4 N

Hardware, Modularity, and
Virtualization
CS 111
Operating System Principles
Peter Rether

eeeeeee

/ ' Outline | \

* The relationship between hardware and
operating systems

— Processors
— I/O devices
— Memory

* Organizing systems via modularity
* Virtualization and operating systems

\ /

CS 111 Lecture 2
Summer 2014 Page 2

-

CS 111
Summer 2014

‘Hardware and the °

 Operating System |

* One of the major roles of the operating system
1s to hide details of the hardware

— Messy and difficult details
— Specifics of particular pieces of hardware
— Details that prevent safe operation of the computer

e OS abstractions are built on the hardware, at
the bottom

— Everything ultimately relies on hardware

\e A major element of OS design concerns HW /

\

Lecture 2

Page 3

/OS Abstractions and the Hardware\

\o

CS 111

Summer 2014

Many important OS abstractions aren’t supported
directly by the hardware

Virtual machines

— There’s one real machine

Virtual memory
— There’s one set of physical memory
— And 1t often 1sn’t as big as even one process thinks it 1s

Typical file abstractions
Many others
The OS works hard to make up the differences

Lecture 2
Page 4

/ 'Processor Issues |

e Execution mode

* Handling exce;

\

CS 111

ptions

\

Summer 2014

/" Execution Modes:

* Modern CPUs can usually execute in two
different modes:

— User mode
— Supervisor mode

* User mode 1s to run ordinary programs

* Supervisor mode 1s for OS use

— To perform overall control

— To perform unsafe operations on the behalf of
\ processes

CS 111

Summer 2014

/ User Mode \

* Allows use of all the “normal” instructions
— Load and store general registers from/to memory
— Arithmetic, logical, test, compare, data copying
— Branches and subroutine calls

* Able to address some subset of memory
— Controlled by a Memory Management Unit

* Not able to perform privileged operations
— I/O operations, update the MMU
\ Enable interrupts, enter supervisor mode /

CS 111 Lecture 2
Summer 2014 Page 7

/ Supervisor Mode \

* Allows execution of privileged instructions
— To perform I/O operations
— Interrupt enable/disable/return, load PC
— Instructions to change processor mode

* Can access privileged address spaces
— Data structures inside the OS

— Other process's address spaces
— Can change and create address spaces

\o May have alternate registers, alternate stack /

CS 111 Lecture 2
Summer 2014 Page 8

/ Controlling the Processor Mode\

* Typically controlled by the Processor Status
Register (AKA PS)

* PS also contains condition codes
— Set by arithmetic/logical operations (0,+,-,0v{lo)
— Tested by conditional branch instructions

* Describes which interrupts are enabled
* May describe which address space to use

* May control other processor features/options

\ — Word length, endian-ness, instruction set, ...)

CS 111 Lecture 2
Summer 2014 Page 9

/ How Do Modes Get Set? \

* The computer boots up in supervisor mode
— Used by bootstrap and OS to initialize the system

* Applications run in user mode

— OS changes to user mode before running user code
* User programs cannot do I/O, restricted address space

— They can’t arbitrarily enter supervisor mode
* Because instructions to change the mode are privileged
* Re-entering supervisor mode i1s strictly
controlled

\ /

s — Only 1n response to traps and interrupts Lot

Summer 2014 Page 10

/ So When Do We Go Back To \

Supervisor Mode?

* In several circumstances
 When a program needs OS services
— Invokes system call that causes a trap

— Which returns system to supervisor mode

* When an error occurs
— Which requires OS to clean up

* When an interrupt occurs
\ — Clock interrupts (often set by OS itself)
s — Device mterrupts Lecture 2

Summer 2014 Page 11

/ Asynchronous Exceptions \

\

and Handlers

* Most program errors can be handled “in-line”
— Overflows may not be errors, noted in condition codes
— If concerned, program can test for such conditions

* Some errors must interrupt program execution
— Unable to execute last instruction (e.g., illegal op)

— Last instruction produced non-results (e.g., divide by zero)
— Problem unrelated to program (e.g., power failure)

