
Lecture 2
Page 1

CS 111
Summer 2014

Hardware, Modularity, and
Virtualization

CS 111
Operating System Principles

Peter Reiher

Lecture 2
Page 2

CS 111
Summer 2014

Outline

•  The relationship between hardware and
operating systems
– Processors
–  I/O devices
– Memory

•  Organizing systems via modularity
•  Virtualization and operating systems

Lecture 2
Page 3

CS 111
Summer 2014

Hardware and the
Operating System

•  One of the major roles of the operating system
is to hide details of the hardware
– Messy and difficult details
– Specifics of particular pieces of hardware
– Details that prevent safe operation of the computer

•  OS abstractions are built on the hardware, at
the bottom
– Everything ultimately relies on hardware

•  A major element of OS design concerns HW

Lecture 2
Page 4

CS 111
Summer 2014

OS Abstractions and the Hardware
•  Many important OS abstractions aren’t supported

directly by the hardware
•  Virtual machines

–  There’s one real machine
•  Virtual memory

–  There’s one set of physical memory
–  And it often isn’t as big as even one process thinks it is

•  Typical file abstractions
•  Many others
•  The OS works hard to make up the differences

Lecture 2
Page 5

CS 111
Summer 2014

Processor Issues

•  Execution mode
•  Handling exceptions

Lecture 2
Page 6

CS 111
Summer 2014

Execution Modes

•  Modern CPUs can usually execute in two
different modes:
– User mode
– Supervisor mode

•  User mode is to run ordinary programs
•  Supervisor mode is for OS use

– To perform overall control
– To perform unsafe operations on the behalf of

processes

Lecture 2
Page 7

CS 111
Summer 2014

User Mode

•  Allows use of all the “normal” instructions
– Load and store general registers from/to memory
– Arithmetic, logical, test, compare, data copying
– Branches and subroutine calls

•  Able to address some subset of memory
– Controlled by a Memory Management Unit

•  Not able to perform privileged operations
–  I/O operations, update the MMU
– Enable interrupts, enter supervisor mode

Lecture 2
Page 8

CS 111
Summer 2014

Supervisor Mode
•  Allows execution of privileged instructions

– To perform I/O operations
–  Interrupt enable/disable/return, load PC
–  Instructions to change processor mode

•  Can access privileged address spaces
– Data structures inside the OS
– Other process's address spaces
– Can change and create address spaces

•  May have alternate registers, alternate stack

Lecture 2
Page 9

CS 111
Summer 2014

Controlling the Processor Mode
•  Typically controlled by the Processor Status

Register (AKA PS)
•  PS also contains condition codes

– Set by arithmetic/logical operations (0,+,-,ovflo)
– Tested by conditional branch instructions

•  Describes which interrupts are enabled
•  May describe which address space to use
•  May control other processor features/options

– Word length, endian-ness, instruction set, ...

Lecture 2
Page 10

CS 111
Summer 2014

How Do Modes Get Set?
•  The computer boots up in supervisor mode

– Used by bootstrap and OS to initialize the system

•  Applications run in user mode
– OS changes to user mode before running user code

•  User programs cannot do I/O, restricted address space

– They can’t arbitrarily enter supervisor mode
•  Because instructions to change the mode are privileged

•  Re-entering supervisor mode is strictly
controlled
– Only in response to traps and interrupts

Lecture 2
Page 11

CS 111
Summer 2014

So When Do We Go Back To
Supervisor Mode?

•  In several circumstances
•  When a program needs OS services

–  Invokes system call that causes a trap
– Which returns system to supervisor mode

•  When an error occurs
– Which requires OS to clean up

•  When an interrupt occurs
– Clock interrupts (often set by OS itself)
– Device interrupts

Lecture 2
Page 12

CS 111
Summer 2014

Asynchronous Exceptions
and Handlers

•  Most program errors can be handled “in-line”
–  Overflows may not be errors, noted in condition codes
–  If concerned, program can test for such conditions

•  Some errors must interrupt program execution
–  Unable to execute last instruction (e.g., illegal op)
–  Last instruction produced non-results (e.g., divide by zero)
–  Problem unrelated to program (e.g., power failure)

