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Outline 

•  Concurrency issues 
– Asynchronous completion 

•  Other synchronization primitives 
•  Deadlock 

– Causes 
– Solution approaches 
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Asynchronous Completion 

•  The second big problem with parallelism 
– How to wait for an event that may take a while 
– Without wasteful spins/busy-waits 

•  Examples of asynchronous completions 
– Waiting for a held lock to be released 
– Waiting for an I/O operation to complete 
– Waiting for a response to a network request 
– Delaying execution for a fixed period of time 
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Using Spin Waits to Solve the 
Asynchronous Completion Problem 
•  Thread A needs something from thread B 

– Like the result of a computation 

•  Thread B isn’t done yet 
•  Thread A stays in a busy loop waiting 
•  Sooner or later thread B completes  
•  Thread A exits the loop and makes use of B’s 

result 
•  Definitely provides correct behavior, but . . . 
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Well, Why Not? 
•  Waiting serves no purpose for the waiting 

thread 
– “Waiting” is not a “useful computation” 

•  Spin waits reduce system throughput 
– Spinning consumes CPU cycles 
– These cycles can’t be used by other threads 
–  It would be better for waiting thread to “yield” 

•  They are actually counter-productive 
– Delays the thread that will post the completion 
– Memory traffic slows I/O and other processors 
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Another Solution  
•  Completion blocks 
•  Create a synchronization object 

– Associate that object with a resource or request 

•  Requester blocks awaiting event on that object 
– Yield the CPU until awaited event happens 

•  Upon completion, the event is “posted” 
– Thread that notices/causes event posts the object 

•  Posting event to object unblocks the waiter 
– Requester is dispatched, and processes the event 
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Blocking and Unblocking 
•  Exactly as discussed in scheduling lecture 
•  Blocking 

–  Remove specified process from the “ready” queue 
–  Yield the CPU (let scheduler run someone else) 

•  Unblocking 
–  Return specified process to the “ready” queue 
–  Inform scheduler of wakeup (possible preemption) 

•  Only trick is arranging to be unblocked 
–  Because it is so embarrassing to sleep forever 

•  Complexities if multiple entities are blocked on a 
resource – Who gets unblocked when it’s freed? 
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A Possible Problem 

•  The sleep/wakeup race condition 

void sleep( eventp *e ) { 
while(e->posted == FALSE) { 

add_to_queue( &e->queue, 
myproc ); 
myproc->runstate |= BLOCKED; 
yield(); 

} 
} 

void wakeup( eventp *e) { 
      struct proce *p; 

      e->posted = TRUE; 
      p = get_from_queue(&e-> 
queue); 
      if (p) { 

      p->runstate &= ~BLOCKED; 
      resched(); 

      }  /* if !p, nobody’s 
waiting */ 
} 

Consider this sleep code: And this wakeup code: 

What’s the problem with this? 
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A Sleep/Wakeup Race 

•  Let’s say thread B is using a resource and 
thread A needs to get it 

•  So thread A will call sleep() 
•  Meanwhile, thread B finishes using the 

resource 
– So thread B will call wakeup() 

•  No other threads are waiting for the resource  
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The Race At Work 
void sleep( eventp *e ) { 

while(e->posted == FALSE) { 

void wakeup( eventp *e) { 
struct proce *p; 

e->posted = TRUE; 
p = get_from_queue(&e->queue); 

if (p) { 

 }  /* if !p, nobody’s waiting */ 
} 

Nope, nobody’s in the queue! 

add_to_queue( &e->queue, myproc ); 

myproc->runsate |= BLOCKED; 
yield(); 

  } 
   } 

Yep, somebody’s locked it! 

Thread A Thread B 

The effect?  
Thread A is sleeping But there’s no one to 

wake him up 

CONTEXT SWITCH! 

