
Lecture 3
Page 1

CS 111
Summer 2014

Processes
CS 111

Operating System Principles
Peter Reiher

Lecture 3
Page 2

CS 111
Summer 2014

Outline

•  Processes and threads
•  Going from conceptual to real systems
•  How does the OS handle processes and

threads?
•  Creating and destroying processes

Lecture 3
Page 3

CS 111
Summer 2014

Processes and Threads

•  Threads are a simple concept
•  They are used in real operating systems
•  But they aren’t the actual key interpreter

abstraction of real operating systems
•  Systems like Linux and Windows use another

abstraction
– The process

Lecture 3
Page 4

CS 111
Summer 2014

What Is a Process?

•  Essentially, a virtual machine for running a
program

•  So it contains state
•  And resources required to do its work

– Like threads, virtual memory, communications
primitives

•  Most machines run multiple processes
– Serially and simultaneously

Lecture 3
Page 5

CS 111
Summer 2014

Processes and Programs
•  A program is a static representation of work to

be done
•  A process is the dynamic, running instantiation

of a program
•  Most programs are run many different times

– On the same or different machines

•  Each individual run is represented by a unique
process
– Which has a discrete start and (usually) end

Lecture 3
Page 6

CS 111
Summer 2014

How Does a Process Differ
From a Thread?

•  Processes are a higher level abstraction
•  They can contain multiple threads

–  Implying that there can be simultaneous actions
within one program

– Which is not possible in a thread

•  They typically encapsulate an entire running
program

•  They are heavier weight

Lecture 3
Page 7

CS 111
Summer 2014

The OS and Processes
•  The OS must multiplex virtual processes onto

physical processors
– Start and end processes
– Set them up to run properly
–  Isolate them from other processes
– Ensure that all processes get a chance to do their

work
– Share the physical resources properly

•  One important aspect of this task is properly
handling process state

Lecture 3
Page 8

CS 111
Summer 2014

Process State
•  Similar to thread state
•  Need information on:

– What instruction to run next
– Where the process’ memory is located
– What are the contents of important registers
– What other resources (physical or virtual) are

available to the process
– Perhaps security-related information (like owner)

•  Major components are register state (e.g., the
PC) and memory state

Lecture 3
Page 9

CS 111
Summer 2014

Process State and Memory

•  Processes have several different types of
memory segments
– The memory holding their code
– The memory holding their stack
– The memory holding their data

•  Each is somewhat different in its purpose and
use

Lecture 3
Page 10

CS 111
Summer 2014

Process Code Memory

•  The instructions to be executed to run the
process

•  Typically static
– Loaded when the process starts
– Then they never change

•  Of known, fixed size
•  Often, a lot of the program code will never be

executed by a given process running it

Lecture 3
Page 11

CS 111
Summer 2014

Implications for the OS
•  Obviously, memory object holding the code

must allow execution
– Need not be writeable

•  Self-modifying code is a bad idea, usually

– Should it be readable?
•  Can use a fixed size domain

– Which can be determined before the process
executes

•  Possibility of loading the code on demand

Lecture 3
Page 12

CS 111
Summer 2014

Process Stack Memory

•  Memory holding the run-time state of the
process

•  Modern languages and operating systems are
stack oriented
– Routines call other routines
– Expecting to regain control when the called routine

exits
– Arbitrarily deep layers of calling

•  The stack encodes that

Lecture 3
Page 13

CS 111
Summer 2014

Stack Frames

•  Each routine that is called keeps its relevant
data in a stack frame
–  Its own piece of state

•  Stack frames contain:
– Storage for procedure local (as opposed to global)

variables
– Storage for invocation parameters
– Space to save and restore registers

•  Popped off stack when call returns

Lecture 3
Page 14

CS 111
Summer 2014

Characteristics of Stack Memory
•  Of unknown and changing size

– Grows when functions are called
– Shrinks when they return

•  Contents created dynamically
– Not the same from run to run
– Often data-dependent

•  Not inherently executable
– Contains pointers to code, not code itself

•  A compact encoding of the dynamic state of
the process

Lecture 3
Page 15

CS 111
Summer 2014

Implications for the OS

•  The memory domain for the stack must be
readable and writeable
– But need not be executable

•  OS must worry about stack overrunning the
memory area it’s in
– What to do if it does?

