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/ ' Outline | \

 Process communications 1SSues

* Synchronizing processes

* Concurrency 1ssues

— Critical section synchronization
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/[Processes and Communications]\

* Many processes are self-contained

* But many others need to communicate

— Often complex applications are built of multiple
communicating processes

* Types of communications
— Simple signaling
* Just telling someone else that something has happened

— Messages

— Procedure calls or method invocation

\ — Tight sharing of large amounts of data
* E.g., shared memory, pipes
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/ Some Common Characteristics \
of IPC

* Issues of proper synchronization
— Are the sender and receiver both ready?

— Issues of potential deadlock

* There are safety 1ssues

— Bad behavior from one process should not trash
another process

* There are performance 1ssues

— Copying of large amounts of data 1s expensive

\* There are security issues, too /
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/ Desirable Characteristics of \

Communications Mechanisms
Simplicity
— Simple definition of what they do and how to do it

— Good to resemble existing mechanism, like a procedure call
— Best if they’re simple to implement in the OS

Robust

— In the face of many using processes and invocations

— When one party misbehaves
Flexibility

— E.g., not limited to fixed size, nice if one-to-many possible, etc.

* Free from synchronization problems

\° Good performance /

Usable across machine boundaries .
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/ Blocking Vs. Non-Blocking \

 When sender uses the communications mechanism,
does it block waiting for the result?

— Synchronous communications

* Or does 1t go ahead without necessarily waiting?

— Asynchronous communications

Blocking reduces parallelism possibilities

— And may complicate handling errors

Not blocking can lead to more complex programming

— Parallelism 1s often confusing and unpredicatable

e Particular mechanisms tend to be one or the other

\ /
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/[ Communications Mechanisms ]\

* Signals

* Sharing memory
* Messages

« RPC

* More sophisticated abstractions
— The bounded buffer

\ /
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/ Signals | \

* A very simple (and limited) communications
mechanism

* Essentially, send an interrupt to a process
— With some kind of tag indicating what sort of
interrupt 1t 1s

* Depending on implementation, process may
actually be interrupted

* Or may have some non-interrupting condition
code raised

.\, — Which 1t would need to check for . / .
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Properties of Signals \

e Unidirectional

* Low information content
— Generally just a type
— Thus not useful for moving data

* Not always possible for user processes to
signal each other

— May only be used by OS to alert user processes
— Or possibly only through parent/child process

relationships




/ Implementing Signals \

* Typically through the trap/interrupt mechanism

* OS (or another process) requests a signal for a
process

* That process 1s delivered a trap or interrupt
implementing the signal

* There’s no associated parameters or other data
— So no need to worry about where to put or find that

\ /
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/ ' Shared Memory | \

* Everyone uses the same pool of RAM anyway

* Why not have communications done simply by
writing and reading parts of the RAM?

— Sender writes to a RAM location
— Receiver reads i1t

— Give both processes access to memory via their
domain registers

* Conceptually simple

* Basic 1dea cheap to implement

% Usually non-blocking Lectne
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/ Sharing Memory With Domain \
Registers

With write And read
permission for . permission for
Process 1 Process 2

\
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/ Using the Shared Domain to \
Communicate

Process 2 then
reads it

Process 1 writes !
some data

\
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/ Potential Problem #1 With \
Shared Domain Communications

How did
! Process 2 know
' this was the

 correct place to
. read the data?

How did
Process 1 know
this was the

correct place to
write the data?

\
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/ Potential Problem #2 With \
Shared Domain Communications

Timing Issues

________________

| What if Process 2
tries to read the
data before process
1 writes it?

Worse, what if
Process 2 reads the
data in the middle
of Process 1
writing it?

\
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/ [ Messages ] \

* A conceptually simple communications
mechanism

* The sender sends a message explicitly

* The receiver explicitly asks to receive it

* The message service 1s provided by the
operating system
— Which handles all the “little details™

* Usually non-blocking

\
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Using Messages
System

RECEIVE
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/ Advantages of Messages \

* Processes need not agree on where to look for things

— Other than, perhaps, a named message queue

* Clear synchronization points
— The message doesn’t exist until you SEND it
— The message can’t be examined until you RECEIVE it

— So no worries about incomplete communications

* Helpful encapsulation features

— You RECEIVE exactly what was sent, no more, no less

 No worries about size of the communications

— Well, no worries for the user; the OS has to worry

\- Easy to see how 1t scales to multiple processes /
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/ Implementing Messages \

* The OS 1s providing this communications abstraction

* There’s no magic here
— Lots of stuff needs to be done behind the scenes by OS

* Issues to solve:
— Where do you store the message before receipt?
— How do you deal with large quantities of messages?

