Hardware, Modularity, and Virtualization CS 111 Operating System Principles Peter Reiher

Outline

- The relationship between hardware and operating systems
 - Processors
 - I/O devices
 - Memory
- Organizing systems via modularity
- Virtualization and operating systems

CS 111 Summer 2014 Lecture 2
Page 2

Hardware and the Operating System

- One of the major roles of the operating system is to hide details of the hardware
 - Messy and difficult details
 - Specifics of particular pieces of hardware
 - Details that prevent safe operation of the computer
- OS abstractions are built on the hardware, at the bottom
 - Everything ultimately relies on hardware
- A major element of OS design concerns HW

OS Abstractions and the Hardware

- Many important OS abstractions aren't supported directly by the hardware
- Virtual machines
 - There's one real machine
- Virtual memory
 - There's one set of physical memory
 - And it often isn't as big as even one process thinks it is
- Typical file abstractions
- Many others
- The OS works hard to make up the differences

Processor Issues

- Execution mode
- Handling exceptions

CS 111 Summer 2014 Lecture 2

Page 5

Execution Modes

- Modern CPUs can usually execute in two different modes:
 - User mode
 - Supervisor mode
- User mode is to run ordinary programs
- Supervisor mode is for OS use
 - To perform overall control
 - To perform unsafe operations on the behalf of processes

CS 111 Summer 2014 Lecture 2 Page 6

User Mode

- Allows use of all the "normal" instructions
 - Load and store general registers from/to memory
 - Arithmetic, logical, test, compare, data copying
 - Branches and subroutine calls
- Able to address some subset of memory
 - Controlled by a Memory Management Unit
- Not able to perform privileged operations
 - I/O operations, update the MMU
 - Enable interrupts, enter supervisor mode

CS 111 Summer 2014

Supervisor Mode

- Allows execution of privileged instructions
 - To perform I/O operations
 - Interrupt enable/disable/return, load PC
 - Instructions to change processor mode
- Can access privileged address spaces
 - Data structures inside the OS
 - Other process's address spaces
 - Can change and create address spaces
- May have alternate registers, alternate stack

Controlling the Processor Mode

- Typically controlled by the *Processor Status Register* (AKA PS)
- PS also contains condition codes
 - Set by arithmetic/logical operations (0,+,-,ovflo)
 - Tested by conditional branch instructions
- Describes which interrupts are enabled
- May describe which address space to use
- May control other processor features/options
 - Word length, endian-ness, instruction set, ...

How Do Modes Get Set?

- The computer boots up in supervisor mode
 - Used by bootstrap and OS to initialize the system
- Applications run in user mode
 - OS changes to user mode before running user code
 - User programs cannot do I/O, restricted address space
 - They can't arbitrarily enter supervisor mode
 - Because instructions to change the mode are privileged
- Re-entering supervisor mode is strictly controlled
 - Only in response to traps and interrupts

So When Do We Go Back To Supervisor Mode?

- In several circumstances
- When a program needs OS services
 - Invokes system call that causes a trap
 - Which returns system to supervisor mode
- When an error occurs
 - Which requires OS to clean up
- When an interrupt occurs
 - Clock interrupts (often set by OS itself)
 - Device interrupts

Asynchronous Exceptions and Handlers

- Most program errors can be handled "in-line"
 - Overflows may not be errors, noted in condition codes
 - If concerned, program can test for such conditions
- Some errors must interrupt program execution
 - Unable to execute last instruction (e.g., illegal op)
 - Last instruction produced non-results (e.g., divide by zero)
 - Problem unrelated to program (e.g., power failure)
- Most computers use traps to inform OS of problems
 - Define a well specified list of all possible exceptions
 - Provide means for OS to associate handler with each

Control of Supervisor Mode Transitions

- All user-to-supervisor changes via traps/interrupts
 - These happen at unpredictable times
- There is a designated handler for each trap/interrupt
 - Its address is stored in a trap/interrupt vector table managed by the OS
- Ordinary programs can't access these vectors
- The OS controls all supervisor mode transitions
 - By carefully controlling all of the trap/interrupt "gateways"
- Traps/interrupts can happen while in supervisor mode
 - Their handling is similar, but a little easier

Dealing With the Cause of a Trap

- Some exceptions are handled by the OS
 - For example, page faults, alignment, floating point emulation
 - OS simulates expected behavior and returns
- Some exceptions may be fatal to running task
 - E.g. zero divide, illegal instruction, invalid address
 - OS reflects the failure back to the running process
- Some exceptions may be fatal to the system
 - E.g. power failure, cache parity, stack violation
 - OS cleanly shuts down the affected hardware