CONTEXT SWITCH! 
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Solving the Problem 

•  There is clearly a critical section in sleep() 
– Starting before we test the posted flag 
– Ending after we put ourselves on the notify list 

•  During this section, we need to prevent 
– Wakeups of the event 
– Other people waiting on the event 

•  This is a mutual-exclusion problem 
– Fortunately, we already know how to solve those 
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Lock Contention 
•  The riddle of parallel multi-tasking: 

–  If one task is blocked, CPU runs another 
– But concurrent use of shared resources is difficult 
– Critical sections serialize tasks, eliminating 

parallelism 
•  What if everyone needs to share one resource? 

– One process gets the resource 
– Other processes get in line behind him 
– Parallelism is eliminated;  B runs after A finishes 
– That resource becomes a bottle-neck 
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What If It Isn’t That Bad? 
•  Say each thread is only somewhat likely to need a 

resource 
•  Consider the following system 

–  Ten processes, each runs once per second 
–  One resource they all use 5% of time (5ms/sec) 
–  Half of all time slices end with a preemption 

•  Chances of preemption while in critical section 
–  Per slice: 2.5%, per sec: 22%, over 10 sec: 92%  

•  Chances a 2nd process will need resource 
–  5% in next time slice, 37% in next second 

•  But once this happens, a line forms 
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Resource Convoys 
•  All processes regularly need the resource 

– But now there is a waiting line 
– Nobody can “just use the resource”, must get in 

line 
•  The delay becomes much longer 

– We don’t just wait a few µ-sec until resource is 
free 

– We must wait until everyone in front of us finishes 
– And while we wait, more people get into the line 

•  Delays rise, throughput falls, parallelism 
ceases 

•  Not merely a theoretical transient response 
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Resource Convoy Performance 

throughput  

offered load 

ideal 

convoy 



Lecture 6 
Page 16 

CS 111 
Summer 2014  

Avoiding Contention Problems 
•  Eliminate the critical section entirely 

– Eliminate shared resource, use atomic instructions 
•  Eliminate preemption during critical section 

– By disabling interrupts … not always an option 
•  Reduce lingering time in critical section 

– Minimize amount of code in critical section 
– Reduce likelihood of blocking in critical section 

•  Reduce frequency of critical section entry  
– Reduce use of the serialized resource 
– Spread requests out over more resources 
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Lock Granularity 
•  How much should one lock cover? 

–  One object or many 
–  Important performance and usability implications 

•  Coarse grained - one lock for many objects 
–  Simpler, and more idiot-proof 
–  Results in greater resource contention 

•  Fine grained - one lock per object 
–  Spreading activity over many locks reduces contention 
–  Time/space overhead, more locks, more gets/releases 
–  Error-prone: harder to decide what to lock when 
–  Some operations may require locking multiple objects 

(which creates a potential for deadlock) 
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Other Important  
Synchronization Primitives 

•  Semaphores 
•  Mutexes 
•  Monitors 
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Semaphores 
•  Counters for sequence coord. and mutual exclusion 
•  Can be binary counters or more general 

–  E.g., if you have multiple copies of the resource 
•  Call wait() on the semaphore to obtain exclusive 

access to a critical section 
–  For binary semaphores, you wait till whoever had it signals 

they are done 

•  Call signal() when you’re done 
•  For sequence coordination, signal on a shared 

semaphore when you finish first step 
–  Wait before you do second step 
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Mutexes 

•  A synchronization construct to serialize access 
to a critical section 

•  Typically implemented using semaphores 
•  Mutexes are one per critical section 

– Unlike semaphores, which protect multiple copies 
of a resource 
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Monitors 
•  An object oriented synchronization primitive 

–  Sort of very OO mutexes 
–  Exclusion requirements depend on object/methods 
–  Implementation should be encapsulated in object 
–  Clients shouldn't need to know the exclusion rules 

•  A monitor is not merely a lock 
–  It is an object class, with instances, state, and methods 
–  All object methods protected by a semaphore 

•  Monitors have some very nice properties 
–  Easy to use for clients, hides unnecessary details 
–  High confidence of  adequate protection 
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Deadlock 