•  Most computers use traps to inform OS of problems
–  Define a well specified list of all possible exceptions
–  Provide means for OS to associate handler with each

Lecture 2
Page 13

CS 111
Summer 2014

Control of Supervisor
Mode Transitions

•  All user-to-supervisor changes via traps/interrupts
–  These happen at unpredictable times

•  There is a designated handler for each trap/interrupt
–  Its address is stored in a trap/interrupt vector table managed

by the OS

•  Ordinary programs can't access these vectors
•  The OS controls all supervisor mode transitions

–  By carefully controlling all of the trap/interrupt “gateways”

•  Traps/interrupts can happen while in supervisor mode
–  Their handling is similar, but a little easier

Lecture 2
Page 14

CS 111
Summer 2014

Software Trap Handling

1st level trap handler
(saves registers and

selects 2nd level handler)

2nd level handler
(actually deals

with the problem)

return to
user mode

Application Program

user mode
supervisor mode PS/PC

TRAP vector table

PS/PC
PS/PC
PS/PC

instr ; instr ; instr ; instr ; instr ; instr ;

Lecture 2
Page 15

CS 111
Summer 2014

Dealing With the Cause of a Trap
•  Some exceptions are handled by the OS

– For example, page faults, alignment, floating point
emulation

– OS simulates expected behavior and returns

•  Some exceptions may be fatal to running task
– E.g. zero divide, illegal instruction, invalid address
– OS reflects the failure back to the running process

•  Some exceptions may be fatal to the system
– E.g. power failure, cache parity, stack violation
– OS cleanly shuts down the affected hardware

Lecture 2
Page 16

CS 111
Summer 2014

Returning To User Mode
•  Return is opposite of interrupt/trap entry

– 2nd level handler returns to 1st level handler
– 1st level handler restores all registers from stack
– Use privileged return instruction to restore PC/PS
– Resume user-mode execution after trapped

instruction
•  Saved registers can be changed before return

– To set entry point for newly loaded programs
– To deliver signals to user-mode processes
– To set return codes from system calls

Lecture 2
Page 17

CS 111
Summer 2014

Stacking and Unstacking a Trap

stack frames
 from

application
computation

User-mode Stack Supervisor-mode Stack

direction
of growth

user mode
PC & PS

saved
user mode
registers

parameters
to 2nd level
trap handler

return PC

2nd level
trap handler
stack frame

resumed
computation

TRAP!

Lecture 2
Page 18

CS 111
Summer 2014

I/O Architecture
•  I/O is:

– Varied
– Complex
– Error prone

•  Bad place for the user to be wandering around
•  The operating system must make I/O friendlier
•  Oriented around handling many different

devices via busses using device drivers

Lecture 2
Page 19

CS 111
Summer 2014

Sequential vs. Random
Access Devices

•  Sequential access devices
–  Byte/block N must be read/written before byte/block N+1
–  May be read/write once, or may be rewindable
–  Examples: magnetic tape, printer, keyboard

•  Random access devices
–  Possible to directly request any desired byte/block
–  Getting to that byte/block may or may not be instantaneous
–  Examples: memory, magnetic disk, graphics adaptor

•  They are used very differently
–  Requiring different handling by the OS

Lecture 2
Page 20

CS 111
Summer 2014

Busses

•  Something has to hook together the
components of a computer
– The CPU, memory, various devices

•  Allowing data to flow between them
•  That is a bus
•  A type of communication link abstraction

Lecture 2
Page 21

CS 111
Summer 2014

A Simple Bus

main bus

controller

controller

device

CPU

memory

control
address

data
interrupts

Lecture 2
Page 22

CS 111
Summer 2014

Devices and Controllers
•  Device controllers connect a device to a bus

–  Communicate control operations to device
–  Relay status information back to the bus, manage DMA,

generate device interrupts
•  Device controllers export registers to the bus

–  Writing into registers controls device or sends data
–  Reading from registers obtains data/status

•  Register access method varies with CPU type
–  May use special instructions (e.g., x86 IN/OUT)
–  May be mapped onto bus just like memory

