
Lecture 6
Page 1

CS 111
Summer 2014

Concurrency Solutions and
Deadlock
CS 111

Operating Systems
Peter Reiher

Lecture 6
Page 2

CS 111
Summer 2014

Outline

•  Concurrency issues
– Asynchronous completion

•  Other synchronization primitives
•  Deadlock

– Causes
– Solution approaches

Lecture 6
Page 3

CS 111
Summer 2014

Asynchronous Completion

•  The second big problem with parallelism
– How to wait for an event that may take a while
– Without wasteful spins/busy-waits

•  Examples of asynchronous completions
– Waiting for a held lock to be released
– Waiting for an I/O operation to complete
– Waiting for a response to a network request
– Delaying execution for a fixed period of time

Lecture 6
Page 4

CS 111
Summer 2014

Using Spin Waits to Solve the
Asynchronous Completion Problem
•  Thread A needs something from thread B

– Like the result of a computation

•  Thread B isn’t done yet
•  Thread A stays in a busy loop waiting
•  Sooner or later thread B completes
•  Thread A exits the loop and makes use of B’s

result
•  Definitely provides correct behavior, but . . .

Lecture 6
Page 5

CS 111
Summer 2014

Well, Why Not?
•  Waiting serves no purpose for the waiting

thread
– “Waiting” is not a “useful computation”

•  Spin waits reduce system throughput
– Spinning consumes CPU cycles
– These cycles can’t be used by other threads
–  It would be better for waiting thread to “yield”

•  They are actually counter-productive
– Delays the thread that will post the completion
– Memory traffic slows I/O and other processors

Lecture 6
Page 6

CS 111
Summer 2014

Another Solution
•  Completion blocks
•  Create a synchronization object

– Associate that object with a resource or request

•  Requester blocks awaiting event on that object
– Yield the CPU until awaited event happens

•  Upon completion, the event is “posted”
– Thread that notices/causes event posts the object

•  Posting event to object unblocks the waiter
– Requester is dispatched, and processes the event

Lecture 6
Page 7

CS 111
Summer 2014

Blocking and Unblocking
•  Exactly as discussed in scheduling lecture
•  Blocking

–  Remove specified process from the “ready” queue
–  Yield the CPU (let scheduler run someone else)

•  Unblocking
–  Return specified process to the “ready” queue
–  Inform scheduler of wakeup (possible preemption)

•  Only trick is arranging to be unblocked
–  Because it is so embarrassing to sleep forever

•  Complexities if multiple entities are blocked on a
resource – Who gets unblocked when it’s freed?

Lecture 6
Page 8

CS 111
Summer 2014

A Possible Problem

•  The sleep/wakeup race condition

void sleep(eventp *e) {
while(e->posted == FALSE) {

add_to_queue(&e->queue,
myproc);
myproc->runstate |= BLOCKED;
yield();

}
}

void wakeup(eventp *e) {
 struct proce *p;

 e->posted = TRUE;
 p = get_from_queue(&e->
queue);
 if (p) {

 p->runstate &= ~BLOCKED;
 resched();

 } /* if !p, nobody’s
waiting */
}

Consider this sleep code: And this wakeup code:

What’s the problem with this?

Lecture 6
Page 9

CS 111
Summer 2014

A Sleep/Wakeup Race

•  Let’s say thread B is using a resource and
thread A needs to get it

•  So thread A will call sleep()
•  Meanwhile, thread B finishes using the

resource
– So thread B will call wakeup()

•  No other threads are waiting for the resource

Lecture 6
Page 10

CS 111
Summer 2014

The Race At Work
void sleep(eventp *e) {

while(e->posted == FALSE) {

void wakeup(eventp *e) {
struct proce *p;

e->posted = TRUE;
p = get_from_queue(&e->queue);

if (p) {

 } /* if !p, nobody’s waiting */
}

Nope, nobody’s in the queue!

add_to_queue(&e->queue, myproc);

myproc->runsate |= BLOCKED;
yield();

 }
 }

Yep, somebody’s locked it!

Thread A Thread B

The effect?
Thread A is sleeping But there’s no one to

wake him up

CONTEXT SWITCH!

CONTEXT SWITCH!