* Most computers use traps to inform OS of problems

— Define a well specified list of all possible exceptions

— Provide means for OS to associate handler with each /

CS 111 Lecture 2
Summer 2014 Page 12

/ Control of Supervisor

by the OS

\

CS 111

Mode Transitions

* All user-to-supervisor changes via traps/interrupts

— These happen at unpredictable times

* There 1s a designated handler for each trap/interrupt
— Its address 1s stored 1n a trap/interrupt vector table managed

* Ordinary programs can't access these vectors

The OS controls all supervisor mode transitions
— By carefully controlling all of the trap/interrupt “gateways”

* Traps/interrupts can happen while in supervisor mode

— Their handling 1s similar, but a little easier

\

/

Lecture 2

Summer 2014

Page 13

/ Software Trap Handling \

Application Program

instr; instr; instr; instr; instr; instr;

f user mode

supervisor mode

PS/PC <&——

y

15t level trap handler
(saves registers and
selects 2™ level handler)

TRAP vector table return to
user mode

\ /

CS 111 Lecture 2
Summer 2014 Page 14

/Dealing With the Cause of a Trap\

* Some exceptions are handled by the OS

— For example, page faults, alignment, floating point
emulation

— OS simulates expected behavior and returns

* Some exceptions may be fatal to running task
— E.g. zero divide, illegal instruction, invalid address
— OS reflects the failure back to the running process

* Some exceptions may be fatal to the system

— E.g. power failure, cache parity, stack violation

\ /

s — OS cleanly shuts down the affected hardware ...

Summer 2014 Page 15

/ Returning To User Mode \

* Return 1s opposite of interrupt/trap entry
— 2nd level handler returns to 1st level handler

— Ist level handler restores all registers from stack

— Use privileged return instruction to restore PC/PS

— Resume user-mode execution after trapped
instruction

* Saved registers can be changed before return

— To set entry point for newly loaded programs

\ — To deliver signals to user-mode processes)

s — 10 set return codes from system calls Lecture 2

Summer 2014 Page 16

/ Stacking and Unstacking a Trap\

User-mode Stack

\

CS 111

TRAP!

Y

direction
of growth

Supervisor-mode Stack

user mode
PC & PS

saved
user mode
registers

parameters
to 2 level
trap handler

return PC

Summer 2014

Lecture 2
Page 17

/ [[/O Architecture] \

e [/O 1s;
— Varied

— Complex

— Error prone

* Bad place for the user to be wandering around

* The operating system must make I/O friendlier

* Oriented around handling many different
devices via busses using device drivers

\ /

CS 111 Lecture 2
Summer 2014 Page 18

/ Sequential vs. Random \
Access Devices

* Sequential access devices
— Byte/block N must be read/written before byte/block N+1
— May be read/write once, or may be rewindable
— Examples: magnetic tape, printer, keyboard

e Random access devices

— Possible to directly request any desired byte/block
— Getting to that byte/block may or may not be instantaneous
— Examples: memory, magnetic disk, graphics adaptor

* They are used very differently
\ — Requiring different handling by the OS /

CS 111 Lecture 2
Summer 2014 Page 19

a ‘Busses. I

* Something has to hook together the
components of a computer

— The CPU, memory, various devices
* Allowing data to flow between them
* That 1s a bus
* A type of communication link abstraction

\ /

CS 111 Lecture 2
Summer 2014 Page 20

-

memory

\

CS 111
Summer 2014

A Simple Bus

~

control
address

interrupts

Lecture 2

Page 21

/" Devices and Controllers’

 Device controllers connect a device to a bus

— Communicate control operations to device

generate device interrupts

* Device controllers export registers to the bus
— Writing into registers controls device or sends data
— Reading from registers obtains data/status

* Register access method varies with CPU type
— May use special instructions (e.g., x86 IN/OUT)

\ — May be mapped onto bus just like memory

CS 111

— Relay status information back to the bus, manage DMA,

\

/

Lecture 2

Summer 2014

Page 22

/ Direct Polled 1/0 \

* Method of accessing devices via direct CPU control

— CPU transfers data to/from device controller registers
— Transfers are typically one byte or word at a time