•  What is a deadlock? 
•  A situation where two entities have each 

locked some resource 
•  Each needs the other’s locked resource to 

continue 
•  Neither will unlock till they lock both 

resources 
•  Hence, neither can ever make progress 
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Why Are Deadlocks Important? 
•  A major peril in cooperating parallel processes 

–  They are relatively common in complex applications 
–  They result in catastrophic system failures 

•  Finding them through debugging is very difficult 
–  They happen intermittently and are hard to diagnose 
–  They are much easier to prevent at design time 

•  Once you understand them, you can avoid them 
–  Most deadlocks result from careless/ignorant design 
–  An ounce of prevention is worth a pound of cure 
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Types of Deadlocks 
•  Commodity resource deadlocks 

– E.g., memory, queue space 

•  General resource deadlocks 
– E.g., files, critical sections 

•  Heterogeneous multi-resource deadlocks 
– E.g., P1 needs a file P2 holds, P2 needs memory 

which P1 is using 
•  Producer-consumer deadlocks 

– E.g., P1 needs a file P2 is creating, P2 needs a 
message from P1 to properly create the file 
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Four Basic Conditions  
For Deadlocks 

•  For a deadlock to occur, all of these conditions 
must hold: 

1.  Mutual exclusion 
2.  Incremental allocation 
3.  No pre-emption 
4.  Circular waiting 
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Deadlock Conditions: 1.  Mutual 
Exclusion 

•  The resources in question can each only be 
used by one entity at a time 

•  If multiple entities can use a resource, then just 
give it to all of them 

•  If only one can use it, once you’ve given it to 
one, no one else gets it 
– Until the resource holder releases it 
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Deadlock Condition 2:  
Incremental Allocation 

•  Processes/threads are allowed to ask for 
resources whenever they want 
– As opposed to getting everything they need before 

they start 
•  If they must pre-allocate all resources, either: 

– They get all they need and run to completion 
– They don’t get all they need and abort 

•  In either case, no deadlock 
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Deadlock Condition 3:  No  
Pre-emption 

•  When an entity has reserved a resource, you 
can’t take it away from him 
– Not even temporarily 

•  If you can, deadlocks are simply resolved by 
taking someone’s resource away 
– To give to someone else 

•  But if you can’t take it away from anyone, 
you’re stuck 
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Deadlock Condition 4: Circular 
Waiting 

•  A waits on B which waits on A 
•  In graph terms, there’s a cycle in a graph of 

resource requests 
•  Could involve a lot more than two entities 
•  But if there is no such cycle, someone can 

complete without anyone releasing a resource 
– Allowing even a long chain of dependencies to 

eventually unwind 
– Maybe not very fast, though . . . 
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A Wait-For Graph 

Thread 1 Thread 2 

Critical  
Section 

A 

Critical  
Section 

B 

Thread 1 
acquires a 
lock for 
Critical 

Section A 

Thread 2 
acquires a 
lock for 
Critical 

Section B 

Thread 1 
requests a 
lock for 
Critical 

Section B 

Thread 2 
requests a 
lock for 
Critical 

Section A 

No problem! 

Deadlock! 

We can’t give him 
the lock right now, 

but . . . 

Hmmmm . . .  



Lecture 6 
Page 31 

CS 111 
Summer 2014  

Deadlock Avoidance 

•  Use methods that guarantee that no deadlock 
can occur, by their nature 

•  Advance reservations 
– The problems of under/over-booking 

•  Practical commodity resource management 
•  Dealing with rejection 
•  Reserving critical resources 
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Avoiding Deadlock Using 
Reservations 

•  Advance reservations for commodity resources 
– Resource manager tracks outstanding reservations 
– Only grants reservations if resources are available 

•  Over-subscriptions are detected early 
– Before processes ever get the resources 

•  Client must be prepared to deal with failures 
–   But these do not result in deadlocks 

•  Dilemma: over-booking vs. under-utilization 
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Overbooking Vs. Under Utilization  
•  Processes generally cannot perfectly predict 

their resource needs 
•  To ensure they have enough, they tend to ask 

for more than they will ever need 
•  Either the OS: 

– Grants requests till everything’s reserved 
•  In which case most of it won’t be used 

– Or grants requests beyond the available amount 
•  In which case sometimes someone won’t get a resource 

he reserved 
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Handling Reservation Problems 

•  Clients seldom need all resources all the time 
•  All clients won't need max allocation at the 

same time 
•  Question: can one safely over-book resources? 