Lecture 6
Page 11

CS 111
Summer 2014

Solving the Problem

•  There is clearly a critical section in sleep()
– Starting before we test the posted flag
– Ending after we put ourselves on the notify list

•  During this section, we need to prevent
– Wakeups of the event
– Other people waiting on the event

•  This is a mutual-exclusion problem
– Fortunately, we already know how to solve those

Lecture 6
Page 12

CS 111
Summer 2014

Lock Contention
•  The riddle of parallel multi-tasking:

–  If one task is blocked, CPU runs another
– But concurrent use of shared resources is difficult
– Critical sections serialize tasks, eliminating

parallelism
•  What if everyone needs to share one resource?

– One process gets the resource
– Other processes get in line behind him
– Parallelism is eliminated; B runs after A finishes
– That resource becomes a bottle-neck

Lecture 6
Page 13

CS 111
Summer 2014

What If It Isn’t That Bad?
•  Say each thread is only somewhat likely to need a

resource
•  Consider the following system

–  Ten processes, each runs once per second
–  One resource they all use 5% of time (5ms/sec)
–  Half of all time slices end with a preemption

•  Chances of preemption while in critical section
–  Per slice: 2.5%, per sec: 22%, over 10 sec: 92%

•  Chances a 2nd process will need resource
–  5% in next time slice, 37% in next second

•  But once this happens, a line forms

Lecture 6
Page 14

CS 111
Summer 2014

Resource Convoys
•  All processes regularly need the resource

– But now there is a waiting line
– Nobody can “just use the resource”, must get in

line
•  The delay becomes much longer

– We don’t just wait a few µ-sec until resource is
free

– We must wait until everyone in front of us finishes
– And while we wait, more people get into the line

•  Delays rise, throughput falls, parallelism
ceases

•  Not merely a theoretical transient response

Lecture 6
Page 15

CS 111
Summer 2014

Resource Convoy Performance

throughput

offered load

ideal

convoy

Lecture 6
Page 16

CS 111
Summer 2014

Avoiding Contention Problems
•  Eliminate the critical section entirely

– Eliminate shared resource, use atomic instructions
•  Eliminate preemption during critical section

– By disabling interrupts … not always an option
•  Reduce lingering time in critical section

– Minimize amount of code in critical section
– Reduce likelihood of blocking in critical section

•  Reduce frequency of critical section entry
– Reduce use of the serialized resource
– Spread requests out over more resources

Lecture 6
Page 17

CS 111
Summer 2014

Lock Granularity
•  How much should one lock cover?

–  One object or many
–  Important performance and usability implications

•  Coarse grained - one lock for many objects
–  Simpler, and more idiot-proof
–  Results in greater resource contention

•  Fine grained - one lock per object
–  Spreading activity over many locks reduces contention
–  Time/space overhead, more locks, more gets/releases
–  Error-prone: harder to decide what to lock when
–  Some operations may require locking multiple objects

(which creates a potential for deadlock)

Lecture 6
Page 18

CS 111
Summer 2014

Other Important
Synchronization Primitives

•  Semaphores
•  Mutexes
•  Monitors

Lecture 6
Page 19

CS 111
Summer 2014

Semaphores
•  Counters for sequence coord. and mutual exclusion
•  Can be binary counters or more general

–  E.g., if you have multiple copies of the resource
•  Call wait() on the semaphore to obtain exclusive

access to a critical section
–  For binary semaphores, you wait till whoever had it signals

they are done

•  Call signal() when you’re done
•  For sequence coordination, signal on a shared

semaphore when you finish first step
–  Wait before you do second step

Lecture 6
Page 20

CS 111
Summer 2014

Mutexes

•  A synchronization construct to serialize access
to a critical section

•  Typically implemented using semaphores
•  Mutexes are one per critical section

– Unlike semaphores, which protect multiple copies
of a resource

Lecture 6
Page 21

CS 111
Summer 2014

Monitors
•  An object oriented synchronization primitive

–  Sort of very OO mutexes
–  Exclusion requirements depend on object/methods
–  Implementation should be encapsulated in object
–  Clients shouldn't need to know the exclusion rules

•  A monitor is not merely a lock
–  It is an object class, with instances, state, and methods
–  All object methods protected by a semaphore

•  Monitors have some very nice properties
–  Easy to use for clients, hides unnecessary details
–  High confidence of adequate protection

