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/ [Outline} \

* What is scheduling?

— What are our scheduling goals?

 What resources should we schedule?

* Example scheduling algorithms and their
implications
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/ ‘What Is Scheduling?| \

* An operating system often has choices about
what to do next

* In particular:
— For a resource that can serve one client at a time
— When there are multiple potential clients
— Who gets to use the resource next?
— And for how long?

* Making those decisions 1s scheduling

\ /
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/" 0S Scheduling Examples )

* What job to run next on an idle core?
— How long should we let 1t run?

* In what order to handle a set of block requests
for a disk drive?

* If multiple messages are to be sent over the
network, in what order should they be sent?

\ /

CS 111
Summer 2014




/ How Do We Decide \
How To Schedule?

* Generally, we choose goals we wish to achieve

* And design a scheduling algorithm that 1s
likely to achieve those goals

* Different scheduling algorithms try to optimize
different quantities

* So changing our scheduling algorithm can
drastically change system behavior

\ /
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/ The Process Queue \

* The OS typically keeps a queue of processes
that are ready to run

— Ordered by whichever one should run next
— Which depends on the scheduling algorithm used

* When time comes to schedule a new process,
grab the first one on the process queue

* Processes that are not ready to run either:

— Aren’t 1n that queue

— Or are at the end

\ /
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/ Potential Scheduling Goals \

* Maximize throughput
— Get as much work done as possible
* Minimize average waiting time
— Try to avoid delaying too many for too long
* Ensure some degree of fairness
— E.g., minimize worst case waiting time
* Meet explicit priority goals
— Scheduled items tagged with a relative priority

* Real time scheduling
\ — Scheduled items tagged with a deadline to be met /
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Different Kinds of Systems, \
Different Scheduling Goals

* Time sharing

— Fast response time to interactive programs

— Each user gets an equal share of the CPU
* Batch

— Maximize total system throughput

— Delays of individual processes are unimportant
* Real-time

— Critical operations must happen on time

— Non-critical operations may not happen at all

\ /
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/ - Preemptive Vs. R

Non-Preemptive Scheduling

° When we schedule a piece of work, we could let it
use the resource until 1t finishes
* Could use virtualization to interrupt part way through

— Allowing other pieces of work to run instead

* If scheduled work always runs to completion, the
scheduler 1s non-preemptive

* If the scheduler temporarily halts running jobs to run
something else, 1t’s preemptive

* Cooperative scheduling — when process blocks or
\ voluntarily releases, schedule someone else
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-

Pros and Cons of
Non-Preemptive Scheduling

+ Low scheduling overhead

+ Tends to produce high throughput
+ Conceptually very simple

—Poor response time for processes

—Bugs can cause machine to freeze up

—If process contains infinite loop, e.g.
—Not good fairness (by most definitions)
—May make real time and priority scheduling

Cs 111 dlfﬁCUlt
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/ Pros and Cons of Pre-emptive \
Scheduling

+ Can give good response time
+ Can produce very fair usage

+ Works well with real-time and priority
scheduling

— More complex

—Requires ability to cleanly halt process and
save 1ts state

\~ May not get good throughput )
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@:heduling: Policy and Mechanisn}

* The scheduler will move jobs into and out of a
processor (dispatching)

— Requiring various mechanics to do so

* How dispatching 1s done should not depend on
the policy used to decide who to dispatch

* Desirable to separate the choice of who runs
(policy) from the dispatching mechanism

— Also desirable that OS process queue structure not
be policy-dependent

\
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/ Scheduling the CPU \

yield (or preemption)
context CPU
switcher

Q resource granted -‘ resource request

ncw
process
CS 111 Lecture 4

Summer 2014 Page 13



______________________________________________________________________________________________________

/ ‘Scheduling and Performance \

N e e e e e e e o e e e e e e e .  — — — — — — — — — — — — — — — — — — — — — — — — — — — — — ——_ — — — =

* How you schedule important system activities
has a major effect on performance

* Performance has different aspects
— You may not be able to optimize for both

* Scheduling performance has very different
characteristic under light vs. heavy load

* Important to understand the performance
basics regarding scheduling

\ /
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/" Quantifying Scheduler ™\

Performance
* Candidate metric: throughput (processes/second)

— But different processes need different run times

— Process completion time not controlled by
scheduler

* Candidate metric: delay (milliseconds)
— But specifically what delays should we measure?

