4 N

Networking for Operating
Systems and Distributed Systems
CS 111
Operating System Principles
Peter Rether

/ [Outline} \

* Introduction to networking

* Networking implications for operating systems
* Networking and distributed systems

\ /

CS 111 Lecture 11
Summer 2015 Page 2

/" [Networking Implications

\

CS 111

Summer 2015

_ for the Operating System

More and more computer activities require
efficient networking support

The operating system must be good at
meetingthe special needs of networks

The network 1s not just another peripheral
device

Instead, the key demand on future systems

Lecture 11
Page 3

/ Changing Paradigms \

* Network connectivity becomes “a given”
— New applications assume/exploit connectivity
— New distributed programming paradigms emerge

— New functionality depends on network services

* Thus, applications demand new services from the OS:
— Location independent operations
— Rendezvous between cooperating processes
— WAN scale communication, synchronization
— Support for splitting and migrating computations

— Better virtualization services to safely share resources

\ — Network performance becomes critical /

CS 111 Lecture 11
Summer 2015 Page 4

/ The Old Networking Clients \

* Old fashioned clients were basic networking
applications

— Implementations of higher level remote access protocols
* telnet, FTP, SMTP, POP/IMAP, network printing

— Occasionally run, to explicitly access remote systems
— Applications specifically written to network services

* OS provided transport level services
— TCP or UDP, IP, NIC drivers

* Little impact on OS APIs

— OS objects were not expected to have network semantics

\ — Network apps provided services, did not implement objects /

CS 111 Lecture 11
Summer 2015 Page 5

/ The New Networking Clients \

e The OS itself 1s a client for network services

— OS may depend on network services
* netboot, DHCP, LDAP, Kerberos, etc.

— OS-supported objects may be remote

* Files may reside on remote file servers
* Console device may be a remote X11 client

* A cooperating process might be on another machine

* Implementations must become part of the OS

— For both performance and security reasons

* Local resources may acquire new semantics

\ — Remote objects may behave differently than local Y,

CS 111 Lecture 11
Summer 2015 Page 6

/ The Old Implementations \

* Network protocol implemented in user-mode daemon
— Daemon talks to network through device driver

* Client requests
— Sent to daemon through IPC port

— Daemon formats messages, sends them to driver

* Incoming packets
— Daemon reads from driver and interprets them
— Unpacks data, forward to client through IPC port

* Advantages — user mode code 1s easily changed

* Disadvantages — lack of generality, poor performance,
CS\lll Weak Security Lecture/ll

Summer 2015 Page 7

User-Mode Protocol \

Implementations
SMTP — mailglelivery application

user mode socket API
kernel mode

device read/

write

ethernet NI driver
\ L And off to the packet’s destination! /
CS 111 Lecture 11

Summer 2015 Page 8

/ The New Implementations \

* Basic protocols implemented as OS modules

— Each protocol implemented 1n its own module

— Protocol layering implemented with module plumbing

— Layering and interconnections are configurable
* User-mode clients attach via IPC-ports

— Which may map directly to internal networking plumbing
* Advantages

— Modularity (enables more general layering)

— Performance (less overhead from entering/leaving kernel)

— Security (most networking functionality inside the kernel)

\s A disadvantage — larger, more complex OS /
CS 111 Lecture 11
Summer 2015 Page 9

/ In-Kernel Protocol \

Implementations

Instant messaging application SMTP — mail dgdivery application
user mode
Socket APT
kernel mode —

] [Streams

iI Streams

1L] o

Streams

] [Streams

And off to the
packet’s destination!

s d——ERSPSTERLIN m-port driver

Summer 2015

] [Data Link Provider Interface

/

Lecture 11
Page 10

/ IPC Implications \

* IPC used to be occasionally used for pipes
— Now 1t 1s used for all types of services
* Demanding richer semantics, and better performance
* Used to interconnect local processes

— Now 1t interconnects agents all over the world

* Need naming service to register & find partners
* Must interoperate with other OSes IPC mechanisms

* Used to be stimple and fast inside the OS

— We can no longer depend on shared memory

\

<, — We must be prepared for new modes of failure

Summer 2015

/

Lecture 11
Page 11

/ Improving Our OS Plumbing \

* Protocol stack performance becomes critical
— To support file access, network servers