Lecture 6
Page 22

CS 111
Summer 2014

Deadlock

•  What is a deadlock?
•  A situation where two entities have each

locked some resource
•  Each needs the other’s locked resource to

continue
•  Neither will unlock till they lock both

resources
•  Hence, neither can ever make progress

Lecture 6
Page 23

CS 111
Summer 2014

Why Are Deadlocks Important?
•  A major peril in cooperating parallel processes

–  They are relatively common in complex applications
–  They result in catastrophic system failures

•  Finding them through debugging is very difficult
–  They happen intermittently and are hard to diagnose
–  They are much easier to prevent at design time

•  Once you understand them, you can avoid them
–  Most deadlocks result from careless/ignorant design
–  An ounce of prevention is worth a pound of cure

Lecture 6
Page 24

CS 111
Summer 2014

Types of Deadlocks
•  Commodity resource deadlocks

– E.g., memory, queue space

•  General resource deadlocks
– E.g., files, critical sections

•  Heterogeneous multi-resource deadlocks
– E.g., P1 needs a file P2 holds, P2 needs memory

which P1 is using
•  Producer-consumer deadlocks

– E.g., P1 needs a file P2 is creating, P2 needs a
message from P1 to properly create the file

Lecture 6
Page 25

CS 111
Summer 2014

Four Basic Conditions
For Deadlocks

•  For a deadlock to occur, all of these conditions
must hold:

1.  Mutual exclusion
2.  Incremental allocation
3.  No pre-emption
4.  Circular waiting

Lecture 6
Page 26

CS 111
Summer 2014

Deadlock Conditions: 1. Mutual
Exclusion

•  The resources in question can each only be
used by one entity at a time

•  If multiple entities can use a resource, then just
give it to all of them

•  If only one can use it, once you’ve given it to
one, no one else gets it
– Until the resource holder releases it

Lecture 6
Page 27

CS 111
Summer 2014

Deadlock Condition 2:
Incremental Allocation

•  Processes/threads are allowed to ask for
resources whenever they want
– As opposed to getting everything they need before

they start
•  If they must pre-allocate all resources, either:

– They get all they need and run to completion
– They don’t get all they need and abort

•  In either case, no deadlock

Lecture 6
Page 28

CS 111
Summer 2014

Deadlock Condition 3: No
Pre-emption

•  When an entity has reserved a resource, you
can’t take it away from him
– Not even temporarily

•  If you can, deadlocks are simply resolved by
taking someone’s resource away
– To give to someone else

•  But if you can’t take it away from anyone,
you’re stuck

Lecture 6
Page 29

CS 111
Summer 2014

Deadlock Condition 4: Circular
Waiting

•  A waits on B which waits on A
•  In graph terms, there’s a cycle in a graph of

resource requests
•  Could involve a lot more than two entities
•  But if there is no such cycle, someone can

complete without anyone releasing a resource
– Allowing even a long chain of dependencies to

eventually unwind
– Maybe not very fast, though . . .

Lecture 6
Page 30

CS 111
Summer 2014

A Wait-For Graph

Thread 1 Thread 2

Critical
Section

A

Critical
Section

B

Thread 1
acquires a
lock for
Critical

Section A

Thread 2
acquires a
lock for
Critical

Section B

Thread 1
requests a
lock for
Critical

Section B

Thread 2
requests a
lock for
Critical

Section A

No problem!

Deadlock!

We can’t give him
the lock right now,

but . . .

Hmmmm . . .

Lecture 6
Page 31

CS 111
Summer 2014

Deadlock Avoidance

•  Use methods that guarantee that no deadlock
can occur, by their nature

•  Advance reservations
– The problems of under/over-booking

•  Practical commodity resource management
•  Dealing with rejection
•  Reserving critical resources

Lecture 6
Page 32

CS 111
Summer 2014

Avoiding Deadlock Using
Reservations

•  Advance reservations for commodity resources
– Resource manager tracks outstanding reservations
– Only grants reservations if resources are available

•  Over-subscriptions are detected early
– Before processes ever get the resources

•  Client must be prepared to deal with failures
–  But these do not result in deadlocks

•  Dilemma: over-booking vs. under-utilization

Lecture 6
Page 33

CS 111
Summer 2014

Overbooking Vs. Under Utilization
•  Processes generally cannot perfectly predict

their resource needs
•  To ensure they have enough, they tend to ask

for more than they will ever need
•  Either the OS:

– Grants requests till everything’s reserved
•  In which case most of it won’t be used

– Or grants requests beyond the available amount
•  In which case sometimes someone won’t get a resource

he reserved

Lecture 6
Page 34

CS 111
Summer 2014

Handling Reservation Problems

•  Clients seldom need all resources all the time
•  All clients won't need max allocation at the

same time
•  Question: can one safely over-book resources?