— Some delays are not the scheduler's fault
* Time to complete a service request

* Time to wait for a busy resource

/
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/ An Example — Measuring CPU \
Scheduling

* Process execution can be divided into phases
— Time spent running
* The process controls how long it needs to run

— Time spent waiting for resources or completions
* Resource managers control how long these take

— Time spent waiting to be run
* This time 1s controlled by the scheduler

* Proposed metric:

\ — Time that “ready” processes spend waiting for the /
CS 111 CPU Lecture 4
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ﬁypical Throughput vs. Load Cur\%

throughput

\
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/~ Why Don’t We Achieve Ideal ™\
Throughput?

* Scheduling is not free
— It takes time to dispatch a process (overhead)

— More dispatches means more overhead (lost time)
— Less time (per second) 1s available to run processes

* How to minimize the performance gap
— Reduce the overhead per dispatch

— Minimize the number of dispatches (per second)

* This phenomenon 1s seen in many areas
\ besides process scheduling /
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/~ Typical Response Time

\

CS 111

Summer 2014

Delay

(response time)

vs. Load Curve

typical

\

offered load

Lecture 4

Page 19



/ Why Does Response Time \
Explode?

* Real systems have finite limits
— Such as queue size
* When those limits are exceeded, requests are
typically dropped
— Which 1s an infinite response time, for them

— There may be automatic retries (e.g., TCP), but they could
be dropped, too

* Ifload arrives a lot faster than it is serviced, lots of
stuff gets dropped

* Unless careful, overheads during heavy load explode

/
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/ Graceful Degradation \

* When 1s a system “overloaded”?

— When 1t 1s no longer able to meet service goals

* What can we do when overloaded?
— Continue service, but with degraded performance
— Maintain performance by rejecting work

— Resume normal service when load drops to normal

* What should we not do when overloaded?

— Allow throughput to drop to zero (i.e., stop doing
work)

., — Allow response time to grow without limit L

Summer 2014 Page 21




/ Non-Preemptive Scheduling] \

* Consider 1n the context of CPU scheduling

* Scheduled process runs until 1t yields CPU
* Works well for simple systems

— Small numbers of processes

— With natural producer consumer relationships
* Good for maximizing throughput

* Depends on each process to voluntarily yield

— A piggy process can starve others

\ — A buggy process can lock up the entire system /
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/ When Should a Process Yield? \

* When 1t knows it’s not going to make progress
— E.g., while waiting for I/0

— Better to let someone else make progress than sit
in a pointless wait loop

e After 1t has had its “fair share” of time
— Which i1s hard to define

— Since 1t may depend on the state of everything else
in the system

* Can’t expect application programmers to do
sophisticated things to decide /
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/" Scheduling Other Resources ™\

Non-Preemptively
* Schedulers aren’t just for the CPU or cores
* They also schedule use of other system
resources
— Disks
— Networks

— At low level, busses

* Is non-preemptive best for each such resource?

* Which algorithms we will discuss make sense
for each?
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/~ Non-Preemptive Scheduling ™\
Algorithms

e First come first served
* Shortest job next
e Real time schedulers

\ /
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____________________________________________________________________________________

____________________________________________________________________________________

* The simplest of all scheduling algorithms

* Run first process on ready queue

— Until 1t completes or yields
* Then run next process on queue
— Until it completes or yields

* Highly variable delays

— Depends on process implementations

\° All processes will eventually be served )
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/F 1irst Come First Served Example\

\

CS 111
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Dispatch Order 0,1,2 3 4
Process Duration Start Time End Time
0 390 0 350
1 125 390 475
2 475 475 950
3 290 950 1200
4 I6 1200 1275
Total 1275
Average wait 995

Note: Average 1s worse than total/5 because four other processes had
to wait for the slow-poke who ran first.

/
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/ When Would First Come First \

Served Work Well?