* High performance plumbing: UNIX Streams

— General bi-directional in-kernel communications
* Can interconnect any two modules 1n kernel
* Can be created automatically or manually

— Message based communication

* Put (to stream head) and service (queued messages)

\ * Accessible via read/write/putmsg/getmsg system calls /

CS 111 Lecture 11
Summer 2015 Page 12

/ Network Protocol Performance\

* Layered implementation is flexible and modular

— But all those layers add overhead
* Calls, context switches and queuing between layers
* Potential data recopy at boundary of each layer

— Protocol stack plumbing must also be high performance
* High bandwidth, low overhead
* Copies can be avoided by clever data structures
— Messages can be assembled from multiple buffers

 Pass buffer pointers rather than copying messages

* Increasingly more of the protocol stack 1s in the NIC

CS 111 Lecture 11
Summer 2015 Page 13

// Implications of Networking for\\
} Operating Systems

* Centralized system management

)

* Centralized services and servers

* The end of “self-contained” systems

* A new view of architecture

* Performance, scalability, and availability

 The rise of middleware

\ /

CS 111 Lecture 11
Summer 2015 Page 14

. For all computers 1n one local network,
manage them as a single type of resource

— Ensure consistent service configuration

— Eliminate problems with mis-configured clients

* Have all management done across the network

— To a large extent, 1n an automated fashion

— E.g., automatically apply software upgrades to all
machines at one time

* Possibly from one central machine

.\, — For high scale, maybe more distributed .

Summer 2015 Page 15

/" Benefits of Central Management

o Zero client-side administration

— Plug 1in a new client, and 1t should just work

 Since everything it needs to get going will be automatically
delivered over the network

— Reduced (per client) costs of support

 Since all management info is centralized, rarely have to manually
examine a client machine

* Uniform & ubiquitous computer services
— All data and services available from all clients

— Global authentication and resource domain

* Security benefits
— All important security patches get applied with certainty /

csin — Individual users can’t screw up their machine’s security Lecwre 11
Summer 2015 Page 16

/ Dangers of Central Management\

* Screw-ups become ubiquitous
* Loss of local autonomy for users

* Administrators gain extreme power

— So you’d better be sure they’re trustworthy and
competent

* Security disadvantages
— All machines are arbitrarily reconfigurable from
remote sites

T Encourages monocultures, which are susceptible to /
cs 111 malware Lecture 11

Summer 2015 Page 17

Centralized Services and Servers ;

* Networking encourages tendency to move
services from all machines to one machine

— E.g. file servers, web servers, authentication
Servers

 Other machines can access and use the services
remotely
— So they don’t need local versions

— Or perhaps only simplified local versions

\ /

CS 111 Lecture 11
Summer 2015 Page 18

/Beneﬁts of Service Centralization\

* Quality and reliability of service
— “Guaranteed” to be up 24x7
— Performance monitored, software kept up-to-date
— Regular back-ups taken
* Price performance
— Powerful servers amortized over many clients
* Ease of use
— No need to install and configure per client services

— Services are available from any client

* Allows thinner, cheaper clients

— Or allows existing clients to devote resources to their users /
CS 111 Lecture 11

Summer 2015 Page 19

/ Dangers of Centralized Services\

* Forces reliance on networking
— Which 1s “almost always” available, but . . .
— Makes network congestion more likely

* Makes per-user customization harder
— Sometimes that’s a good thing, though

* From a security perspective, one big fat target

— As opposed to lots of little skinny targets

— But automation of attacks makes this less
important

«:® Can lead to huge privacy breaches Lecture I

Summer 2015 Page 20

/" TheBndofSelf

__

* Years ago, each computer was nearly totally
self-sufficient

* Maybe you got some data from some other
machine

* Or used some specialized hardware on one
machine

* Or shared a printer over the network

* But your computer could do almost all of what)
Cs\m you wanted to do, on 1ts own L

Summer 2015 Page 21

/ Now Vital Services Provided \

CS 111
Summer 2015

Over the Network

Authentication
— Active Directory, LDAP, Kerberos, ...

* Configuration and control
— Active Directory, LDAP, DHCP, CIM/WBEM, SNMP, ...