–  For example, seats on an airplane  

•  What is a “safe” resource allocation? 
–  One where everyone will be able to complete 
–  Some people may have to wait for others to complete 
–  We must be sure there are no deadlocks 
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Commodity Resource  
Management in Real Systems 

•  Advanced reservation mechanisms are common 
–  Unix brk() and sbrk() system calls 
–  Disk quotas, Quality of Service contracts 

•  Once granted, system must guarantee reservations 
–  Allocation failures only happen at reservation time  
–  Hopefully before the new computation has begun 
–  Failures will not happen at request time 
–  System behavior more predictable, easier to handle 

•  But clients must deal with reservation failures 
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Dealing With Reservation Failures 
•  Resource reservation eliminates deadlock 
•  Apps must still deal with reservation failures 

– Application design should handle failures 
gracefully 
•  E.g., refuse to perform new request, but continue 

running 

– App must have a way of reporting failure to 
requester 
•  E.g., error messages or return codes 

– App must be able to continue running 
•  All critical resources must be reserved at start-up time 
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System Services and Reservations 
•  System services must never deadlock for memory 
•  Potential deadlock: swap manager 

–  Invoked to swap out processes to free up memory 
–  May need to allocate memory to build I/O request 
–  If no memory available, unable to swap out processes 
–  So it can’t free up memory, and system wedges 

•  Solution: 
–  Pre-allocate and hoard a few request buffers 
–  Keep reusing the same ones over and over again 
–  Little bit of hoarded memory is a small price to pay to 

avoid deadlock 

•  That’s just one example system service, of course 
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Deadlock Prevention 

•  Deadlock avoidance tries to ensure no lock 
ever causes deadlock 

•  Deadlock prevention tries to assure that a 
particular lock doesn’t cause deadlock  

•  By attacking one of the four necessary 
conditions for deadlock 

•  If any one of these conditions doesn’t hold, no 
deadlock 
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Four Basic Conditions  
For Deadlocks 

•  For a deadlock to occur, these conditions must 
hold: 

1.  Mutual exclusion 
2.  Incremental allocation 
3.  No pre-emption 
4.  Circular waiting 
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1. Mutual Exclusion 

•  Deadlock requires mutual exclusion 
– P1 having the resource precludes P2 from getting it 

•  You can't deadlock over a shareable resource 
– Perhaps maintained with atomic instructions 
– Even reader/writer locking can help 

•  Readers can share, writers may be handled other ways 

•  You can't deadlock on your private resources 
– Can we give each process its own private 

resource? 
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2. Incremental Allocation   
•  Deadlock requires you to block holding resources 

while you ask for others 
1.  Allocate all of your resources in a single operation 

–  If you can’t get everything, system returns failure and 
locks nothing 

–  When you return, you have all or nothing 
2.  Non-blocking requests 

–  A request that can't be satisfied immediately will fail 
3.  Disallow blocking while holding resources 

–  You must release all held locks prior to blocking 
–  Reacquire them again after you return 
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Releasing Locks Before Blocking 
•  Could be blocking for a reason not related to 

resource locking 
•  How can releasing locks before you block 

help?   
•  Won’t the deadlock just occur when you 

attempt to reacquire them? 
– When you reacquire them, you will be required to 

do so in a single all-or-none transaction 
–   Such a transaction does not involve hold-and-

block, and so cannot result in a deadlock 
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3. No Pre-emption   

•  Deadlock can be broken by resource confiscation 
–  Resource “leases” with time-outs and “lock breaking” 
–  Resource can be seized & reallocated to new client 

•  Revocation must be enforced 
–  Invalidate previous owner's resource handle 
–  If revocation is not possible, kill previous owner 

•  Some resources may be damaged by lock breaking 
–  Previous owner was in the middle of critical section 
–  May need mechanisms to audit/repair resource 

•  Resources must be designed with revocation in mind 
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When Can The OS “Seize” a 
Resource? 