Lecture 2
Page 23

CS 111
Summer 2014

Direct Polled I/O
•  Method of accessing devices via direct CPU control

–  CPU transfers data to/from device controller registers
–  Transfers are typically one byte or word at a time
–  May be accomplished with normal or I/O instructions

•  CPU polls device until it is ready for data transfer
–  Received data is available to be read
–  Previously initiated write operations are completed

+ Very easy to implement (both hardware and software)
− CPU intensive, wastes CPU cycles on I/O control
− Leaves devices idle waiting for CPU when other tasks

running

Lecture 2
Page 24

CS 111
Summer 2014

Direct Memory Access
•  Essentially, use the bus without CPU control

–  Move data between memory and device controller
•  Bus facilitates data flow in all directions between:

–  CPU, memory, and device controllers

•  CPU can be the bus-master
–  Initiating data transfers with memory, device controllers

•  But device controllers can also master the bus
–  CPU instructs controller what transfer is desired
–  Device controller does transfer w/o CPU assistance
–  Device controller generates interrupt at end of transfer

•  Interrupts tell CPU when DMA is done

Lecture 2
Page 25

CS 111
Summer 2014

Memory Issues

•  Different types of memory handled in different
ways

•  Cache memory usually handled mostly by
hardware
– Often OS not involved at all

•  RAM requires very special handling
– To be discussed in detail later

•  Disks and flash drives treated as devices
– But often with extra OS support

Lecture 2
Page 26

CS 111
Summer 2014

Modularity
•  Most useful abstractions an OS wants to offer

can’t be directly realized by hardware
•  Modularity is one technique the OS uses to

provide better abstractions
•  Divide up the overall system you want into

well-defined communicating pieces
•  Critical issues:

– Which pieces to treat as modules
– How to organize the modules
–  Interfaces to modules

Lecture 2
Page 27

CS 111
Summer 2014

What Does An OS Do?
•  At minimum, it enables one to run applications

– Preferably several on the same machine
– Preferably several at the same time

•  At abstract level, what do we need to do that?
–  Interpreters (to run the code)
– Memory (to store the code and data)
– Communications links (to communicate between

apps and pieces of the system)
•  This suggests the kinds of modules we’ll need

Lecture 2
Page 28

CS 111
Summer 2014

Starting Simple
•  We want to run multiple programs

– Without interference between them
– Protecting one from the faults of another

•  We’ve got a multicore processor to do so
– More cores than programs

•  We have RAM, a bus, a disk, other simple
devices

•  What abstractions should we build to ensure
that things go well?

Lecture 2
Page 29

CS 111
Summer 2014

A Simple System

Processor	
 1	
 Processor	
 2	
 Processor	
 3	
 Processor	
 4	

Program	
 1	
 Program	
 2	
 Program	
 3	
 Program	
 4	

Memory	

Disk	

Network	

A machine boundary

Lecture 2
Page 30

CS 111
Summer 2014

Exploiting Modularity
•  We’ll obviously have several SW elements to

support the different user programs
•  Desirable for each to be modular and self-

contained
– With controlled interactions

•  Gives cleaner organization
•  Easier to prevent problems from spreading
•  Easier to understand what’s going on
•  Easier to control each program’s behavior

Lecture 2
Page 31

CS 111
Summer 2014

Subroutine Modularity

•  Why not just organize the system as a set of
subroutines?
– All in the same address space

•  A simplifying assumption
•  Allowing easy in-memory communication

•  System subroutines call user program
subroutines as needed
– And vice versa

•  Soft modularity

Lecture 2
Page 32

CS 111
Summer 2014

How Would This Work?
•  Each program is a self-contained set of subroutines

–  Subroutines in the program call each other
–  But not subroutines in other programs