–  For example, seats on an airplane

•  What is a “safe” resource allocation?
–  One where everyone will be able to complete
–  Some people may have to wait for others to complete
–  We must be sure there are no deadlocks

Lecture 6
Page 35

CS 111
Summer 2014

Commodity Resource
Management in Real Systems

•  Advanced reservation mechanisms are common
–  Unix brk() and sbrk() system calls
–  Disk quotas, Quality of Service contracts

•  Once granted, system must guarantee reservations
–  Allocation failures only happen at reservation time
–  Hopefully before the new computation has begun
–  Failures will not happen at request time
–  System behavior more predictable, easier to handle

•  But clients must deal with reservation failures

Lecture 6
Page 36

CS 111
Summer 2014

Dealing With Reservation Failures
•  Resource reservation eliminates deadlock
•  Apps must still deal with reservation failures

– Application design should handle failures
gracefully
•  E.g., refuse to perform new request, but continue

running

– App must have a way of reporting failure to
requester
•  E.g., error messages or return codes

– App must be able to continue running
•  All critical resources must be reserved at start-up time

Lecture 6
Page 37

CS 111
Summer 2014

System Services and Reservations
•  System services must never deadlock for memory
•  Potential deadlock: swap manager

–  Invoked to swap out processes to free up memory
–  May need to allocate memory to build I/O request
–  If no memory available, unable to swap out processes
–  So it can’t free up memory, and system wedges

•  Solution:
–  Pre-allocate and hoard a few request buffers
–  Keep reusing the same ones over and over again
–  Little bit of hoarded memory is a small price to pay to

avoid deadlock

•  That’s just one example system service, of course

Lecture 6
Page 38

CS 111
Summer 2014

Deadlock Prevention

•  Deadlock avoidance tries to ensure no lock
ever causes deadlock

•  Deadlock prevention tries to assure that a
particular lock doesn’t cause deadlock

•  By attacking one of the four necessary
conditions for deadlock

•  If any one of these conditions doesn’t hold, no
deadlock

Lecture 6
Page 39

CS 111
Summer 2014

Four Basic Conditions
For Deadlocks

•  For a deadlock to occur, these conditions must
hold:

1.  Mutual exclusion
2.  Incremental allocation
3.  No pre-emption
4.  Circular waiting

Lecture 6
Page 40

CS 111
Summer 2014

1. Mutual Exclusion

•  Deadlock requires mutual exclusion
– P1 having the resource precludes P2 from getting it

•  You can't deadlock over a shareable resource
– Perhaps maintained with atomic instructions
– Even reader/writer locking can help

•  Readers can share, writers may be handled other ways

•  You can't deadlock on your private resources
– Can we give each process its own private

resource?

Lecture 6
Page 41

CS 111
Summer 2014

2. Incremental Allocation
•  Deadlock requires you to block holding resources

while you ask for others
1.  Allocate all of your resources in a single operation

–  If you can’t get everything, system returns failure and
locks nothing

–  When you return, you have all or nothing
2.  Non-blocking requests

–  A request that can't be satisfied immediately will fail
3.  Disallow blocking while holding resources

–  You must release all held locks prior to blocking
–  Reacquire them again after you return

Lecture 6
Page 42

CS 111
Summer 2014

Releasing Locks Before Blocking
•  Could be blocking for a reason not related to

resource locking
•  How can releasing locks before you block

help?
•  Won’t the deadlock just occur when you

attempt to reacquire them?
– When you reacquire them, you will be required to

do so in a single all-or-none transaction
–  Such a transaction does not involve hold-and-

block, and so cannot result in a deadlock

Lecture 6
Page 43

CS 111
Summer 2014

3. No Pre-emption

•  Deadlock can be broken by resource confiscation
–  Resource “leases” with time-outs and “lock breaking”
–  Resource can be seized & reallocated to new client

•  Revocation must be enforced
–  Invalidate previous owner's resource handle
–  If revocation is not possible, kill previous owner

•  Some resources may be damaged by lock breaking
–  Previous owner was in the middle of critical section
–  May need mechanisms to audit/repair resource

•  Resources must be designed with revocation in mind

Lecture 6
Page 44

CS 111
Summer 2014

When Can The OS “Seize” a
Resource?