— May be accomplished with normal or I/O instructions

* CPU polls device until it 1s ready for data transfer
— Received data 1s available to be read

— Previously itiated write operations are completed
+ Very easy to implement (both hardware and software)
— CPU intensive, wastes CPU cycles on 1I/O control

\— Leaves devices 1dle waiting for CPU when other tasks y
CS 111 runnlng Lecture 2

Summer 2014 Page 23

/ Direct Memory Access \

* Essentially, use the bus without CPU control

— Move data between memory and device controller

 Bus facilitates data flow in all directions between:

— CPU, memory, and device controllers

e CPU can be the bus-master

— Initiating data transfers with memory, device controllers

 But device controllers can also master the bus
— CPU 1nstructs controller what transfer 1s desired

— Device controller does transfer w/o CPU assistance

— Device controller generates interrupt at end of transfer

\e Interrupts tell CPU when DMA 1s done

CS 111

Summer 2014

/

Lecture 2
Page 24

7 {Memory Issues | I

!

o e e o e e e o e M e M e e e e e e e e o

* Different types of memory handled in different
ways
* Cache memory usually handled mostly by
hardware
— Often OS not involved at all

* RAM requires very special handling

— To be discussed in detail later

 Disks and flash drives treated as devices

., — But often with extra OS support o

Summer 2014 Page 25

4 "Modularity | N\

e Most useful abstractions an OS wants to offer
can’t be directly realized by hardware

* Modularity 1s one technique the OS uses to
provide better abstractions

* Divide up the overall system you want into
well-defined communicating pieces

* Critical 1ssues:

— Which pieces to treat as modules

— How to organize the modules)

st — Interfaces to modules Lecture 2

Summer 2014 Page 26

/ What Does An OS Do? \

* At minimum, 1t enables one to run applications
— Preferably several on the same machine

— Preferably several at the same time

e At abstract level, what do we need to do that?
— Interpreters (to run the code)
— Memory (to store the code and data)

— Communications links (to communicate between
apps and pieces of the system)

* This suggests the kinds of modules we’ll need

CS 111 Lecture 2
Summer 2014 Page 27

/ [Starting Simple] \

* We want to run multiple programs
— Without interference between them

— Protecting one from the faults of another

* We’ve got a multicore processor to do so

— More cores than programs

* We have RAM, a bus, a disk, other simple
devices

 What abstractions should we build to ensure
\ that things go well? Y,

CS 111 Lecture 2
Summer 2014 Page 28

-

Program 1

Processor 1

CS 111

A Simple System

Processor 2

Processor 3

Processor 4

Memory

A machine boundary

[Network]

~

Lecture 2

Summer 2014

Page 29

" (Exploiting Modularity]

* We’ll obviously have several SW elements to
support the different user programs

e Desirable for each to be modular and self-
contained

— With controlled interactions
* (1ves cleaner organization

* Easier to prevent problems from spreading

* Easier to understand what’s going on

\e Easier to control each program’s behavior /

CS 111 Lecture 2
Summer 2014 Page 30

/ Subroutine Modularity

* Why not just organize the system as a set of
subroutines?

— All 1n the same address space
* A simplifying assumption
* Allowing easy in-memory communication
* System subroutines call user program
subroutines as needed

— And vice versa

* Soft modularity

CS 111

\

Lecture 2

Summer 2014

Page 31

/ How Would This Work? \

* Each program 1s a self-contained set of subroutines

— Subroutines in the program call each other
— But not subroutines in other programs

* Shared services offered by other subroutines

— Which any program can call

* Perhaps some “master routine” that calls subroutines
in the various programs

* Soft because no OS HW/SW enforces modularity

— Important resources (like the stack) are shared

— Only proper program behavior protects one program from
\ the mistakes of another /

CS 111 Lecture 2
Summer 2014 Page 32

-

.z

[llustrating the Problem

S

Program 2

S~

Processor 1 Processor 2 Processor 3 Processor 4

\

CS 111
Summer 2014

Stack for
Program
 * 1 [Network]
Stack for Stack for
Disk Program Program
_ - : J
~