Summer 2014

Returning To User Mode

- Return is opposite of interrupt/trap entry
 - 2nd level handler returns to 1st level handler
 - 1st level handler restores all registers from stack
 - Use privileged return instruction to restore PC/PS
 - Resume user-mode execution after trapped instruction
- Saved registers can be changed before return
 - To set entry point for newly loaded programs
 - To deliver signals to user-mode processes
 - To set return codes from system calls

Stacking and Unstacking a Trap

User-mode Stack

stack frames from application computation

resumed computation TRAP!

direction of growth Supervisor-mode Stack

user mode PC & PS

saved user mode registers

parameters to 2nd level trap handler

return PC

2nd level trap handler stack frame

I/O Architecture

- I/O is:
 - Varied
 - Complex
 - Error prone
- Bad place for the user to be wandering around
- The operating system must make I/O friendlier
- Oriented around handling many different devices via busses using device drivers

CS 111 Summer 2014 Lecture 2 Page 18

Sequential vs. Random Access Devices

- Sequential access devices
 - Byte/block N must be read/written before byte/block N+1
 - May be read/write once, or may be rewindable
 - Examples: magnetic tape, printer, keyboard
- Random access devices
 - Possible to directly request any desired byte/block
 - Getting to that byte/block may or may not be instantaneous
 - Examples: memory, magnetic disk, graphics adaptor
- They are used very differently
 - Requiring different handling by the OS

Busses

- Something has to hook together the components of a computer
 - The CPU, memory, various devices
- Allowing data to flow between them
- That is a bus
- A type of communication link abstraction

CS 111 Summer 2014 Lecture 2 Page 20

Devices and Controllers

- Device controllers connect a device to a bus
 - Communicate control operations to device
 - Relay status information back to the bus, manage DMA, generate device interrupts
- Device controllers export registers to the bus
 - Writing into registers controls device or sends data
 - Reading from registers obtains data/status
- Register access method varies with CPU type
 - May use special instructions (e.g., x86 IN/OUT)
 - May be mapped onto bus just like memory

Direct Polled I/O

- Method of accessing devices via direct CPU control
 - CPU transfers data to/from device controller registers
 - Transfers are typically one byte or word at a time
 - May be accomplished with normal or I/O instructions
- CPU polls device until it is ready for data transfer
 - Received data is available to be read
 - Previously initiated write operations are completed
- + Very easy to implement (both hardware and software)
- CPU intensive, wastes CPU cycles on I/O control
- Leaves devices idle waiting for CPU when other tasks
 running

Summer 2014

Direct Memory Access

- Essentially, use the bus without CPU control
 - Move data between memory and device controller
- Bus facilitates data flow in all directions between:
 - CPU, memory, and device controllers
- CPU can be the bus-master
 - Initiating data transfers with memory, device controllers
- But device controllers can also master the bus
 - CPU instructs controller what transfer is desired
 - Device controller does transfer w/o CPU assistance
 - Device controller generates interrupt at end of transfer
- Interrupts tell CPU when DMA is done

Memory Issues

- Different types of memory handled in different ways
- Cache memory usually handled mostly by hardware
 - Often OS not involved at all
- RAM requires very special handling
 - To be discussed in detail later
- Disks and flash drives treated as devices
 - But often with extra OS support

Modularity

- Most useful abstractions an OS wants to offer can't be directly realized by hardware
- Modularity is one technique the OS uses to provide better abstractions
- Divide up the overall system you want into well-defined communicating pieces
- Critical issues:
 - Which pieces to treat as modules
 - How to organize the modules

Interfaces to modules

What Does An OS Do?

- At minimum, it enables one to run applications
 - Preferably several on the same machine
 - Preferably several at the same time
- At abstract level, what do we need to do that?
 - Interpreters (to run the code)
 - Memory (to store the code and data)
 - Communications links (to communicate between apps and pieces of the system)
- This suggests the kinds of modules we'll need

Starting Simple

- We want to run multiple programs
 - Without interference between them
 - Protecting one from the faults of another
- We've got a multicore processor to do so
 - More cores than programs
- We have RAM, a bus, a disk, other simple devices
- What abstractions should we build to ensure that things go well?