— What happens when someone asks to receive before
anything 1s sent?

— What happens to messages that are never received?

— How do you handle naming issues?

\ — What are the limits on message contents? /
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/ Message Storage Issues \

* Messages must be stored somewhere while
waiting delivery
— Typical choices are either in the sender’s domain
* What if sender deletes/overwrites them?

— Or 1n a special OS domain
* That implies extra copying, with performance costs

* How long do messages hang around?

— Delivered ones are cleared
— What about those for which no RECEIVE i1s done?

\ * One choice: delete them when the receiving process /
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/ ' Remote Procedure Calls | \

* A more object-oriented mechanism

* Communicate by making procedure calls on
other processes

— “Remote” here really means “in another process”

— Not necessarily “on another machine”

* They aren’t in your address space
— And don’t even use the same code

* Some differences from a regular procedure call

\e Typically blocking i




/ RPC Characteristics \

* Procedure calls are primary unit of
computation in most languages

— Unit of information hiding and interface
specification

* Natural boundary between client and server

— Turn procedure calls into message send/receives

* Requires both sender and receiver to be
playing the same game

— Typically both use some particular RPC standard

\
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RPC Mechanics

* The process hosting the remote procedure
might be on same computer or a different one

* Under the covers, use messages 1n either case

* Resulting limitations:
— No implicit parameters/returns (e.g. global

variables)

— No call-by-reference parameters
— Much slower than procedure calls (TANSTAAFL)

\° Often used for client/server computing

\
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/ RPC Operations \

* Client application links to local procedures
— Calls local procedures, gets results

— All RPC implementation is inside those procedures

* Client application does not know about details
— Does not know about formats of messages
— Does not worry about sends, timeouts, resends

— Does not know about external data representation

* All generated automatically by RPC tools

— The key to the tools 1s the interface specification

CS\;H Failure 1n callee doesn’t crash caller Lecture
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/ ' Bounded Buffers | \

* A higher level abstraction than shared domains
or simple messages

* But not quite as high level as RPC

* A buffer that allows writers to put messages in
* And readers to pull messages out

* FIFO

e Unidirectional

— One process sends, one process receives

\e With a buffer of limited size /
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/" SEND and RECEIVE With

Bounded Bufters

* For SEND(), if buffer 1s not full, put the
message 1nto the end of the buffer and return
— If full, block waiting for space in buffer
— Then add message and return

* For RECEIVE(), if buffer has one or more
messages, return the first one put in

— If there are no messages 1n buffer, block and wait
until one 1s put in

\ /
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/Practicalities of Bounded Buffers\

* Handles problem of not having infinite space

 Ensures that fast sender doesn’t overwhelm
slow receiver

* Provides well-defined, simple behavior for
recerver

* But subject to some synchronization 1ssues

— The producer/consumer problem

— A good abstraction for exploring those issues

\ /
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/ The Bounded Butter \

Process 1 1s the writer Process 2 1s the reader
What could
possibly go
wrong?
A fixed size buffer
Process 1  More And Process 2
SENDs a  megsages received RECEIVEs
message are sent d message
\ through the from the /

CS 111 buttfer buffer recues
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/ One Potential Issue \

What if the buffer 1s full?

But the The sender willneed  Apother sequence
sender wants to wait for the coordination
to send receiver to catch up problem if receiver
\ another An issue of sequence tries to read from an /
message? coordination empty buffer
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/Handling Sequence Coordination "\

Issues
* One party needs to wait

— For the other to do something

* If the buffer 1s full, process 1°s SEND must
wait for process 2 to do a RECEIVE

* If the buffer 1s empty, process 2’s RECEIVE
must wait for process 1 to SEND

* Naively, done through busy loops

— Check condition, loop back 1f it’s not true

— Also called spin loops

CS 111
Summer 2014
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/ Implementing the Loops \

* What exactly are the processes looping on?