•  Shared services offered by other subroutines
–  Which any program can call

•  Perhaps some “master routine” that calls subroutines
in the various programs

•  Soft because no OS HW/SW enforces modularity
–  Important resources (like the stack) are shared
–  Only proper program behavior protects one program from

the mistakes of another

Lecture 2
Page 33

CS 111
Summer 2014

Illustrating the Problem

Processor	
 1	
 Processor	
 2	
 Processor	
 3	
 Processor	
 4	

Program	
 1	
 Program	
 2	
 Program	
 3	
 Program	
 4	

Memory	

Disk	

Network	

Stack for
Program

1

Stack for
Program

4

Stack for
Program

2

Stack for
Program

3

Now Program 4 is in trouble
Even though it did nothing wrong itself

Lecture 2
Page 34

CS 111
Summer 2014

Hardening the Modularity

Processor	
 1	
 Processor	
 2	
 Processor	
 3	
 Processor	
 4	

Program	
 1	
 Program	
 2	
 Program	
 3	
 Program	
 4	

Memory	

1	

Memory	

2	

Memory	

3	

Memory	

4	

Four separate machines
Perhaps in very different places

Each program has its own machine

Lecture 2
Page 35

CS 111
Summer 2014

System Services In This Model
•  Some activities are local to each program
•  Other services are intended to be shared

– Like a file system

•  This functionality can be provided by a client/
server model

•  The system services are provided by the server
•  The user programs are clients
•  The client sends message to server to get help
•  OS uses HW/SW to enforce boundaries

Lecture 2
Page 36

CS 111
Summer 2014

Benefits of Hard Modularity
•  With hard modularity, something beyond good

behavior enforces module boundaries
•  Here, the physical boundaries of the machine
•  A client machine literally cannot touch the

memory of the server
– Or of another client machine

•  No error or attack can change that
– Though flaws in the server can cause problems

•  Provides stronger guarantees all around

Lecture 2
Page 37

CS 111
Summer 2014

Downsides of Hard Modularity
•  The hard boundaries prevent low-cost

optimizations
•  In client/server organizations, doing anything

with another program requires messages
–  Inherently more expensive than memory accesses

•  If the boundary sits between components
requiring fast interactions, possibly very bad

•  Must either give programs pieces of resources
or time multiplex use of resources
– More complexity to do this right

Lecture 2
Page 38

CS 111
Summer 2014

Virtualization

•  Provide the illusion of a complete resource to
each program that uses it
– Hide hard modularity’s time/space divisions

•  Possible to provide an entire virtual machine
per process

•  Use shared hardware to instantiate the various
virtual devices or machines

•  System software (i.e., the operating system)
and perhaps special hardware handle it

Lecture 2
Page 39

CS 111
Summer 2014

The Virtualization Concept
Program	
 1	

Processor	
 	

Memory	
 	

Disk	

Network	

Program	
 2	
 Program	
 3	
 Program	
 4	

Virtual
machines A single

physical
machine

Lecture 2
Page 40

CS 111
Summer 2014

The Trick in Virtualization

•  All the virtual machines share the same
physical hardware

•  But each thinks it has its own machine
•  Must be sure that one virtual machine doesn’t

affect behavior of the others
–  Intentionally or accidentally

•  With the least possible performance penalty
– Given that there will be a penalty merely for

sharing at all

Lecture 2
Page 41

CS 111
Summer 2014

Performance and Virtualization
•  To achieve good performance, can’t run many

instructions “virtualized”
– Most instructions must go directly to the processor
– Rather than be mapped into multiple instructions

via virtualization
•  Similarly for access to other HW

– Can’t afford to put lots of virtualization SW in the
usual path

•  The trick is to virtualize the minimal set of
accesses

Lecture 2
Page 42

CS 111
Summer 2014

Abstractions for Virtualizing
Computers

•  Some kind of interpreter abstraction
– A thread

•  Some kind of communications abstraction
– Bounded buffers

•  Some kind of memory abstraction
– Virtual memory

•  For a virtualized architecture, the operating
system provides these kinds of abstractions

Lecture 2
Page 43

CS 111
Summer 2014

Threads
•  Encapsulates the state of a running

computation
•  So what does it need?