* FCFS scheduling 1s very simple
* It may deliver very poor response time
* Thus 1t makes the most sense:

1. In batch systems, where response time 1s not
important

2. In embedded (e.g. telephone or set-top box)

systems where computations are brief and/or exist
in natural producer/consumer relationships

\ /
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/" Shortest Job First

* Find the shortest task on ready queue
— Run 1t until it completes or yields

* Find the next shortest task on ready queue

— Run 1t until it completes or yields

* Yields minimum average queuing delay
— This can be very good for interactive response time

— But it penalizes longer jobs

\ /

CS 111 Lecture 4
Summer 2014 Page 29




/ Shortest Job First Example \

Dispatch Order 41.3,0,2
Process Duration Start Time End Time
4 I6) 0 I
1 125 I6) 200
3 250 200 450
0 350 450 800
2 475 800 1275
Total 1275
Average wait 305
Note: Even though total time remained unchanged, reordering
\ the processes significantly reduced the average wait time. /
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/ Is Shortest Job First Practical? \

* How can we know how long a job 1s going to run?

— Processes predict for themselves?
— The system predicts for them?

* How fair 1s SJF scheduling?

— The smaller jobs will always be run first
— New small jobs cut 1n line, ahead of older longer jobs
— Will the long jobs ever run?

* Only 1f short jobs stop arriving ... which could be never

e This 1s called starvation

\ — It 1s caused by discriminatory scheduling /
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/ What If the Prediction 1s Wrong‘.ﬁ

* Regardless of who made it

* In non-preemptive system, we have little choice:
— Continue running the process until it yields
 If prediction 1s wrong, the purpose of Shortest-Job-
First scheduling 1s defeated
— Response time suffers as a result
* Few computer systems attempt to use Shortest-Job-
First scheduling

— But grocery stores and banks do use it

* 10-item-or-less registers

\ * Simple deposit & check cashing windows /
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/ Is Starvation Really That Bad? \

* If optimizing for response time, it may make
sense to preferentially schedule shorter jobs

— The long jobs are “inappropriate” for this type of
system

— And inconvenience many other jobs
 If a job 1s mnappropriate for our system,
perhaps we should refuse to run 1t

— But making 1t wait for an indefinitely long period
of time doesn’t sound like reasonable behavior

\ — Especially without feedback to job’s submuitter /
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/" Real Time Schedulers

’

* For certain systems, some things must happen
at particular times

— E.g., industrial control systems

— If you don’t rivet the widget before the conveyer
belt moves, you have a worthless widget

* These systems must schedule on the basis of
real-time deadlines

* Can be either hard or soft

\ /
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/ Hard Real Time Schedulers \

* The system absolutely must meet i1ts deadlines

* By definition, system fails if a deadline 1s not
met

— E.g., controlling a nuclear power plant . . .
* How can we ensure no missed deadlines?
* Typically by very, very careful analysis

— Make sure no possible schedule causes a deadline
to be missed

\ — By working it out ahead of time )

s — T'hen scheduler rigorously follows deadlines Lecture 4
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/ Ensuring Hard Deadlines \

* Must have deep understanding of the code
used in each job

— You know exactly how long 1t will take

* Vital to avoid non-deterministic timings

— Even 1f the non-deterministic mechanism usually
speeds things up

— You’re screwed if 1t ever slows them down

* Typically means you do things like turn off
interrupts

\ And scheduler 1s non-preemptive Lectne 4
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/ How Does a Hard Real Time \
System Schedule?

* There 1s usually a very carefully pre-defined
schedule

* No actual decisions made at run time

* It’s all been worked out ahead of time

* Not necessarily using any particular algorithm
* The designers may have just tinkered around to

make everything “fit”

\ /
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/ Soft Real Time Schedulers \

* Highly desirable to meet your deadlines

* But some (or any) of them can occasionally be
missed

* Goal of scheduler 1s to avoid missing deadlines
— With the understanding that you might

* May have different classes of deadlines
— Some “harder” than others

\' Need not require quite as much analysis y
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/ Soft Real Time Schedulers and \

Non-Preemption
* Not as vital that tasks run to completion to
meet their deadline

— Also not as predictable, since you probably did
less careful analysis

* In particular, a new task with an earlier
deadline might arrive

* If you don’t pre-empt, you might not be able to
meet that deadline

\ /
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/ What If You Don’t Meet a \