* They care about how many messages are in the
bounded buffer

* That count 1s probably kept 1n a variable
— Incremented on SEND
— Decremented on RECEIVE

— Never to go below zero or exceed buffer size

* The actual system code would test the variable

CS 111 Lecture 5
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A Potential Danger

Process 1 wants to
SEND

Process 1 checks
BUFFER COUNT

5

Concurrency’s a bitch

3

BUFFER COUNT

Process 2 wants to
RECEIVE

Process 2 checks
BUFFER COUNT

3

~
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Why Didn’t You Just Say
BUFFER COUNT=BUFFER COUNT-1?

* These are system operations
* Occurring at a low level

* Using variables not necessarily 1n the
processes’ own address space

— Perhaps even RAM memory locations

* The question 1sn’t, can we do 1t right?

* The question 1s, what must we do if we are to
\ do 1t right?
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/ One Possible Solution \

* Use separate variables to hold the number of
messages put into the buffer

* And the number of messages taken out
* Only the sender updates the IN variable
* Only the receiver updates the OUT variable

* C(Calculate buffer fullness by subtracting OUT from
IN

* Won’t exhibit the previous problem

* When working with concurrent processes, it’s safest
\ to only allow one process to write each variable )
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* What if there are multiple senders and
receivers sharing the buffer?

* Other kinds of concurrency 1ssues can arise
— Unfortunately, in non-deterministic fashion
— Depending on timings, they might or might not
occur

— Without synchronization between threads/
processes, we have no control of the timing

\ — Any action interleaving 1s possible )
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/ A Multiple Sender Problem \

Process 1 Processes 1 and 3 are senders

wants to

SEND .
There’s plenty of room 1n

the buffer for both
But. ..

Process 2 1s a receiver

The buffer starts empty

We’re 1n trouble:

% Process 3

wants to
We overwrote
SEND ) IN
process 1’s message
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/ The Source of the Problem \

* Concurrency again
* Processes 1 and 3 executed concurrently

* At some point they determined that buffer
slot 1 was empty

— And they each filled 1t
— Not realizing the other would do so

* Worse, 1t’s timing dependent

\ —Depending on ordering of events J
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/ Process 1 Might Overwrite \

Process 3 Instead

CS 111
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/ Or It Might Come Out Right \
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/ Race Conditions \

* Errors or problems occurring because of this
kind of concurrency

* For some ordering of events, everything 1s fine
* For others, there are serious problems

* In true concurrent situations, either result 1s
possible

* And 1t’s often hard to predict which you’ll get

* Hard to find and fix
\ — A job for the OS, not application programmers Y,
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/ How Can The OS Help? \

* By providing abstractions not subject to race
conditions

* One can program race-free concurrent code

— It’s not easy

* So having an expert do 1t once 1s better than
expecting all programmers to do 1t themselves

* An example of the OS hiding unpleasant
complexities

\ /
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a “Locks | I

______________

* A way to deal with concurrency issues
* Many concurrency 1ssues arise because
multiple steps aren’t done atomically

— It’s possible for another process to take actions in
the middle

* Locks prevent that from happening

* They convert a multi-step process nto
effectively a single step one

\ /
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/ What Is a Lock? \

A shared variable that coordinates use of a
shared resource

— Such as code or other shared variables

* When a process wants to use the shared
resource, 1t must first ACQUIRE the lock

— Can’t use the resource till ACQUIRE succeeds

* When it 1s done using the shared resource, it
will RELEASE the lock

« ACQUIRE and RELEASE are the fundamental

\ /

e lock operations e
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/~ Using Locks in Our Multiple ™\
Sender Problem

To use the buffer properly, a process must:

L Qp 1. Read the value of IN

@j 2. If IN < BUFFER_ SIZE, store message
3. Add 1 to IN

WITHOUT
INTERRUPTION!

So associate a lock with those steps

0

IN /
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/IN "’ The Lock in Action \

0 <5 ¢V

Process 1 executes ACQUIRE on the lock
Let’s assume it succeeds

Now process 1 executes the code
associated with the lock

1

IN

1. Read the value of IN
2. If IN < BUFFER_ SIZE, store message

3. Add 1 to IN

Process 1 now executes RELEASE on the lock /
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/IN - o What If Process 3 \

Intervenes?