•  When it can revoke access by invalidating a
process’ resource handle
–  If process has to use a system service to access the

resource, that service can no longer honor requests
•  When is it not possible to revoke a process’

access to a resource?
–  If the process has direct access to the object

•  E.g., the object is part of the process’ address space
•  Revoking access requires destroying the address space
•  Usually killing the process

Lecture 6
Page 45

CS 111
Summer 2014

4. Circular Dependencies
•  Use total resource ordering

– All requesters allocate resources in same order
– First allocate R1 and then R2 afterwards
– Someone else may have R2 but he doesn't need R1

•  Assumes we know how to order the resources
– Order by resource type (e.g. groups before

members)
– Order by relationship (e.g. parents before children)

•  May require complex and inefficient releasing
and re-acquiring of locks

Lecture 6
Page 46

CS 111
Summer 2014

Which Approach Should You Use?

•  There is no one universal solution to all deadlocks
–  Fortunately, we don't need one solution for all resources
–  We only need a solution for each resource

•  Solve each individual problem any way you can
–  Make resources sharable wherever possible
–  Use reservations for commodity resources
–  Ordered locking or no hold-and-block where possible
–  As a last resort, leases and lock breaking

•  OS must prevent deadlocks in all system services
–  Applications are responsible for their own behavior

Lecture 6
Page 47

CS 111
Summer 2014

One More Deadlock “Solution”

•  Ignore the problem
•  In many cases, deadlocks are very improbable
•  Doing anything to avoid or prevent them might

be very expensive
•  So just forget about them and hope for the best
•  But what if the best doesn’t happen?

Lecture 6
Page 48

CS 111
Summer 2014

Deadlock Detection and Recovery
•  Allow deadlocks to occur
•  Detect them once they have happened

– Preferably as soon as possible after they occur

•  Do something to break the deadlock and allow
someone to make progress

•  Is this a good approach?
– Either in general or when you don’t want to avoid

or prevent

Lecture 6
Page 49

CS 111
Summer 2014

Implementing Deadlock Detection

•  Need to identify all resources that can be
locked

•  Need to maintain wait-for graph or equivalent
structure

•  When lock requested, structure is updated and
checked for deadlock
–  In which case, might it not be better just to reject

the lock request?
– And not let the requester block?

Lecture 6
Page 50

CS 111
Summer 2014

Deadlock Detection and Health
Monitoring

•  Deadlock detection seldom makes sense
–  It is extremely complex to implement
–  Only detects “true deadlocks” for a known resources
–  Not always clear cut what you should do if you detect one

•  Service/application “health monitoring” makes more
sense
–  Monitor application progress/submit test transactions
–  If response takes too long, declare service “hung”

•  Health monitoring is easy to implement
•  It can detect a wide range of problems

–  Deadlocks, live-locks, infinite loops & waits, crashes

Lecture 6
Page 51

CS 111
Summer 2014

Related Problems Health
Monitoring Can Handle

•  Live-lock
–  Process is running, but won't free R1 until it gets message
–  Process that will send the message is blocked for R1

•  Sleeping Beauty, waiting for “Prince Charming”
–  A process is blocked, awaiting some completion
–  But, for some reason, it will never happen

•  Neither of these is a true deadlock
–  Wouldn't be found by deadlock detection algorithm
–  Both leave the system just as hung as a deadlock

•  Health monitoring handles them

Lecture 6
Page 52

CS 111
Summer 2014

How To Monitor Process Health
•  Look for obvious failures

– Process exits or core dumps

•  Passive observation to detect hangs
–  Is process consuming CPU time, or is it blocked?
–  Is process doing network and/or disk I/O?

•  External health monitoring
– “Pings”, null requests, standard test requests

•  Internal instrumentation
– White box audits, exercisers, and monitoring

Lecture 6
Page 53

CS 111
Summer 2014

What To Do With “Unhealthy”
Processes?

•  Kill and restart “all of the affected software”
•  How many and which processes to kill?