– Something that describes what computation is to
be performed

– Something that describes where it is in the
computation

– Something that maintains the state of the
computation’s data

Lecture 2
Page 44

CS 111
Summer 2014

OS Handling of Threads
•  One (or more) threads per running program
•  The OS chooses which thread to run

– To share a processor, the OS must be able to
cleanly stop and start threads

•  While one thread is using a processor, no other
thread should interfere with its use

•  To run a thread, OS must:
– Load its code and data into memory
– Set up HW control structures (e.g., the PC)
– Transfer control to the thread

Lecture 2
Page 45

CS 111
Summer 2014

Time Slicing Virtualization

Processor	
 	

Memory	
 	

Disk	

Network	

Program	
 1	
 Program	
 2	
 Program	
 3	
 Program	
 4	

Processor	
 	

Memory	
 	

Disk	

Network	

Processor	
 	

Memory	
 	

Disk	

Network	

Lecture 2
Page 46

CS 111
Summer 2014

Wait a Minute . . .?
•  How does the OS do all that?
•  It’s just a program itself

– With its own interpreter, memory, etc.

•  It must use the same physical resources as all
the other threads

•  Basically, the OS itself is a thread
•  It creates and manages other threads
•  Using privileged supervisor mode to safely and

temporarily break virtualization boundaries

Lecture 2
Page 47

CS 111
Summer 2014

The OS and Virtualization

Processor	
 	

Memory	
 	

Disk	

Network	

Program	
 1	
 Program	
 2	
 Program	
 3	
 Program	
 4	

Opera9ng	

System	

Lecture 2
Page 48

CS 111
Summer 2014

Providing Contained Environments

•  What must a thread manager control to keep
each thread isolated from the others?

•  Well, what can each thread do?
– Run instructions

•  Make sure it can only run its own

– Access some memory
•  Make sure it can only access its own

– Communicate to other threads
•  Make sure communication uses a safe abstraction

Lecture 2
Page 49

CS 111
Summer 2014

What Does This Boil Down To?
•  Running threads have access to certain processor

registers
–  Program counter, stack pointer, others
–  Thread manager must ensure those are all set correctly

•  Running threads have access to some or all pieces of
physical memory
–  Thread manager must ensure that a thread can only touch

its own physical memory

•  Running threads can request services (like
communications)
–  Thread manager must provide safe access to those services

Lecture 2
Page 50

CS 111
Summer 2014

Setting Up a User-Level VM

Processor

Memory	
 	

Disk	

Network

Program 1 Program 2 Program 3 Program 4

Operating
System

PC PC

SP

Status
info

Lecture 2
Page 51

CS 111
Summer 2014

Protecting Threads
•  Normal threads usually run in user mode
•  Which means they can’t touch certain things

–  In particular, each others’ stuff

•  For certain kinds of resources, that’s a problem
– What if two processes both legitimately need to

write to the screen?
– Do we allow unrestricted writing and hope for the

best?
– Don’t allow them to write at all?

•  Instead, trap to supervisor mode

Lecture 2
Page 52

CS 111
Summer 2014

Trapping to Supervisor Mode
•  To allow a program safe access to shared

resources
•  The trap goes to trusted code

– Not under control of the program
•  And performs well-defined actions

–  In ways that are safe

•  E.g., program not allowed to write to the
screen directly
– But traps to OS code that writes it safely

Lecture 2
Page 53

CS 111
Summer 2014

Modularity and Memory
•  Clearly, programs must have access to memory
•  We need abstractions that give them the

required access
– But with appropriate safety

•  What we’ve really got (typically) is RAM
•  RAM is pretty nice

– But it has few built-in protections

•  So we want an abstraction that provides RAM
with safety

Lecture 2
Page 54

CS 111
Summer 2014

What’s the Safety Issue?