* External data services
— CIFS, NFS, Andrew, Amazon S3, ...

Remote devices

— X11, web user interfaces, network printers

* Even power management, bootstrap, installation
\ — vPro, PXE boot, bootp, live CDs, automatic s/w updates

/

Lecture 11
Page 22

6eneﬁts of Losing Self-Sufﬁcienc%

* Remote specialized servers often do the job
better

* Your machine doesn’t need to pay the costs of
doing the work 1tself

* Advantages of centralized administration

* Generally possible 1f any networking available

— And, for modern use, relatively little 1s possible
when networking 1sn’t available, anyway

\ /

CS 111 Lecture 11
Summer 2015 Page 23

6angers of Losing Self Sufﬁciency\

* Your device 1s a brick without connectivity

* Your security depends on the security of many
others

* Worse, your privacy is dependent on a bunch
of service providers

— In many cases, their business model is using your
private information . . .

* Harder, maybe impossible, to customize
\ services to your needs /

CS 111 Lecture 11
Summer 2015 Page 24

/ A New View of System \
i Architecture 5

* Old view 1s that we build systems

— Which are capable of running programs that their
owners want executed

— Each system 1s largely self-contained and only
worries about 1ts own concerns and needs

* New view 1s that system 1s only a conduit for
SErvices

— Which are largely provided over the network

\

CS 111 Lecture 11
Summer 2015 Page 25

/" The New Architectural Vision

* Customers want services, not systems

— We design and build systems to provide services

* Services are built up from protocols

— Service 1s delivered to customers via a network
— Service 1s provided by collaborating servers
— Which are run by remote providers, often as a business

e The fundamental unit of service 1s a node

— Provides defined services over defined protocols

— Language, OS, ISA are mere implementation details

* Anode 1s not a single machine

\ — It may be a collection of collaborating machines /
CS 111 - MaYbe Wldely dlStI‘lbuted Lecture 11

Summer 2015 Page 26

/ Benetits of This View \

* Moves away from computer users as computer
experts

— Which most of them aren’t, and don’t want to be

A more realistic view of what modern
machines are for

* Abstracts many of the ugly details of networks
and distributed systems below human level

* Clarifies what we should really be concerned
\ about /

CS 111 Lecture 11
Summer 2015 Page 27

/ Dangers of This Vision

\

CS 111

Summer 2015

Requires a lot of complex stuff under the
COVErS

Many problems we are expected to solve are

difficult

— Perhaps unsolvable, in some cases

Higher degree of proper automated behavior is

required

\

Lecture 11

Page 28

- Péff 6ﬁﬁéiﬁé'é"";&i}éi'l' éiBinji, I

° Used to be an easy answer for achieving these:

— Moore’s law (and its friends)

* The CPUs (and everything else) got faster and
cheaper

— So performance got better

— More people could afford machines that did
particular things

— Problems too big to solve today fell down when
Cs\m speeds got fast enough Lecmrz .

Summer 2015 Page 29

/ The Old Way Vs. The New Way\

* The old way — better components (4-40%/year)
— Find and optimize all avoidable overhead
— Get the OS to be as reliable as possible
— Run on the fastest and newest hardware

* The new way — better systems (1000x)
— Add more $150 blades and a bigger switch

— Spreading the work over many nodes is a huge win

* Performance — may be linear with the number of blades

\ * Availability — service continues despite node failures /

CS 111 Lecture 11
Summer 2015 Page 30

/ Benefits of the New Approach \

* Allows us to leap past many hard problems

— E.g., don’t worry about how to add the sixth nine
of reliability to your machine

* Generally a lot cheaper
— Adding more of something 1s just some dollars

— Instead of having some brilliant folks create a new
solution

\ /

CS 111 Lecture 11
Summer 2015 Page 31

/ Dangers of the New Solution \

* Adds a different set of hard problems

— Like solving distributed and parallel processing
problems

* Your performance 1s largely out of your hands

— E.g., will your service provider choose to spring
for a bunch of new hardware?