Let’s say process 1 has the lock already

And has read IN
So process 1 can safely complete the SEND

1
; ACQUIRE () IN
froces> o
L Now, before process 1 can execute any

more code, process 3 tries to SEND
Before process 3 can go ahead, it needs the lock

; But that ACQUIRE fails, since process 1
\ already has the lock /
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/ Locking and Atomicity \

* Locking 1s one way to provide the property of
atomicity for compound actions

— Actions that take more than one step

* Atomicity has two aspects:
— Before-or-after atomicity
— All-or-nothing atomicity

* Locking 1s most useful for providing before-
or-after atomicity

\ /
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/ Betfore-Or-After Atomicity \

* As applied to a set of actions 4
* If they have before-or-after atomicity,

* For all other actions, each such action either:

— Happened before the entire set of A
— Or happened after the entire set of 4

* In our bounded buffer example, either the
entire buffer update occurred first

* Or the entire buffer update came later
\» Not partly before, partly after /
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/ Using Locks to Avoid Races \

* Software designer must find all places where a
race condition might occur

— If he misses one, he may get errors there
* He must then properly use locks for all
processes that could cause the race
— If he doesn’t do it right, he might get races anyway

 Since neither 1s trivial to get right, OS should
provide abstractions to handle proper locking

\ /
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/ [Parallelism and Concurrency} \

* Running parallel threads of execution has many
benefits and 1s increasingly important

* Making use of parallelism implies concurrency

— Multiple actions happening at the same time
— Or perhaps appearing to do so

« That’s difficult, because 1f two execution streams are
not synchronized

— Results depend on the order of instruction execution

— Parallelism makes execution order non-deterministic

\ — Understanding possible outcomes of the computation /

becomes combinatorially intractable .
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Summer 2014 Page 50




/ Solving the Parallelism Problem\

* There are actually two interdependent
problems

— Critical section serialization
— Notification of asynchronous completion
* They are often discussed as a single problem

— Many mechanisms simultaneously solve both
— Solution to either requires solution to the other

* But they can be understood and solved
\ separately /
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/ The Critical Section Problem \

* A critical section 1s a resource that 1s shared by
multiple threads

— By multiple concurrent threads, processes or CPUs
— By interrupted code and interrupt handler

* Use of the resource changes its state
— Contents, properties, relation to other resources

* Correctness depends on execution order

— When scheduler runs/preempts which threads

\ — Relative timing of asynchronous/independent /
CS 111 eVeIltS Lecture 5
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/~ The Asynchronous Completion ™\
Problem

* Parallel activities happen at different speeds

* Sometimes one activity needs to wait for another to
complete

* The asynchronous completion problem 1s how to
perform such waits without killing performance

— Without wasteful spins/busy-waits

* Examples of asynchronous completions
— Waiting for a held lock to be released
— Waiting for an I/O operation to complete

— Waiting for a response to a network request /

cs11 — Delaying execution for a fixed period of time Lecture 5
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/ [ Critical Sections} \

* What 1s a critical section?

* Functionality whose proper use in parallel
programs 1s critical to correct execution

* If you do things in different orders, you get
different results

* A possible location for undesirable non-
determinism

\ /
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@sic Approach to Critical Sectio@

* Serialize access
— Only allow one thread to use it at a time

— Using some method like locking

* Won’t that limit parallelism?
— Yes, but . . .

* If true interactions are rare, and critical
sections well defined, most code still parallel

* If there are actual frequent interactions, there
\ 1sn’t any real parallelism possible y

s — Assuming you demand correct results Lecture 5
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Critical Section Example 1:
Updating a File

write (fd,newdata,length) ;
close (£4) ;

remove (“database”) ;
fd = create(“database”) ;
fd = open(“database” ,READ) ;
count = read(fd,buffer,length) ;
write (fd,newdata,length) ;
close (£d) ;

* Process 2 reads an empty database

Process 1 Process 2
remove (‘database”) ; fd = open(“database” ,READ) ;
fd = create(“'database”) ; count = read(fd,buffer,length) ;

\ — This result could not occur with any sequential execution /

CS 111
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/ Critical Section Example 2:
Multithreaded Banking Code

Thread 1 Thread 2
load r1, balance // =100 load r1, balance // =100
load r2, amount1 // = 50 load r2, amount2 // = 25
add r1, r2 // =150 sub r1, r2 I/ =75
store r1, balance // =150 store r1, balance // =75

load r1, t

addr1, r_
load r1, balance // =100

load r2, amount2 // = 25
CONTEXT SWITCH!!! suwori 2 II'=175

store r1, balance // =75
store r1, balance // =150

o=z The @25 debit was lost!!!