Exploiting Modularity

- We'll obviously have several SW elements to support the different user programs
- Desirable for each to be modular and selfcontained
 - With controlled interactions
- Gives cleaner organization
- Easier to prevent problems from spreading
- Easier to understand what's going on
- Easier to control each program's behavior

Subroutine Modularity

- Why not just organize the system as a set of subroutines?
 - All in the same address space
 - A simplifying assumption
 - Allowing easy in-memory communication
- System subroutines call user program subroutines as needed
 - And vice versa
- Soft modularity

How Would This Work?

- Each program is a self-contained set of subroutines
 - Subroutines in the program call each other
 - But not subroutines in other programs
- Shared services offered by other subroutines
 - Which any program can call
- Perhaps some "master routine" that calls subroutines in the various programs
- Soft because no OS HW/SW enforces modularity
 - Important resources (like the stack) are shared
 - Only proper program behavior protects one program from the mistakes of another

Hardening the Modularity

Four separate machines
Perhaps in very different places
Each program has its own machine

System Services In This Model

- Some activities are local to each program
- Other services are intended to be shared
 - Like a file system
- This functionality can be provided by a client/ server model
- The system services are provided by the server
- The user programs are clients
- The client sends message to server to get help
- OS uses HW/SW to enforce boundaries

CS 111 Summer 2014 Lecture 2 Page 35

Benefits of Hard Modularity

- With hard modularity, something beyond good behavior enforces module boundaries
- Here, the physical boundaries of the machine
- A client machine literally cannot touch the memory of the server
 - Or of another client machine
- No error or attack can change that
 - Though flaws in the server can cause problems
- Provides stronger guarantees all around

Downsides of Hard Modularity

- The hard boundaries prevent low-cost optimizations
- In client/server organizations, doing anything with another program requires messages
 - Inherently more expensive than memory accesses
- If the boundary sits between components requiring fast interactions, possibly very bad
- Must either give programs pieces of resources or time multiplex use of resources
 - More complexity to do this right

Virtualization

- Provide the illusion of a complete resource to each program that uses it
 - Hide hard modularity's time/space divisions
- Possible to provide an entire virtual machine per process
- Use shared hardware to instantiate the various virtual devices or machines
- System software (i.e., the operating system) and perhaps special hardware handle it

CS 111 Summer 2014

The Trick in Virtualization

- All the virtual machines share the same physical hardware
- But each thinks it has its own machine
- Must be sure that one virtual machine doesn't affect behavior of the others
 - Intentionally or accidentally
- With the least possible performance penalty
 - Given that there will be a penalty merely for sharing at all

CS 111 Summer 2014 Lecture 2 Page 40

Performance and Virtualization

- To achieve good performance, can't run many instructions "virtualized"
 - Most instructions must go directly to the processor
 - Rather than be mapped into multiple instructions via virtualization
- Similarly for access to other HW
 - Can't afford to put lots of virtualization SW in the usual path
- The trick is to virtualize the minimal set of accesses

CS 111 Summer 2014

Abstractions for Virtualizing Computers

- Some kind of interpreter abstraction
 - A thread
- Some kind of communications abstraction
 - Bounded buffers
- Some kind of memory abstraction
 - Virtual memory
- For a virtualized architecture, the operating system provides these kinds of abstractions

Threads

- Encapsulates the state of a running computation
- So what does it need?
 - Something that describes what computation is to be performed
 - Something that describes where it is in the computation
 - Something that maintains the state of the computation's data

OS Handling of Threads

- One (or more) threads per running program
- The OS chooses which thread to run
 - To share a processor, the OS must be able to cleanly stop and start threads
- While one thread is using a processor, no other thread should interfere with its use
- To run a thread, OS must:
 - Load its code and data into memory
 - Set up HW control structures (e.g., the PC)
 - Transfer control to the thread

Wait a Minute . . .?

- How does the OS do all that?
- It's just a program itself
 - With its own interpreter, memory, etc.
- It must use the same physical resources as all the other threads
- Basically, the OS itself is a thread
- It creates and manages other threads
- Using privileged supervisor mode to safely and temporarily break virtualization boundaries

CS 111 Summer 2014 Lecture 2 Page 46

Providing Contained Environments

- What must a thread manager control to keep each thread isolated from the others?
- Well, what can each thread do?
 - Run instructions
 - Make sure it can only run its own
 - Access some memory
 - Make sure it can only access its own
 - Communicate to other threads
 - Make sure communication uses a safe abstraction

What Does This Boil Down To?