Deadline?
* Depends on the particular type of system

* Might just drop the job whose deadline you
missed

* Might allow system to fall behind
* Might drop some other job 1n the future
* At any rate, i1t will be well defined 1n each

particular system

\ /
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What Algorithms Do You
Use For Soft Real Time?

e Most common 1s Earliest Deadline First
* Each job has a deadline associated with it

— Based on a common clock
* Keep the job queue sorted by those deadlines

* Whenever one job completes, pick the first one
off the queue

* Perhaps prune the queue to remove jobs whose
deadlines were missed

\° Minimizes total lateness /
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/ Example of a Soft Real Time \

Scheduler
* A video playing device
 Frames arrive

— From disk or network or wherever

* Ideally, each frame should be rendered “on
time”
— To achieve highest user-perceived quality

* If you can’t render a frame on time, might be
better to skip it entirely

\ — Rather than fall further behind Y,
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/ [ Preemptive Scheduling J \

* Again 1n the context of CPU scheduling

* A thread or process 1s chosen to run

* It runs until either 1t yields

* Or the OS decides to interrupt it

* At which point some other process/thread runs

* Typically, the interrupted process/thread 1s
restarted later

\ /
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ﬂlplications of Forcing Preemptioh

* A process can be forced to yield at any time

— If a higher priority process becomes ready
* Perhaps as a result of an I/O completion interrupt

— If running process's priority 1s lowered

* Perhaps as a result of having run for too long
* Interrupted process might not be in a “clean” state
— Which could complicate saving and restoring its state
* Enables enforced “fair share” scheduling
* Introduces gratuitous context switches

— Not required by the dynamics of processes

\- Creates potential resource sharing problems y

Lecture 4
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* Need a way to get control away from process

— E.g., process makes a sys call, or clock interrupt

* Consult scheduler before returning to process
— Has any ready process had its priority raised?
— Has any process been awakened?
— Has current process had its priority lowered?

* Scheduler finds highest priority ready process

— If current process, return as usual
\ — If not, yield on behalf of current process and /
s Switch to higher priority process Lecture 4
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/ Clock Interrupts \

* Modern processors contain a clock

* A peripheral device
— With limited powers

* Can generate an interrupt at a fixed time
interval

* Which temporarily halts any running process

* Good way to ensure that runaway process
doesn’t keep control forever

N Key technology for preemptive scheduling )
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/ ‘Round Robin Scheduling \
i Algorithm
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— All processes offered equal shares of CPU and experience
similar queue delays

All processes are assigned a nominal time slice
— Usually the same sized slice for all

* Each process 1s scheduled 1n turn
— Runs until it blocks, or its time slice expires

— Then put at the end of the process queue

Then the next process 1s run

/

\° Eventually, each process reaches front of queue Lecture 4
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/~  Properties of Round Robin ™\
Scheduling

* All processes get relatively quick chance to do
some computation

— At the cost of not finishing any process as quickly
— A big win for interactive processes

 Far more context switches

— Which can be expensive

* Runaway processes do relatively little harm

— Only take 1/nt™ of the overall cycles

\ /
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/ Round Robin and I/O Interrupts\

* Processes get halted by round robin scheduling
if their time slice expires

* If they block for I/O (or anything else) on their
own, the scheduler doesn’t halt them

* Thus, some percentage of the time round robin
acts no differently than FIFO

— When 1I/0O occurs 1n a process and it blocks

\ /
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/ Round Robin Example \

Assume a 50 msec time slice (or guantum)

Dispatch Order: 0,1,2,3,4,0,1,2, ...
Process | Length | 1st | 2nd | 3d | 4th | 5th | 6th | 7th | 8th | Finish | Switches
0 350 0 | 250 | 475 | 650 | 800 | 950 | 1050 1100 7
1 125 50 | 300 | 525 525 3
2 475 100 | 350 | 550 | 700 | 850 | 1000 | 1100 | 1250 | 1275 10
3 250 150 | 400 | 600 | 750 | 900 900 5
4 75 200 | 450 475 2
Average waiting time: 100 msec 1275 27
\ First process completed: 475 msec /
cs 111 Lecture 4
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/ Comparing Example to Non- \

Preemptive Examples
* Context switches: 27 vs. 5 (for both FIFO and SJF)