amountl 50 balance 150 amount?2 25
\ rl 75
CS 111 r2 50

~

Lecture 5
Page 57

Summer 2014



/" These Kinds of Interleavings ™\
Seem Pretty Unlikely

* To cause problems, things have to happen
exactly wrong

* Indeed, that’s true

* But modern machines execute a billion
instructions per second

* So even very low probability events can
happen with frightening frequency

* Often, one problem blows up everything that
\ follows /
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/ Can’t We Solve the Problem By\

Disabling Interrupts?
* Much of our difficulty 1s caused by a poorly timed
interrupt
— Our code gets part way through, then gets interrupted
— Someone else does something that interferes
— When we start again, things are messed up

* Why not temporarily disable interrupts to solve those
problems?

— Can’t be done 1n user mode

— Harmful to overall performance

\ — Dangerous to correct system behavior /
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/ Another Approach

* Avoid shared data whenever possible

— No shared data, no critical section
— Not always feasible

* Eliminate critical sections with atomic instructions
— Atomic (uninteruptable) read/modify/write operations
— Can be applied to 1-8 contiguous bytes
— Simple: increment/decrement, and/or/xor
— Complex: test-and-set, exchange, compare-and-swap
— What if we need to do more 1n a critical section?

\° Use atomic instructions to implement locks
«.; — Use the lock operations to protect critical sections

\

Lecture 5
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/ Atomic Instructions — Compare \
and Swap

A C description of machine instructions

bool compare and swap( int *p, int old, int new ) {
if (*p == old) { /* see if value has been changed */
*pP = new; /* 1f not, set it to new value */
return ( TRUE) ; /* tell caller he succeeded */
} else /* value has been changed */
return( FALSE) ; /* tell caller he failed */

1f (compare and swap (flag,UNUSED, IN USE)
/* I got the critical section! */

} else {
/* I didn’t get it. */

}

\ /
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/" Solving Problem #2 With ™\

Compare and Swap
Again, a C implementation

int current balance;

writecheck( int amount ) {
int oldbal, newbal;
do {
oldbal = current balance;
newbal = oldbal - amount;
i1f (newbal < 0) return (ERROR);
} while (!compare and swap( &current balance, oldbal, newbal))

\ /
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/ Why Does This Work? \

* Remember, compare and swap () 1S atomic

* First time through, 1f no concurrency,

— oldbal == current balance

— current balance was changed to newbal by
compare and swap ()

* [fnot,

— current balance changed after you read it

— S0 compare and swap () didn’t change
current balance and returned FALSE

\ — Loop, read the new value, and try again

CS 111
Summer 2014
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/" Will This Really Solve ™\

the Problem?

* If compare & swap fails, loop back and re-try

— If there 1s a conflicting thread 1sn’t 1t likely to
simply fail again?

* Only 1f preempted during a four instruction
window

— By someone executing the same critical section

* Extremely low probability event

— We will very seldom go through the loop even

\ twice Y,
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/Limitation of Atomic Instructions\

* They only update a small number of contiguous bytes

— Cannot be used to atomically change multiple locations
* E.g., insertions in a doubly-linked list

* They operate on a single memory bus
— Cannot be used to update records on disk
— Cannot be used across a network
* They are not higher level locking operations

— They cannot “wait” until a resource becomes available
— You have to program that up yourself

\ * Giving you extra opportunities to screw up /
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__________________________________________________________________________________

* Create a synchronization object
— Associated it with a critical section
— Of a size that an atomic instruction can manage

* Lock the object to seize the critical section
— If critical section is free, lock operation succeeds

— If critical section is already in use, lock operation fails
* It may fail immediately
* It may block until the critical section is free again

* Unlock the object to release critical section

— Subsequent lock attempts can now succeed

\ — May unblock a sleeping waiter
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/ Criteria for Correct Locking \

* How do we know 1f a locking mechanism 1s correct?

 Four desirable criteria:

1. Correct mutual exclusion
—  Only one thread at a time has access to critical section

2. Progress
— If resource is available, and someone wants it, they get it

3. Bounded waiting time
— No indefinite waits, guaranteed eventual service

4. And (1deally) fairness
- E.g. FIFO

Lecture 5
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