•  Extend the domain?
•  Kill the process?

Lecture 3
Page 16

CS 111
Summer 2014

Process Data Memory

•  All the data the process is operating on
•  Of highly varying size

– During a process run
– From run to run of a process

•  Read/write access required
– Usually not execute access
– Few modern systems allow processes to create

new code

Lecture 3
Page 17

CS 111
Summer 2014

Implications for the OS

•  Must be prepared to give processes new
domains for dynamic data
– Since you can’t generally predict ahead of time

how much memory a process will need
– Need strategy if process asks for more memory

than you can give it
•  Should give read/write permission to these

domains
– Usually not execute

Lecture 3
Page 18

CS 111
Summer 2014

Layout of Process in Memory

0x00000000 0xFFFFFFFF

code data stack

•  In Unix systems, data segment grows up
•  Stack segment grows down
•  They aren’t allowed to meet

Lecture 3
Page 19

CS 111
Summer 2014

Loading Programs Into Processes

•  The program represents a piece of code that
could be executed

•  The process is the actual dynamic executing
version of the program

•  To get from the code to the running version,
you need to perform the loading step
–  Initializing the various memory domains we just

mentioned

Lecture 3
Page 20

CS 111
Summer 2014

Loading Programs
•  The load module

– All external references have been resolved
– All modules combined into a few segments
–  Includes multiple segments (code, data, symbol

table)
•  A computer cannot “execute” a load module

– Computers execute instructions in memory
– Memory must be allocated for each segment
– Code must be copied from load module to memory

Lecture 3
Page 21

CS 111
Summer 2014

Shareable Executables

•  Often multiple programs share some code
– E.g., widely used libraries

•  Do we need to load a different copy for each
process?
– Not if all they’re doing is executing the code

•  OS can load one copy and make it available to
all processes that need it
– Obviously not in a writeable domain

Lecture 3
Page 22

CS 111
Summer 2014

Some Caveats

•  Code must be relocated to specific addresses
– All processes must use shared code at the same

address
•  Only the code segments are sharable

– Each process requires its own copy of writable
data
•  Which may be associated with the shared code

– Data must be loaded into each process at start time

Lecture 3
Page 23

CS 111
Summer 2014

Shared Libraries

•  Commonly used pieces of code
– Like I/O routines or arithmetic functions

•  Some obvious advantages:
– Reduced memory consumption
– Faster program start-ups, since library is often

already in memory
– Simplified updates

•  All programs using it updated by just updating the
library

Lecture 3
Page 24

CS 111
Summer 2014

Limitations of Shared Libraries
•  Not all modules will work in a shared library

– They cannot define/include static data storage

•  They are read into program memory
– Whether they are actually needed or not

•  Called routines must be known at compile-
time
– Only fetching the code is delayed until run-time

•  Dynamically loaded libraries solve some of
these problems

Lecture 3
Page 25

CS 111
Summer 2014

Layout With Shared Libraries

0x00000000

0xFFFFFFFF

code data

 stack

shared lib1 shared lib2

shared lib3

0x0100000 0x0110000

0x0120000

Lecture 3
Page 26

CS 111
Summer 2014

Dynamically Loadable Libraries
•  DLLs
•  Libraries that are not loaded when a process

starts
•  Only made available to process if it uses them

– No space/load time expended if not used
•  So action must be taken if a process does

request a DLL routine
•  Essentially, need to make it look like the

library was there all along

Lecture 3
Page 27

CS 111
Summer 2014

Making DLLs Work

•  The program load module includes a Procedure
Linkage Table
–  Addresses for routines in DLL resolve to entries in PLT
–  Each PLT entry contains a system call to a run-time loader