— Clearly more expensive

* First job completed: 475 msec vs.
— 75 (shortest job first)
— 350 (FIFO)

— Clearly takes longer to complete some process

* Average waiting time: 100 msec vs.
— 350 (shortest job first)

— 595 (FIFO)
\ — For first opportunity to compute /

cs11 — Clearly more responsive Lecture 4
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/ Choosing a Time Slice \

* Performance of a preemptive scheduler
depends heavily on how long time slice 1s

* Long time slices avoid too many context
switches

— Which waste cycles
— So better throughput and utilization

* Short time slices provide better response time
to processes

\- How to balance? /

CS 111 Lecture 4
Summer 2014 Page 52




/ Costs of a Context Switch \

* Entering the OS
— Taking interrupt, saving registers, calling scheduler
* Cycles to choose who to run

— The scheduler/dispatcher does work to choose

* Moving OS context to the new process

— Switch stack, non-resident process description

* Switching process address spaces
— Map-out old process, map-in new process

* Losing instruction and data caches
\ — QGreatly slowing down the next hundred instructions /
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/ Characterizing Costs of

a Time Slice Choice

What % of CPU use does a process get?

* Depends on workload

— More processes 1n queue = fewer slices/second
CPU share = time_slice * slices/second

— 2% = 20ms/sec = 2ms/slice * 10 slices/sec

— 2% = 20ms/sec = Sms/slice * 4 slices/sec

Natural rescheduling interval
— When a typical process blocks for resources or I/O

— Ideally, fair-share would be based on this period

\ — Only time-slice-end 1f process runs too long

CS 111
Summer 2014

/

Lecture 4
Page 54



/" Multi-queue Scheduling

* One time slice length may not fit all processes

* Create multiple ready queues
— Short quantum (foreground) tasks that finish
quickly
* Short but frequent time slices, optimize response time

— Long quantum (background) tasks that run longer
* Longer but infrequent time slices, minimize overhead

— Different queues may get different shares of the
CPU

\ /
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/How Do I Know What Queue To\

Put New Process Into?

 Start all processes 1n short quantum queue
— Move downwards 1f too many time-slice ends
— Move back upwards if too few time slice ends
— Processes dynamically find the right queue
* If you also have real time tasks, you know
what belongs there
— Start them 1n real time queue and don’t move them

\ /
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/" Multiple Queue Scheduling

- _

50%

25%

medium quantum queue
#yield =10 tS, . = 2mS #tse = 50

05%

\
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/ Priority Scheduling Algorithm N

* Sometimes processes aren’t all equally
important

* We might want to preferentially run the more
important processes first

* How would our scheduling algorithm work
then?

* Assign each job a priority number

* Run according to priority number

CS 111 Lecture 4
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/ Priority and Preemption \

* If non-preemptive, priority scheduling 1s just
about ordering processes

* Much like shortest job first, but ordered by
priority instead

* But what 1f scheduling i1s preemptive?

* In that case, when new process 1s created, it
might preempt running process

— If 1ts priority 1s higher

\ /
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/ Priority Scheduling Example \

550 Time

Process | Priority | Length

0 10 350

1 30 125

2 40 475

3 20 250

4 50 75

Process 4 completes

\ So we go back to process 2

CS 111

Process 3’s priority 1s lower than
running process

Process 4’s priority 1s higher than
running process
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/Problems With Priority Scheduling \

* Possible starvation
* Can a low priority process ever run?
* If not, 1s that really the effect we wanted?

* May make more sense to adjust priorities

— Processes that have run for a long time have
priority temporarily lowered

— Processes that have not been able to run have
priority temporarily raised

\ /
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/ Priority Scheduling in Linux \

* Each process in Linux has a priority
— Called a nice value
— A soft priority describing share of CPU that a

process should get

* Commands can be run to change process
priorities

* Anyone can request lower priority for his
Processes

\o Only privileged user can request higher /

Lecture 4
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/" Priority Scheduling in Windows )

* 32 different priority levels
— Half for regular tasks, half for soft real time
— Real time scheduling requires special privileges
— Using a multi-queue approach

* Users can choose from 5 of these priority
levels

* Kernel adjusts priorities based on process
behavior

\ — Goal of improving responsiveness /
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