- Running threads have access to certain processor registers
 - Program counter, stack pointer, others
 - Thread manager must ensure those are all set correctly
- Running threads have access to some or all pieces of physical memory
 - Thread manager must ensure that a thread can only touch its own physical memory
- Running threads can request services (like communications)
 - Thread manager must provide safe access to those services

Protecting Threads

- Normal threads usually run in user mode
- Which means they can't touch certain things
 - In particular, each others' stuff
- For certain kinds of resources, that's a problem
 - What if two processes both legitimately need to write to the screen?
 - Do we allow unrestricted writing and hope for the best?
 - Don't allow them to write at all?
- Instead, trap to supervisor mode

Trapping to Supervisor Mode

- To allow a program safe access to shared resources
- The trap goes to trusted code
 - Not under control of the program
- And performs well-defined actions
 - In ways that are safe
- E.g., program not allowed to write to the screen directly
 - But traps to OS code that writes it safely

Modularity and Memory

- Clearly, programs must have access to memory
- We need abstractions that give them the required access
 - But with appropriate safety
- What we've really got (typically) is RAM
- RAM is pretty nice
 - But it has few built-in protections
- So we want an abstraction that provides RAM with safety

CS 111 Summer 2014

What's the Safety Issue?

- We have multiple threads running
- Each requires some memory
- Modern architectures typically have one big pool of RAM
- How can we share the same pool of RAM among multiple processes?
 - Giving each what it needs
 - Not allowing any to harm the others

Domains

- A simple memory abstraction
- Give each process access to some range of the physical memory
 - Its domain
 - Different domain for each process
- Allow process to read/write/execute memory in its domain
- And not touch any memory outside its domain

What Do Domains Require?

- Threads will issue instructions
 - Perhaps using arbitrary memory addresses
- Only honor addresses in the thread's domain
 - Any other address should be caught as an error
- Hard modularity here requires HW support
- E.g., a domain register
 - Specifies the domain associated with the thread currently using the processor
 - By listing the low and high addresses that bound the domain

CS 111 Summer 2014 Lecture 2 Page 57

The Memory Manager

- Hardware or software that enforces the bounds of the domain register
- When thread reads or writes an address, memory manager checks the domain register
- If within bounds, do the memory operation
- If not, throw an illegal memory reference exception
 - Trapping to supervisor mode
- Only trusted code (i.e., the OS) can change the domain register

Page 58

Multiple Domains

- Limiting a process to a single domain is not too convenient
- The concept is easy to extend
 - Simply allow multiple domains per process
- Obvious way to handle this is with multiple domain registers
 - One per allocated domain

Handling Multiple Domains

- Programs can request more domains
 - But the OS must set them up
- What does the program get to ask for?
 - A specific range of addresses?
 - Or a domain of a particular size?
- Latter is easier
 - What if requested set of addresses are already used by another program?
 - Memory manager can choose a range of addresses of requested size

CS 111 Summer 2014 Lecture 2

Domains and Access Permissions

- One can typically do three types of things with a memory address
 - Read its contents
 - Write a new value to it
 - Execute an instruction located there
- System can provide useful effects if it does not allow all modes of use to all addresses
- Typically handled on a per-domain basis
 - E.g., read-only domains
- Requires extra bits in domain registers
- And other hardware support

What If Program Uses a Domain Improperly?

- E.g., it tries to write to a read-only domain
- A permission error exception
 - Different than an illegal memory reference exception
- But also handled by a similar mechanism
- Probably want it to be handled by somewhat different code in the OS
- Remember discussion of trap handling in previous lecture?

CS 111 • Summer 2014

Lecture 2 Page 64

Do We Really Need to Switch Processes for OS Services?

- When we trap or make a request for a domain, must we change processes?
 - We lose context doing so
- Instead, run the OS code for the process
 - Which requires changing to supervisor mode
 - Context for process is still available
- But what about safety?
 - Use domain access modes to ensure safety
- We don't do this for all OS services . . .

Domains in Kernel Mode

- Allow user threads to access certain privileged domains
 - Like code to handle hardware traps
 - Code must be in a user-accessible domain
- But can't allow arbitrary access to those privileged domains
- A supervisor (AKA *kernel*) mode access bit is set on such domains
 - So thread only accesses them when in kernel mode

How Does a Thread Get to Kernel Mode?

- Can't allow thread to arbitrarily put itself in kernel mode any time
 - Since it might do something unsafe
- Instead, allow entry to kernel mode only in specific ways
 - In particular, only at specific instructions
 - These are called *gates*
 - Typically implemented in hardware using instruction like SVC (supervisor call)