•  First time a routine is called, we call run-time loader
–  Which finds, loads, and initializes the desired routine
–  Changes the PLT entry to be a jump to loaded routine
–  Then jumps to the newly loaded routine

•  Subsequent calls through that PLT entry go directly

Lecture 3
Page 28

CS 111
Summer 2014

Shared Libraries Vs. DLLs
•  Both allow code sharing and run-time binding
•  Shared libraries:

– Simple method of linking into programs
– Shared objects obtained at program load time

•  Dynamically Loadable Libraries:
– Require more complex linking and loading
– Modules are not loaded until they are needed

– Complex, per-routine, initialization possible
•  E.g., allocating private data area for persistent local

variables

Lecture 3
Page 29

CS 111
Summer 2014

How Do Threads Fit In?
•  How do multiple threads in the same process

affect layout?
•  Each thread has its own registers, PS, PC
•  Each thread must have its own stack area
•  Maximum size specified at thread creation

– A process can contain many threads
– They cannot all grow towards a single hole
– Thread creator must know max required stack size
– Stack space must be reclaimed when thread exits

Lecture 3
Page 30

CS 111
Summer 2014

Thread Stack Allocation

0x00000000

0xFFFFFFFF

code data

stack

thread
stack 1

0x0120000

thread
stack 2

thread
stack 3

Lecture 3
Page 31

CS 111
Summer 2014

Problems With Fixed Size
Thread Stacks

•  Requires knowing exactly how deep a thread
stack can get

–  Before we start running the thread
•  Problematic if we do recursion
•  How can developers handle this limitation?

–  The use of threads is actually relatively rare
–  Generally used to perform well understood tasks
–  Important to keep this limitation in mind when

writing multi-threaded algorithms

Lecture 3
Page 32

CS 111
Summer 2014

How Does the OS
Handle Processes?

•  The system expects to handle multiple
processes
– Each with its own set of resources
– Each to be protected from the others

•  Memory management handles stomping on
each other’s memory
– E.g., use of domain registers

•  How does the OS handle the other issues?

Lecture 3
Page 33

CS 111
Summer 2014

Basic OS Process Handling

•  The OS will assign processes (or their threads)
to cores
–  If more processes than cores, multiplexing them as

needed
•  When new process assigned to a core, that core

must be initialized
– To give the process illusion that it was always

running there
– Without interruption

Lecture 3
Page 34

CS 111
Summer 2014

Process Descriptors

•  Basic OS data structure for dealing with
processes

•  Stores all information relevant to the process
– State to restore when process is dispatched
– References to allocated resources
–  Information to support process operations

•  Kept in an OS data structure
•  Used for scheduling, security decisions,

allocation issues

Lecture 3
Page 35

CS 111
Summer 2014

The Process Control Block
•  The data structure Linux (and other Unix

systems) use to handle processes
•  An example of a process descriptor
•  Keeps track of:

– Unique process ID
– State of the process (e.g., running)
– Parent process ID
– Address space information
– Accounting information
– And various other things

Lecture 3
Page 36

CS 111
Summer 2014

OS State For a Process
•  The state of process’s virtual computer
•  Registers

– Program counter, processor status word
– Stack pointer, general registers

•  Virtual address space
– Text, data, and stack segments
– Sizes, locations, and contents

•  All restored when the process is dispatched
– Creating the illusion of continuous execution

Lecture 3
Page 37

CS 111
Summer 2014

Process Resource References
•  OS needs to keep track of what system

resources the process has available
•  Extremely important to get this right

– Process expects them to be available when it runs
next

–  If OS gives something it shouldn’t, major problem
•  OS maintains unforgeable handles for

allocated resources
– Encoding identity and resource state
– Also helpful for reclamation when process ends

Lecture 3
Page 38

CS 111
Summer 2014

Why Unforgeable Handles?