* Behaviors of large scale systems not
necessarily well understood

\ — Especially in pathological conditions Y,

CS 111 Lecture 11
Summer 2015 Page 32

The Rise of Middleware =~

* Traditionally, there was the OS and your application
— With little or nothing between them

* Since your application was “obviously” written to run
on your OS

* Now, the same application must run on many
machines, with different OSes

* Enabled by powerful middleware

— Which offer execution abstractions at higher levels than the

OS
— Essentially, powerful virtual machines that hide grubby
\ physical machines and their OSes /
CS 111 Lecture 11

Summer 2015 Page 33

/ The OS and Middleware \

* Old model — the OS was the platform
— Applications are written for an operating system

— OS implements resources to enable applications

* New model — the OS enables the platform

— Applications are written to a middleware layer

Ruby on Rails, etc.
— OS APIs less relevant to applications developers

* The network 1s the computer

\

CS 111

* E.g., Enterprise Java Beans, Component Object Model,

Summer 2015

/

Lecture 11
Page 34

/Beneﬁts of the Rise of Middlewala

* Easy portability
— Make the middleware run on whatever

— Then the applications written to the middleware
will run there

« Middleware interfaces offer better abstractions

— Allowing quicker creation of more powerful
programs

\ /

CS 111 Lecture 11
Summer 2015 Page 35

/Dangers of the Rise of Middlewala

* Not always easy to provide totally transparent
portability

* The higher level abstractions can hide some of
the power of sitmple machines

— Particularly in performance

\ /

CS 111 Lecture 11
Summer 2015 Page 36

// Networking and Distributed \\

5 Systems
* Challenges of distributed computing

)

* Distributed synchronization

 Distributed consensus

\ /

CS 111 Lecture 11
Summer 2015 Page 37

- What Is Distributed Computing?

* Having more than one computer work cooperatively
on some task
* Implies the use of some form of communication

— Usually networking

* Adding the second computer immensely complicates
all problems

— And adding a third makes it worse

 Ideally, with total transparency

— Entirely hide the fact that the computation/service 1s being
\ offered by a distributed system /

CS 111 Lecture 11
Summer 2015 Page 38

/" Challenges of Distributed ™\
Computing

* Heterogeneity

— Different CPUs have different data representations

— Different OSes have different object semantics and
operations

* Intermittent connectivity
— Remote resources will not always be available
— We must recover from failures in mid-computation

— We must be prepared for conflicts when we reconnect

* Distributed object coherence

— Object management 1s easy with one in-memory copy

Cs\m — How do we ensure multiple hosts agree on state of objectz m/ !

Summer 2015 Page 39

/ Deutsch's “Seven Fallacies of \
Network Computing”

. The network 1s reliable

. There 1s no latency (instant response time)

. The available bandwidth 1s infinite

. The network 1s secure

. The topology of the network does not change

AN D0 B~ W N~

. There 1s one administrator for the whole network

7. The cost of transporting additional data 1s zero

Bottom Line: true transparency 1s not achievable

\ /

CS 111 Lecture 11
Summer 2015 Page 40

__

* As we’ve already seen, synchronization 1s
crucial in proper computer system behavior

* When things don’t happen 1n the required
order, we get bad results

* Distributed computing has all the
synchronization problems of single machines

* Plus genuinely independent interpreters and
memories

\ /

CS 111 Lecture 11
Summer 2015 Page 41

-z Why Is Distributed I

\

CS 111

Synchronization Harder?
* Spatial separation
— Different processes run on different systems
— No shared memory for (atomic instruction) locks
— They are controlled by different operating systems
* Temporal separation
— Can’t “totally order” spatially separated events

— “Before/simultaneous/after” become fuzzy

* Independent modes of failure

— One partner can die, while others continue /

Lecture 11

Summer 2015 Page 42

/" Dealing With Distributed ™\

Synchronization
* Two fundamental approaches:
1. Avoid 1t

* Work extra hard to avoid sharing data
* Try to limit complexities of failures

2. Use distributed analogs of single machine
synchronization mechanisms

\ /

CS 111 Lecture 11
Summer 2015 43 Page 43

/ Avoidance Approaches \

* Don’t keep copies of data on different
machines

* Usually implies avoidance of distributed state
— E.g., servers don’t keep track of what clients are up
to
* Some examples:
— NSF servers don’t keep state on client operations