Now Program 4 is in trouble
Even though it did nothing wrong itself

~

/

Lecture 2

Page 33

/ Hardening the Modularity \

-

- -
-’ .
4 7 v

.
v

’
4
1
1
I
1
1
1
1
1
1

Program 1 ' Program 2 ' Program 3 ' Program 4
JEESI s RS S

Processor1| | | Processor2| || | Processor3 | i | Processor4
Memory Memory Memory Memory
1 2 3 4

__

Four separate machines
Perhaps in very different places

\ Each program has its own machine /

CS 111 Lecture 2
Summer 2014 Page 34

/ System Services In This Model\

* Some activities are local to each program

e Other services are intended to be shared
— Like a file system

 This functionality can be provided by a client/
server model

* The system services are provided by the server

* The user programs are clients

* The client sends message to server to get help
\e OS uses HW/SW to enforce boundaries /

CS 111 Lecture 2
Summer 2014 Page 35

/ Benefits of Hard Modularity \

* With hard modularity, something beyond good
behavior enforces module boundaries

* Here, the physical boundaries of the machine

* A client machine literally cannot touch the
memory of the server

— Or of another client machine

* No error or attack can change that

— Though flaws 1n the server can cause problems

* Provides stronger guarantees all around /

CS 111 Lecture 2
Summer 2014 Page 36

/ Downsides of Hard Modularity\

* The hard boundaries prevent low-cost
optimizations

* In client/server organizations, doing anything
with another program requires messages
— Inherently more expensive than memory accesses

* If the boundary sits between components
requiring fast interactions, possibly very bad

* Must either give programs pieces of resources
or time multiplex use of resources

\

s — More complexity to do this right Lecture 2

Summer 2014 Page 37

/ ' Virtualization | \

* Provide the 1llusion of a complete resource to
each program that uses it

— Hide hard modularity’s time/space divisions

* Possible to provide an entire virtual machine
per process

e Use shared hardware to instantiate the various
virtual devices or machines

* System software (1.€., the operating system)
\ and perhaps special hardware handle 1t /

CS 111 Lecture 2
Summer 2014 Page 38

/ The Virtualization Concept \

Program 3
ST S S

~ - ~ - -

__

. ! Processor :
Virtual ; ;

machines /L \ . Asingle

i . physical

. [Network] P '

' Memory 5 machine

Disk '
CS 111 N e e LN - -7 Lecture 2

Summer 2014 Page 39

/ The Trick 1in Virtualization \

e All the virtual machines share the same
physical hardware

 But each thinks 1t has 1ts own machine

e Must be sure that one virtual machine doesn’t
affect behavior of the others

— Intentionally or accidentally

* With the least possible performance penalty

— Given that there will be a penalty merely for
sharing at all

CS 111 Lecture 2
Summer 2014 Page 40

/ Performance and Virtualization\

* To achieve good performance, can’t run many
instructions “virtualized”
— Most 1nstructions must go directly to the processor

— Rather than be mapped into multiple instructions
via virtualization

* Similarly for access to other HW

— Can’t afford to put lots of virtualization SW 1n the
usual path

 The trick 1s to virtualize the minimal set of

\ /

CS 111 accesses Lecture 2

Summer 2014 Page 41

/ Abstractions for Virtualizing \

Computers

* Some kind of interpreter abstraction
— A thread

« Some kind of communications abstraction
— Bounded buffers

* Some kind of memory abstraction

— Virtual memory

* For a virtualized architecture, the operating
system provides these kinds of abstractions

\ /

CS 111 Lecture 2
Summer 2014 Page 42

a “Threads I

—— o e e o o o e e e e = -

- -

* Encapsulates the state of a running
computation

 So what does 1t need?

— Something that describes what computation 1s to
be performed

— Something that describes where it 1s 1n the
computation

— Something that maintains the state of the
computation’s data

\ /

CS 111 Lecture 2
Summer 2014 Page 43

/ OS Handling of Threads \

* One (or more) threads per running program
* The OS chooses which thread to run

— To share a processor, the OS must be able to
cleanly stop and start threads

* While one thread 1s using a processor, no other
thread should interfere with its use

e To run a thread, OS must:

— Load its code and data into memory
— Set up HW control structures (e.g., the PC)

i — Iransfer control to the thread Lecture 2

Summer 2014 Page 44

/" Time Slicing Virtualization

~

\

CS 111

-

~

B

-

Processor
T [Network]
Memory
Disk
~.