•  Process can ask for any resource
•  But it shouldn’t always get it
•  Process must not be able to create its own OS-

level handle to access a resource
– OS must control which ones the process gets
– OS data structures not accessible from user-mode
– Only altered by trusted OS code

•  So if it’s there, the OS put it there
•  And it has not been modified by anyone else

Lecture 3
Page 39

CS 111
Summer 2014

Process Creation

•  Processes get created (and destroyed) all the
time in a typical computer

•  Some by explicit user command
•  Some by invocation from other running

processes
•  Some at the behest of the operating system
•  How do we create a new process?

Lecture 3
Page 40

CS 111
Summer 2014

Creating a Process Descriptor

•  The process descriptor is the OS’ basic per-
process data structure

•  So a new process needs a new descriptor
•  What does the OS do with the descriptor?
•  Typically puts it into a process table

– The data structure the OS uses to organize all
currently active processes

Lecture 3
Page 41

CS 111
Summer 2014

What Else Does a
New Process Need?

•  A virtual address space
•  To hold all of the segments it will need
•  So the OS needs to create one

– And allocate memory for code, data and stack
•  OS then loads program code and data into new

segments
•  Initializes a stack segment
•  Sets up initial registers (PC, PS, SP)

Lecture 3
Page 42

CS 111
Summer 2014

Choices for Process Creation
1.  Start with a “blank” process

–  No initial state or resources
–  Have some way of filling in the vital stuff

•  Code
•  Program counter, etc.

–  This is the basic Windows approach
2.  Use the calling process as a template

–  Give new process the same stuff as the old one
–  Including code, PC, etc.
–  This is the basic Unix/Linux approach

Lecture 3
Page 43

CS 111
Summer 2014

Starting With a Blank Process

•  Basically, create a brand new process
•  The system call that creates it obviously needs

to provide some information
– Everything needed to set up the process properly
– At the minimum, what code is to be run
– Generally a lot more than that

•  Other than bootstrapping, the new process is
created by command of an existing process

Lecture 3
Page 44

CS 111
Summer 2014

Windows Process Creation

•  The CreateProcess() system call
•  A very flexible way to create a new process

– Many parameters with many possible values

•  Generally, the system call includes the name of
the program to run
–  In one of a couple of parameter locations

•  Different parameters fill out other critical
information for the new process
– Environment information, priorities, etc.

Lecture 3
Page 45

CS 111
Summer 2014

Process Forking

•  The way Unix/Linux creates processes
•  Essentially clones the existing process
•  On assumption that the new process is a lot

like the old one
– Most likely to be true for some kinds of parallel

programming
– Not so likely for more typical user computing

Lecture 3
Page 46

CS 111
Summer 2014

Why Did Unix Use Forking?
•  Avoids costs of copying a lot of code

–  If it’s the same code as the parents’ . . .

•  Historical reasons
– Parallel processing literature used a cloning fork
– Fork allowed parallelism before threads invented

•  Practical reasons
– Easy to manage shared resources

•  Like stdin, stdout, stderr
– Easy to set up process pipe-lines (e.g. ls | more)
– Share exclusive-access resources (e.g. tape drives)

Lecture 3
Page 47

CS 111
Summer 2014

What Happens After a Fork?
•  There are now two processes

– With different IDs
– But otherwise mostly exactly the same

•  How do I profitably use that?
•  Program executes a fork
•  Now there are two programs

– With the same code and program counter

•  Write code to figure out which is which
– Usually, parent goes “one way” and child goes

“the other”

Lecture 3
Page 48

CS 111
Summer 2014

Forking and the Data Segments

•  Forked child shares the parent’s code
•  But not its stack

–  It has its own stack, initialized to match the
parent’s

– Just as if a second process running the same
program had reached the same point in its run

•  Child should have its own data segment,
though
– Forked processes do not share their data segments

Lecture 3
Page 49

CS 111
Summer 2014

Forking and Copy on Write

•  If the parent had a big data area, setting up a
separate copy for the child is expensive
– And fork was supposed to be cheap

•  If neither parent nor child write the parent’s
data area, though, no copy necessary

•  So set it up as copy on write
•  If one of them writes it, then make a copy and

let the process write the copy
– The other process keeps the original

Lecture 3
Page 50

CS 111
Summer 2014

Sample Use of Fork
if (fork()) {

 /* I’m the parent! */

 execute parent code

} else {
 /* I’m the child! */

 execute the child code

}

•  Parent and child code could be very different
•  In fact, often you want the child to be a totally
different program

– And maybe not share the parent’s resources

Lecture 3
Page 51

CS 111
Summer 2014

But Fork Isn’t What
I Usually Want!