— Web servers don’t remember what their clients did
previously

\e Offload the burdens to the clients /

CS 111 Lecture 11
Summer 2015 Page 44

/ Distributed Synchronization \

Mechanisms

* Distributed analogs to what we do 1n a single
machine

* But they are constrained by the fundamental
differences of distributed environments

* They tend to be:
— Less efficient

— More fragile and error prone

— More complex
\' — Often all three /

CS 111 Lecture 11
Summer 2015 Page 45

/ [.eases \

A relative of locks

* Obtained from an entity that manages a resource
— Gives client exclusive right to update the file
— The lease “cookie” must be passed to server with an update

— Lease can be released at end of critical section

* Only valid for a limited period of time
— After which the lease cookie expires

» Updates with stale cookies are not permitted

— After which new leases can be granted

\° Handles a wide range of failures y

— Process, node, network
CS 111 Lecture 11
Summer 2015 Page 46

/ A Lease Example \

G)
Update file X Ciox
Request lease on file X has leased
file X till 2
\f \@ PM
REJECTED!
“~ Lease on file X granted Resource
) Manager
Request lease on file X

_ /

S
)
REJECTED!
x
\ —)
CS 111 Lecture 11

Summer 2015 Page 47

/ What Is This Lease? \

* It’s essentially a ticket that allows the leasee to
do something

— In our example, update file X
* In other words, 1t’s a bunch of bits

* But proper synchronization requires that only
the manager create one

* So 1t can’t be forgeable

 How do we create an unforgeable bunch of
\ bits? /

CS 111 Lecture 11
Summer 2015 Page 48

/ What’s Good About Leases? \

* The resource manager controls access centrally

— So we don’t need to keep multiple copies of a lock
up to date

— Remember, easiest to synchronize updates to data
if only one party can write it

* The manager uses his own clock for leases

— So we don’t need to synchronize clocks

* What if a lease holder dies, losing 1ts lease?

\ — No big deal, the lease would expire eventually Y,

CS 111 Lecture 11
Summer 2015 Page 49

/ Atomic Transactions \

* What if we want guaranteed uninterrupted, all-or-
none execution?

* That requires true atomic transactions

* Solves multiple-update race conditions

— All updates are made part of a transaction

* Updates are accumulated, but not actually made
— After all updates are made, transaction 1s committed
— Otherwise the transaction 1s aborted
* E.g., if client, server, or network fails before the commit
* Resource manager guarantees “all-or-none™
Cs\m — Even 1f 1t crashes in the middle of the updates /

Lecture 11
Summer 2015 Page 50

/ Atomic Transaction Example \
client @

[send startTransaction } ------------------------ ? server
) v . T
send updateOne | updateOne ~N N
e \ 4 N
send updateTwo | updateTwo
e \ 4 N
send updateThree | updateThree — @@
A 4
send commit

\ /

CS 111 Lecture 11
Summer 2015 Page 51

/ What If There’s a Failure?

client @

[send startTransaction }

A 4

send updateOne

A 4

send updateTwo

A 4

send abort

(or timeout)

\

CS 111

updateOne

updateTwo

/

Lecture 11

Summer 2015

Page 52

/ Providing Transactions \

* Basic mechanism 1s a journal

* Don’t actually perform operations as they are
submitted

* Instead, save them 1n a journal

* On commiut, first write the journal to persistent
storage

— This 1s true commit action

* Then run through journal and make updates

* Some obvious complexities)

CS 111 Lecture 11
Summer 2015 Page 53

/~ Transactions Spanning Multiple
Machines

 Journals are fine if the data is all on one
resource manager

* What if we need to atomically update data on
multiple machines?

* Just keeping a journal on one machine 1s not
enough

* How do we achieve the all-or-nothing effect
when each machine acts asynchronously?