•  When it can revoke access by invalidating a 
process’ resource handle 
–  If process has to use a system service to access the 

resource, that service can no longer honor requests 
•  When is it not possible to revoke a process’ 

access to a resource? 
–  If the process has direct access to the object 

•  E.g., the object is part of the process’ address space  
•  Revoking access requires destroying  the address space  
•  Usually killing the process 
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4.  Circular Dependencies 
•  Use total resource ordering 

– All requesters allocate resources in same order 
– First allocate R1 and then R2 afterwards 
– Someone else may have R2 but he doesn't need R1 

•  Assumes we know how to order the resources 
– Order by resource type (e.g. groups before 

members) 
– Order by relationship (e.g. parents before children) 

•  May require complex and inefficient releasing 
and re-acquiring of locks 
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Which Approach Should You Use? 

•  There is no one universal solution to all deadlocks 
–  Fortunately, we don't need one solution for all resources 
–  We only need a solution for each resource 

•  Solve each individual problem any way you can 
–  Make resources sharable wherever possible 
–  Use reservations for commodity resources 
–  Ordered locking or no hold-and-block where possible 
–  As a last resort, leases and lock breaking 

•  OS must prevent deadlocks in all system services 
–   Applications are responsible for their own behavior 
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One More Deadlock “Solution” 

•  Ignore the problem 
•  In many cases, deadlocks are very improbable 
•  Doing anything to avoid or prevent them might 

be very expensive 
•  So just forget about them and hope for the best 
•  But what if the best doesn’t happen? 
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Deadlock Detection and Recovery 
•  Allow deadlocks to occur 
•  Detect them once they have happened 

– Preferably as soon as possible after they occur 

•  Do something to break the deadlock and allow 
someone to make progress 

•  Is this a good approach? 
– Either in general or when you don’t want to avoid 

or prevent 
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Implementing Deadlock Detection 

•  Need to identify all resources that can be 
locked 

•  Need to maintain wait-for graph or equivalent 
structure 

•  When lock requested, structure is updated and 
checked for deadlock 
–  In which case, might it not be better just to reject 

the lock request? 
– And not let the requester block? 
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Deadlock Detection and Health 
Monitoring 

•  Deadlock detection seldom makes sense 
–  It is extremely complex to implement 
–  Only detects “true deadlocks” for a known resources 
–  Not always clear cut what you should do if you detect one 

•  Service/application “health monitoring” makes more 
sense 
–  Monitor application progress/submit test transactions 
–  If response takes too long, declare service “hung” 

•  Health monitoring is easy to implement 
•  It can detect a wide range of problems 

–  Deadlocks, live-locks, infinite loops & waits, crashes 
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Related Problems Health 
Monitoring Can Handle 

•  Live-lock 
–  Process is running, but won't free R1 until it gets message 
–  Process that will send the message is blocked for R1 

•  Sleeping Beauty, waiting for “Prince Charming” 
–  A process is blocked, awaiting some completion 
–  But, for some reason, it will never happen 

•  Neither of these is a true deadlock 
–  Wouldn't be found by deadlock detection algorithm 
–  Both leave the system just as hung as a deadlock 

•  Health monitoring handles them 
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How To Monitor Process Health 
•  Look for obvious failures 

– Process exits or core dumps 

•  Passive observation to detect hangs 
–  Is process consuming CPU time, or is it blocked? 
–  Is process doing network and/or disk I/O? 

•  External health monitoring 
– “Pings”, null requests, standard test requests 

•  Internal instrumentation 
– White box audits, exercisers, and monitoring 
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What To Do With “Unhealthy” 
Processes? 

•  Kill and restart “all of the affected software” 
•  How many and which processes to kill? 