__

Program 3
U

-

_____ S

Summer 2014

gram 4

/

Lecture 2
Page 45

/ Wait a Minute . . .? \

* How does the OS do all that?
* It’s just a program itself

— With 1ts own 1nterpreter, memory, etc.

* It must use the same physical resources as all
the other threads

* Basically, the OS 1itself 1s a thread
* It creates and manages other threads

* Using privileged supervisor mode to safely and
\temporarily break virtualization boundaries)

CS 111 Lecture 2
Summer 2014 Page 46

/ The OS and Virtualization \

~

CS 111

- ~

-

Processor
T [Network]
Memory
Disk
N

Program 3
U

-

_____ S

Summer 2014

gram 4

/

Lecture 2
Page 47

@oviding Contained Environmen@

* What must a thread manager control to keep
each thread 1solated from the others?

 Well, what can each thread do?

— Run 1nstructions

* Make sure it can only run its own

— Access some memory

* Make sure 1t can only access its own

— Communicate to other threads

\ e Make sure communication uses a safe abstraction /

CS 111 Lecture 2
Summer 2014 Page 48

/ What Does This Boil Down To?\

* Running threads have access to certain processor
registers
— Program counter, stack pointer, others
— Thread manager must ensure those are all set correctly
* Running threads have access to some or all pieces of
physical memory

— Thread manager must ensure that a thread can only touch
its own physical memory

* Running threads can request services (like
communications)

— Thread manager must provide safe access to those services / :
CS 111 Lecture
Summer 2014 Page 49

/ Setting Up a User-Level VM \

CS 111
Summer 2014

Processz SP

=
Memory
=

|—| Status i
\ :

info
Network

1
1
1
1
1
1
I
1
1
1
1
1
1
U
7
7
v
’
_-

Lecture 2
Page 50

CS 111

/ Protecting Threads \

* Normal threads usually run 1n user mode

* Which means they can’t touch certain things

— In particular, each others’ stuff

* For certain kinds of resources, that’s a problem

— What 1f two processes both legitimately need to
write to the screen?

— Do we allow unrestricted writing and hope for the
best?

— Don’t allow them to write at all?

\e Instead, trap to supervisor mode /

Lecture 2

Summer 2014 Page 51

/ Trapping to Supervisor Mode \

* To allow a program safe access to shared
resources

* The trap goes to trusted code
— Not under control of the program

* And performs well-defined actions

— In ways that are safe

* E.g., program not allowed to write to the
screen directly

\ — But traps to OS code that writes it safely)

CS 111 Lecture 2
Summer 2014 Page 52

/ \

' Modularity and Memory

e e o o e e e R M e e R M M e REm Mmm M R REm M S R MEm M M M MEm M M e MEm M e e M M e e e e

* Clearly, programs must have access to memory

* We need abstractions that give them the
required access

— But with appropriate safety
* What we’ve really got (typically) 1s RAM
* RAM 1s pretty nice

— But 1t has few built-in protections

* So we want an abstraction that provides RAM
\ with safety /

CS 111 Lecture 2
Summer 2014 Page 53

/ What’s the Safety Issue? \

* We have multiple threads running
* Each requires some memory

* Modern architectures typically have one big
pool of RAM

* How can we share the same pool of RAM
among multiple processes?

— G1ving each what 1t needs

— Not allowing any to harm the others

CS 111 Lecture 2
Summer 2014 Page 54

/ Domains \

* A simple memory abstraction

* (1ve each process access to some range of the
physical memory
— Its domain

— Different domain for each process

* Allow process to read/write/execute memory
in 1ts domain

* And not touch any memory outside 1ts domain

CS 111 Lecture 2
Summer 2014 Page 55

P : ______ ~
’ \
1 \
1 1
1 1
1 1

Every process
gets itsown
piece of memory |

_—

\

Di

\ -

¢s1 SSal
Summer 2014

Mapping Domains

Program 2

P : _______ ~
’ \
1 \
1 1
1 1
1 1

Processor

ork

e

No process can
: interfere with

- other processes’
' memory

/

Lecture 2

Page 56

/ What Do Domains Require? \

* Threads will 1ssue 1nstructions
— Perhaps using arbitrary memory addresses

* Only honor addresses 1n the thread’s domain

— Any other address should be caught as an error
* Hard modularity here requires HW support
* E.g., a domain register