\

s — And can fail at any moment? Lecture 1

Summer 2015 Page 54

/ Commitment Protocols \

* Used to implement distributed commitment

— Provide for atomic all-or-none transactions

— Simultaneous commitment on multiple hosts
* Challenges

— Asynchronous conflicts from other hosts

— Nodes fail in the middle of the commitment process
* Multi-phase commitment protocol:

— Confirm no conflicts from any participating host

— All participating hosts are told to prepare for commit

\ — All participating hosts are told to “make 1t so” /

CS 111 Lecture 11
Summer 2015 Page 55

Three Phase Commit

Coordinator @

[send canCommit } ““““““““““““““““““““““““““ 0 Participant(s)

receive canCommit

nak
timeout

] all ack

abort [send startCommit } ------------------------ wait gbort
timeout

_

A A
receive startCommit
nak
timeout prep j4TTTTTmmmmm oo { send ack]
all ack
[send Commit } ------------------------ abort
)) timeout
\ Y receive Commit
confirm J=--------mooooommmoooo oo oo { send ack]—> Commit /
CS 111 Lecture 11

Summer 2015 Page 56

/ Why Three Phases? \

* There’s a two phase commit protocol, too
* Why two phases to prepare to commit?

— The first phase asks whether there are conflicts or
other problems that would prevent a commitment

— If problems exist, we won’t even attempt commit

— The second phase 1s only entered if all nodes agree
that commitment 1s possible

— It 1s the actual “prepare to commit™

— Acknowledgement of which means that all nodes
\ are really ready to commit Y,

CS 111 Lecture 11
Summer 2015 Page 57

/" Distributed Consensus ~ \

. Achlevmg simultaneous, unanimous
agreement

— Even 1n the presence of node & network failures
— Requires agreement, termination, validity, integrity
— Desired: bounded time

* Consensus algorithms tend to be complex

— And may take a long time to converge

* So they tend to be used sparingly

T E.g., use consensus to elect a leader)

csin_— Who makes all subsequent decisions by fiat Lecture 11

Summer 2015 Page 58

/ A Typical Election Algorithm \

1. Each interested member broadcasts his nomination

2. All parties evaluate the received proposals
according to a fixed and well known rule

— E.g., largest ID number wins

3. After a reasonable time for proposals, each voter
acknowledges the best proposal 1t has seen

4. If a proposal has a majority of the votes, the
proposing member broadcasts a resolution claim

5. Each party that agrees with the winner’s claim
acknowledges the announced resolution

6. Election is over when a quorum acknowledges the
\ result /

CS 111 Lecture 11
Summer 2015 Page 59

/ Cluster Membership \

* A cluster 1s a group of nodes ...
— All of whom are in communication with one another
— All of whom agree on an elected cluster master

— All of whom abide by the cluster master’s decisions
* He may (centrally) arbitrate all issues directly
* He may designate other nodes to make some decisions

* Useful idea because it formalizes set of parties who
are working together

* Highly available service clusters
— Cluster master assigns work to all of the other nodes

\ — If a node falls out of the cluster, its work 1s reassigned /
CS 111 Lecture 11

Summer 2015 Page 60

/ Maintaining Cluster Membership\

* Primarily through heartbeats

“I’m still alive” messages, exchanged in cluster

* Cluster master monitors the other nodes
— Regularly confirm each node 1s working properly
— Promptly detect any node falling out of the cluster
— Promptly reassign work to surviving nodes

e Some nodes must monitor the cluster master

— To detect the failure of the cluster master

— To trigger the election of a new cluster master

\ /

CS 111 Lecture 11
Summer 2015 Page 61

/ The Split Brain Problem \

* What if the participating nodes are partitioned?

* One set can talk to each other, and another set
can also

— But the two sets can’t exchange messages

* We then have two separate clusters providing
the same service

— Which can lead to big problems, depending on the
situation

\ /

CS 111 Lecture 11
Summer 2015 Page 62

/ Quorums \

* The simplest solution to the split-brain problem i1s to
require a quorum

— In a cluster that has been provisioned for N nodes,
becoming the cluster master requires (N/2)+1 votes

— This completely prevents split-brain
* It also prevents recovering from the loss of N/2 nodes
* Some systems use a “quorum device”
— E.g., a shared (multi-ported) disk

» Cluster master must be able to reserve/lock this device

* Device won’t allow simultaneous locking by two different nodes

— Failure of this device takes down whole system

* Some systems use special election hardware /

CS 111 Lecture 11
Summer 2015 Page 63

/ [Conclusion} \

* Networking has become a vital service for
most machines

* The operating system 1s increasingly involved
in networking

— From providing mere access to a network device
— To supporting sophisticated distributed systems
* An increasing trend

* Future OSes might be primarily all about
.\ networking

Lecture 11
Summer 2015 Page 64