•  We have multiple threads running
•  Each requires some memory
•  Modern architectures typically have one big

pool of RAM
•  How can we share the same pool of RAM

among multiple processes?
– Giving each what it needs
– Not allowing any to harm the others

Lecture 2
Page 55

CS 111
Summer 2014

Domains

•  A simple memory abstraction
•  Give each process access to some range of the

physical memory
–  Its domain
– Different domain for each process

•  Allow process to read/write/execute memory
in its domain

•  And not touch any memory outside its domain

Lecture 2
Page 56

CS 111
Summer 2014

Mapping Domains
Program	
 1	
 Program	
 2	
 Program	
 3	
 Program	
 4	

Processor	
 	

Memory	
 	

Disk	

Network	

Every process
gets its own

piece of memory

No process can
interfere with

other processes’
memory

Lecture 2
Page 57

CS 111
Summer 2014

What Do Domains Require?
•  Threads will issue instructions

– Perhaps using arbitrary memory addresses

•  Only honor addresses in the thread’s domain
– Any other address should be caught as an error

•  Hard modularity here requires HW support
•  E.g., a domain register

– Specifies the domain associated with the thread
currently using the processor

– By listing the low and high addresses that bound
the domain

Lecture 2
Page 58

CS 111
Summer 2014

The Memory Manager
•  Hardware or software that enforces the bounds

of the domain register
•  When thread reads or writes an address,

memory manager checks the domain register
•  If within bounds, do the memory operation
•  If not, throw an illegal memory reference

exception
– Trapping to supervisor mode

•  Only trusted code (i.e., the OS) can change the
domain register

Lecture 2
Page 59

CS 111
Summer 2014

The Domain Register Concept

Processor	
 	

Memory	
 	

Disk	

Network	

Program	
 1	
 Program	
 4	

Domain
Register

All Program 1
references

must be within
these bounds

All Program 4
references

must be within
these bounds

Enforced
by

hardware

Lecture 2
Page 60

CS 111
Summer 2014

Multiple Domains

•  Limiting a process to a single domain is not
too convenient

•  The concept is easy to extend
– Simply allow multiple domains per process

•  Obvious way to handle this is with multiple
domain registers
– One per allocated domain

Lecture 2
Page 61

CS 111
Summer 2014

The Multiple Domain Concept
Program	
 1	

Processor	
 	

Memory	
 	

Disk	

Network	

Domain
Registers

Lecture 2
Page 62

CS 111
Summer 2014

Handling Multiple Domains
•  Programs can request more domains

– But the OS must set them up

•  What does the program get to ask for?
– A specific range of addresses?
– Or a domain of a particular size?

•  Latter is easier
– What if requested set of addresses are already used

by another program?
– Memory manager can choose a range of addresses

of requested size

Lecture 2
Page 63

CS 111
Summer 2014

Domains and Access Permissions
•  One can typically do three types of things with a

memory address
–  Read its contents
–  Write a new value to it
–  Execute an instruction located there

•  System can provide useful effects if it does not allow
all modes of use to all addresses

•  Typically handled on a per-domain basis
–  E.g., read-only domains

•  Requires extra bits in domain registers
•  And other hardware support

Lecture 2
Page 64

CS 111
Summer 2014

What If Program Uses a Domain
Improperly?

•  E.g., it tries to write to a read-only domain
•  A permission error exception

– Different than an illegal memory reference
exception

•  But also handled by a similar mechanism
•  Probably want it to be handled by somewhat

different code in the OS
•  Remember discussion of trap handling in

previous lecture?

Lecture 2
Page 65

CS 111
Summer 2014

Do We Really Need to Switch
Processes for OS Services?

•  When we trap or make a request for a domain,
must we change processes?
– We lose context doing so

•  Instead, run the OS code for the process
– Which requires changing to supervisor mode
– Context for process is still available

•  But what about safety?
– Use domain access modes to ensure safety

•  We don’t do this for all OS services . . .

Lecture 2
Page 66

CS 111
Summer 2014

Domains in Kernel Mode
•  Allow user threads to access certain privileged

domains
– Like code to handle hardware traps
– Code must be in a user-accessible domain

•  But can’t allow arbitrary access to those
privileged domains

•  A supervisor (AKA kernel) mode access bit is
set on such domains
– So thread only accesses them when in kernel mode

Lecture 2
Page 67

CS 111
Summer 2014

How Does a Thread Get
to Kernel Mode?

•  Can’t allow thread to arbitrarily put itself in
kernel mode any time
– Since it might do something unsafe

•  Instead, allow entry to kernel mode only in
specific ways
–  In particular, only at specific instructions
– These are called gates
– Typically implemented in hardware using

instruction like SVC (supervisor call)

