools 1s the mterface specitication)

CS 111 Lecture 13
Summer 2015 Page 56

/Objects — Another Key Paradigm\

* Not inherently distributed, but . . .

* A dominant application development paradigm

* Good interface/implementation separation
— All we can know about object is through its methods
— Implementation and private data opaquely encapsulated
* Powerful programming model
— Polymorphism ... methods adapt themselves to clients
— Inheritance ... build complex objects from simple ones

— Instantiation ... trivial to create distinct object instances

\° Objects are not intrinsically location sensitive)

csi1 — You don’t reference them, you call them Lecture 13
Summer 2015 Page 57

/~ Local Objects and Distributed ™\
Computing

* Local objects are supported by compilers,
inside an address space
— Compiler generates code to instantiate new objects
— Compiler generates calls for method invocations

* This doesn't work 1n a distributed environment

— All objects are no longer 1n a single address space

— Different machines use different binary
representations

\ — You can’t make a call across machine boundaries

CS 111 Lecture 13
Summer 2015 Page 58

/ Merging the Paradigms

\

CS 111

Summer 2015

* Implement method calls with RPC, instead of

local procedure calls

* The concept of an object hides what’s inside,

anyway

— You shouldn’t use global variables and calls by
reference with them, anyway

* The mechanics are a bit more complicated than

simply RPC, though

\

Lecture 13

Page 59

/Invoking Remote Object Methods\

* Compile OO program with proxy object
implementation
— Defines the same interface (methods and properties)

— All method 1invocations go through the local proxy

* Local implementation 1s proxy for remote server
— Translate parameters into a standard representation
— Send request message to remote object server
— Get response and translate 1t to local representation
— Return result to caller

* Client cannot tell that object is not local Y,

CS 111 Lecture 13
Summer 2015 Page 60

/ Proxies for Distributed Objects\

RPC client

proxy object description

I
I
I
I
I
|
I
' no
I
I
I
I
I
I

\

RPC
skeleton

real object description

real > real method #1

nstance real method #2
data

» real method #3

» rpc method #1
instance
hod #2
data rpc method #
» rpc method #3
RPC server

-/

CS 111

Summer 2015

Lecture 13
Page 61

/ Dynamic Object Binding \

\

CS 111

Summer 2015

How can we compile to a binary when some of the
objects (and their implementations) are remote?

Local objects are compiled into an application and are

fully known at compile time

Distributed objects must be bound at some later time

These objects are provided by servers
— The available servers change from minute to minute
— New object classes can be created 1n real time

— So the “later time” 1s run time

* We need a run-time object “match-maker”

— Like DLLs on steroids

/

Lecture 13
Page 62

/ Object Request Brokers (ORBS)\

\o

CS 111

Summer 2015

ORBs are the matchmakers

A local portal to the domain of available objects

A registry for available object implementations
— Object implementers register with the broker

Meeting place for object clients and implementers

— Clients go to broker to obtain services of new objects
A local interface to remote object components

— Clients reference all remote objects through local ORB
A router between local and remote requests

— ORBs pass messages between clients and servers

A repository for object interface definitions

/

Lecture 13
Page 63

/" ButStill TANSTAAFL

* Moving distribution out of OS doesn’t change
the fact that distributed computing 1s complex

* It avoids having to ensure that everything local
1s 1nvisibly distributed

* But those remote application-level objects still:
— Need synchronization

— Need to reach consensus

— Need to handle partial failures

\° Advantage 1s you can customize 1t to your y
CS 111 needs Lecture 13

Summer 2015 Page 64

/ Evolution of System Services \

* Operating systems started out on single computers

— This biased the definition of system services

* Networking was added on afterwards
— Some system services are still networking-naive
— New APIs were required to exploit networking

— Many applications remained networking-impaired

* New programming paradigms embrace the network
— Focus on services and interfaces, not implementations

— Goal 1s to make distributed applications easier to write

* Increasingly, system services oftered by the network)

CS 111 Lecture 13
Summer 2015 Page 65

/ The Changing Role of \
Operating Systems

* Traditionally, operating systems:
— Abstracted heterogeneous hardware into useful services
— Managed system resources for user-mode processes
— Ensured resource integrity and trusted resource sharing
— Provided a powerful platform for application developers

* Now,
— The notion of a self-contained system 1s fading
— New programming platforms:
 Are instruction set and operating system independent

* Encompass and embrace distributed computing
* Provide much higher level objects and services

\° But they still depend on powerful underlying)
s operating systems Lecture 13

Summer 2015 Page 66

/{Distributed Systems - Summary}\

* Daifferent distributed system models support:

— Different degrees of transparency
* Do applications see a network or single system image?

— Different degrees of coupling

* Making multiple computers cooperate is difficult
* Doing it without shared memory is even worse

* Distributed systems always face a trade-off between
performance, independence, and robustness

— Cooperating redundant nodes offer higher availability

— Communication and coordination are expensive

\ — Mutual dependency creates more modes of failure /
CS 111 Lecture 13
Summer 2015 Page 67