— Specifies the domain associated with the thread
currently using the processor

T By listing the low and high addresses that bound /
CS 111 the domain Lecture 2

Summer 2014 Page 57

/ The Memory Manager \

 Hardware or software that enforces the bounds
of the domain register

 When thread reads or writes an address,
memory manager checks the domain register

* If within bounds, do the memory operation

* If not, throw an 1llegal memory reference
exception

— Trapping to supervisor mode

\° Only trusted code (1.e., the OS) can change the)
s domain register -

Summer 2014 Page 58

/ The Domain Register Concept \

All Program 1
references
must be within
these bounds

\

CS 111

o prgama

Program 4
.V

Enforced
by
hardware
Domai
Processc Regis tI:*
// All Program 4
. references
| < ' must be within
ork . these bounds
D
o /

Summer 2014

____________ -7 Lecture 2

Page 59

/ Multiple Domains \

* Limiting a process to a single domain 1s not
too convenient
* The concept 1s easy to extend

— Simply allow multiple domains per process

* Obvious way to handle this 1s with multiple
domain registers

— One per allocated domain

\ /

CS 111 Lecture 2
Summer 2014 Page 60

/ The Multiple Domain Concept \

<£:l7 Domain
U - . Registers

Processor
—
\ |
<€ - :
D E :
csir T - Lecture 2

/ Handling Multiple Domains \

* Programs can request more domains
— But the OS must set them up

* What does the program get to ask for?
— A specific range of addresses?
— Or a domain of a particular size?
 Latter 1s easier

— What if requested set of addresses are already used
by another program?

\ — Memory manager can choose a range of addresses)
«., ofrequested size Lestue

Summer 2014 Page 62

/Domains and Access Permissions\

* One can typically do three types of things with a
memory address
— Read its contents
— Write a new value to it

— Execute an instruction located there

* System can provide useful effects 1f 1t does not allow
all modes of use to all addresses

* Typically handled on a per-domain basis

— E.g., read-only domains

* Requires extra bits in domain registers

* And other hardware support /

CS 111 Lecture 2
Summer 2014 Page 63

/ What It Program Uses a Domain\
Improperly?

* E.g., 1t tries to write to a read-only domain
* A permission error exception

— Different than an illegal memory reference
exception

* But also handled by a similar mechanism

* Probably want 1t to be handled by somewhat
different code 1n the OS

* Remember discussion of trap handling in
.\ previous lecture? e

Summer 2014 Page 64

/ Do We Really Need to Switch \

Processes for OS Services?

* When we trap or make a request for a domain,
must we change processes?

— We lose context doing so

* Instead, run the OS code for the process
— Which requires changing to supervisor mode

— Context for process i1s still available

* But what about safety?

— Use domain access modes to ensure safety

\e We don’t do this for all OS services. . . /

CS 111 Lecture 2
Summer 2014 Page 65

/ Domains in Kernel Mode \

* Allow user threads to access certain privileged
domains

— Like code to handle hardware traps

— Code must be 1n a user-accessible domain

* But can’t allow arbitrary access to those
privileged domains

* A supervisor (AKA kernel) mode access bit 1s
set on such domains

— So thread only accesses them when in kernel mode

\ /

CS 111 Lecture 2
Summer 2014 Page 66

/ How Does a Thread Get
to Kernel Mode?

* Can’t allow thread to arbitrarily put 1tself in
kernel mode any time

— Since 1t might do something unsafe

* Instead, allow entry to kernel mode only 1n
specific ways
— In particular, only at specific instructions
— These are called gates

— Typically implemented 1n hardware using
\ instruction like SVC (supervisor call)

CS 111

\

/

Lecture 2

Summer 2014

Page 67