–  As many as necessary, but as few as possible
–  The hung processes may not be the ones that are broken

•  How will kills and restarts affect current clients?
–  That depends on the service APIs and/or protocols
–  Apps must be designed for cold/warm/partial restarts

•  Highly available systems define restart groups
–  Groups of processes to be started/killed as a group
–  Define inter-group dependencies (restart B after A)

Lecture 6
Page 54

CS 111
Summer 2014

Failure Recovery Methodology

•  Retry if possible ... but not forever
–  Client should not be kept waiting indefinitely
–  Resources are being held while waiting to retry

•  Roll-back failed operations and return an error
•  Continue with reduced capacity or functionality

–  Accept requests you can handle, reject those you can't

•  Automatic restarts (cold, warm, partial)
•  Escalation mechanisms for failed recoveries

–  Restart more groups, reboot more machines

Lecture 6
Page 55

CS 111
Summer 2014

Priority Inversion and Deadlock

•  Priority inversion isn’t necessarily deadlock, but it’s
related
–  A low priority process P1 has mutex M1 and is preempted
–  A high priority process P2 blocks for mutex M1
–  Process P2 is effectively reduced to priority of P1

•  Solution: mutex priority inheritance
–  Check for problem when blocking for mutex
–  Compare priority of current mutex owner with blocker
–  Temporarily promote holder to blocker's priority
–  Return to normal priority after mutex is released

Lecture 6
Page 56

CS 111
Summer 2014

Priority Inversion on Mars

•  A real priority inversion problem occurred on
the Mars Pathfinder rover

•  Caused serious problems with system resets
•  Difficult to find

Lecture 6
Page 57

CS 111
Summer 2014

The Pathfinder Priority Inversion

•  Special purpose hardware running VxWorks
real time OS

•  Used preemptive priority scheduling
– So a high priority task should get the processor

•  Multiple components shared an “information
bus”
– Used to communicate between components
– Essentially a shared memory region
– Protected by a mutex

Lecture 6
Page 58

CS 111
Summer 2014

A Tale of Three Tasks
•  A high priority bus management task (at P1) needed

to run frequently
–  For brief periods, during which it locked the bus

•  A low priority meteorological task (at P3) ran
occasionally
–  Also for brief periods, during which it locked the bus

•  A medium priority communications task (at P2) ran
rarely
–  But for a long time when it ran
–  But it didn’t use the bus, so it didn’t need the lock

•  P1>P2>P3

Lecture 6
Page 59

CS 111
Summer 2014

What Went Wrong?
•  Rarely, the following happened:

– The meteorological task ran and acquired the lock
– And then the bus management task would run
–  It would block waiting for the lock

•  Don’t pre-empt low priority if you’re blocked anyway

•  Since meteorological task was short, usually
not a problem

•  But if the long communications task woke up
in that short interval, what would happen?

Lecture 6
Page 60

CS 111
Summer 2014

The Priority Inversion at Work

M

B

C

Pr
ior
i
ty

Time

Lock Bus

Lock Bus

B

M

C is running, at P2

M can’t interrupt C, since it only has priority P3

B’s priority of P1 is higher than C’s, but B can’t
run because it’s waiting on a lock held by M

M won’t release the lock until it runs again

But M won’t run again until C completes

RESULT? A HIGH PRIORITY TASK DOESN’T RUN
AND A LOWER PRIORITY TASK DOES

Lecture 6
Page 61

CS 111
Summer 2014

The Ultimate Effect

•  A watchdog timer would go off every so often
– At a high priority
–  It didn’t need the bus
– A health monitoring mechanism

•  If the bus management task hadn’t run for a
long time, something was wrong

•  So the watchdog code reset the system
•  Every so often, the system would reboot

Lecture 6
Page 62

CS 111
Summer 2014

Solving the Problem
•  This was a priority inversion

–  The lower priority communications task ran before the
higher priority bus management task

•  That needed to be changed
•  How?
•  Temporarily increase the priority of the

meteorological task
–  While the high priority bus management task was block by

it
–  So the communications task wouldn’t preempt it
–  Priority inheritance: a general solution to this kind of

problem

Lecture 6
Page 63

CS 111
Summer 2014

B

The Fix in Action

Pr
ior
i
ty

Time

B

Lock Bus

M

C C

When M releases the
lock it loses high

priority

B now gets the lock
and unblocks

Tasks run in proper priority order and
Pathfinder can keep exploring Mars!