•  Indeed, you usually don’t want another copy of
the same process

•  You want a process to do something entirely
different

•  Handled with exec
– A Unix system call to “remake” a process
– Changes the code associated with a process
– Resets much of the rest of its state, too

•  Like open files

Lecture 3
Page 52

CS 111
Summer 2014

The exec Call

•  A Linux/Unix system call to handle the
common case

•  Replaces a process’ existing program with a
different one
– New code
– Different set of other resources
– Different PC and stack

•  Essentially, called after you do a fork

Lecture 3
Page 53

CS 111
Summer 2014

Using exec
if (fork()) {

 /* I’m the parent! */

 continue with what I was doing before

} else {
 /* I’m the child! */

 exec(“new program”, <program arguments>);

}

•  The parent goes on to whatever is next
•  The child replaces its code with “new

program”

Lecture 3
Page 54

CS 111
Summer 2014

How Does the OS Handle Exec?

•  Must get rid of the child’s old code
– And its stack and data areas
– Latter is easy if you are using copy-on-write

•  Must load a brand new set of code for that
process

•  Must initialize child’s stack, PC, and other
relevant control structure
– To start a fresh program run for the child process

Lecture 3
Page 55

CS 111
Summer 2014

New Processes and Threads

•  All processes have at least one thread
–  In some older OSes, never more than one

•  In which case, the thread is not explicitly represented
–  In newer OSes, processes typically start with one

thread
•  As process executes, it can create new threads
•  New thread stacks allocated as needed

Lecture 3
Page 56

CS 111
Summer 2014

A Thread Implementation Choice

•  Threads can be implemented in one of two
ways

1.  The kernel implements them
2.  User code implements them
•  These alternatives have fundamental

differences

Lecture 3
Page 57

CS 111
Summer 2014

User Threads

•  The kernel doesn’t know about multiple threads per
process

•  The process itself knows
•  So the process must schedule its threads
•  Since the kernel doesn’t know the process has

multiple threads,
–  The process can’t run threads on more than one core

•  Switching threads doesn’t require OS involvement,
though
–  Which can be cheaper

Lecture 3
Page 58

CS 111
Summer 2014

Typical Use of User Threads

•  A server process that expects to have multiple
simultaneous clients

•  Server process can spawn a new user thread
for each client

•  And can then use its own scheduling methods
to determine which thread to run when

•  OS need not get involved in running threads
– No context switch costs to change from one client

to another

Lecture 3
Page 59

CS 111
Summer 2014

Kernel Threads
•  The OS is aware that processes can contain

more than one thread
•  Creating threads is an OS operation
•  Scheduling of threads handled by OS

– Which can schedule several process threads on
different cores simultaneously

•  Saves the program complexity of handling
threads

•  But somewhat more heavyweight

Lecture 3
Page 60

CS 111
Summer 2014

Typical Use of Kernel Threads

•  A program that can do significant parallel
processing on its data

•  Each parallel operation is run as a kernel
thread
– All sharing the same data space and code
– But each with its own stack

•  If multiple cores available, OS can achieve
true parallelism for the program

Lecture 3
Page 61

CS 111
Summer 2014

Process Termination

•  Most processes terminate
– All do, of course, when the machine goes down
– But most do some work and then exit before that
– Others are killed by the OS or another process

•  When a process terminates, the OS needs to
clean it up
– Essentially, getting rid of all of its resources
–  In a way that allows simple reclamation