–  As many as necessary, but as few as possible 
–  The hung processes may not be the ones that are broken 

•  How will kills and restarts affect current clients? 
–  That depends on the service APIs and/or protocols 
–  Apps must be designed for cold/warm/partial restarts 

•  Highly available systems define restart groups 
–  Groups of processes to be started/killed as a group 
–  Define inter-group dependencies (restart B after A) 
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Failure Recovery Methodology 

•  Retry if possible ... but not forever 
–  Client should not be kept waiting indefinitely 
–  Resources are being held while waiting to retry 

•  Roll-back failed operations and return an error 
•  Continue with reduced capacity or functionality 

–  Accept requests you can handle, reject those you can't 

•  Automatic restarts (cold, warm, partial) 
•  Escalation mechanisms for failed recoveries 

–  Restart more groups, reboot more machines 



Lecture 6 
Page 55 

CS 111 
Summer 2014  

Priority Inversion and Deadlock 

•  Priority inversion isn’t necessarily deadlock, but it’s 
related 
–  A low priority process P1 has mutex M1 and is preempted 
–  A high priority process P2 blocks for mutex M1  
–  Process P2 is effectively reduced to priority of P1  

•  Solution: mutex priority inheritance 
–  Check for problem when blocking for mutex 
–  Compare priority of current mutex owner with blocker 
–  Temporarily promote holder to blocker's priority 
–  Return to normal priority after mutex is released 
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Priority Inversion on Mars 

•  A real priority inversion problem occurred on 
the Mars Pathfinder rover 

•  Caused serious problems with system resets 
•  Difficult to find 
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The Pathfinder Priority Inversion 

•  Special purpose hardware running VxWorks 
real time OS 

•  Used preemptive priority scheduling  
– So a high priority task should get the processor  

•  Multiple components shared an “information 
bus” 
– Used to communicate between components 
– Essentially a shared memory region 
– Protected by a mutex 
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A Tale of Three Tasks 
•  A high priority bus management task (at P1) needed 

to run frequently 
–  For brief periods, during which it locked the bus 

•  A low priority meteorological task (at P3) ran 
occasionally 
–  Also for brief periods, during which it locked the bus 

•  A medium priority communications task (at P2) ran 
rarely 
–  But for a long time when it ran 
–  But it didn’t use the bus, so it didn’t need the lock 

•  P1>P2>P3 
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What Went Wrong? 
•  Rarely, the following happened: 

– The meteorological task ran and acquired the lock 
– And then the bus management task would run 
–  It would block waiting for the lock 

•  Don’t pre-empt low priority if you’re blocked anyway 

•  Since meteorological task was short, usually 
not a problem 

•  But if the long communications task woke up 
in that short interval, what would happen? 



Lecture 6 
Page 60 

CS 111 
Summer 2014  

The Priority Inversion at Work 

M 

B 

C 

Pr
ior
i
ty 

Time 

Lock Bus 

Lock Bus 

B 

M 

C is running, at P2 

M can’t interrupt C, since it only has priority P3 

B’s priority of P1 is higher than C’s, but B can’t 
run because it’s waiting on a lock held by M 

M won’t release the lock until it runs again 

But M won’t run again until C completes 

RESULT? A HIGH PRIORITY TASK DOESN’T RUN 
AND A LOWER PRIORITY TASK DOES 
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The Ultimate Effect 

•  A watchdog timer would go off every so often 
– At a high priority 
–  It didn’t need the bus 
– A health monitoring mechanism 

•  If the bus management task hadn’t run for a 
long time, something was wrong 

•  So the watchdog code reset the system 
•  Every so often, the system would reboot 
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Solving the Problem 
•  This was a priority inversion 

–  The lower priority communications task ran before the 
higher priority bus management task 

•  That needed to be changed 
•  How? 
•  Temporarily increase the priority of the 

meteorological task 
–  While the high priority bus management task was block by 

it 
–  So the communications task wouldn’t preempt it 
–  Priority inheritance: a general solution to this kind of 

problem 
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B 

The Fix in Action 
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When M releases the 
lock it loses high 

priority 

B now gets the lock 
and unblocks 

Tasks run in proper priority order and 
Pathfinder can keep exploring Mars! 


