
Lecture 12
Page 1

CS 111
Summer 2014

Security in Operating Systems:
Basics
CS 111

Operating Systems
Peter Reiher

Lecture 12
Page 2

CS 111
Summer 2014

Security Goals
•  Confidentiality
–  If it’s supposed to be secret, be careful who hears it

•  Integrity
– Don’t let someone change something they

shouldn’t
•  Availability
– Don’t let someone stop others from using services

•  Exclusivity
– Don’t let someone use something he shouldn’t

•  Note that we didn’t mention “computers” here
– This classification of security goals is very general

Lecture 12
Page 3

CS 111
Summer 2014

Access Control
•  Security could be easy
– If we didn’t want anyone to get access to

anything
•  The trick is giving access to only the right

people
•  How do we ensure that a given resource can

only be accessed by the proper people?
•  The OS plays a major role in enforcing access

control

Lecture 12
Page 4

CS 111
Summer 2014

Common Mechanisms for Access
Control in Operating Systems

•  Access control lists
– Like a list of who gets to do something

•  Capabilities
– Like a ring of keys that open different doors

•  They have different properties
•  And are used by the OS in different ways

Lecture 12
Page 5

CS 111
Summer 2014

The Language of Access Control

•  Subjects are active entities that want to
gain access to something
– E.g., users or programs

•  Objects represent things that can be
accessed
– E.g., files, devices, database records

•  Access is any form of interaction with an
object
•  An entity can be both subject and object

Lecture 12
Page 6

CS 111
Summer 2014

Access Control Lists

•  ACLs
•  For each protected object, maintain a

single list
•  Each list entry specifies a subject who

can access the object
– And the allowable modes of access

•  When a subject requests access to a
object, check the access control list

Lecture 12
Page 7

CS 111
Summer 2014

An Analogy

Joe Hipster	

You’re
Not On

the List!

This is an
access

control list

Lecture 12
Page 8

CS 111
Summer 2014

An ACL Protecting a File

File
X

ACL for file X

A read
write

B write
C none

Subject A

Subject B

Subject C

read

denied

The file is the object
The process trying to access
it is the subject

Lecture 12
Page 9

CS 111
Summer 2014

Issues For Access Control Lists

•  How do you know the requestor is who
he says he is?
•  How do you protect the access control list

from modification?
•  How do you determine what resources a

user can access?

Lecture 12
Page 10

CS 111
Summer 2014

An Example Use of ACLs:
the Unix File System

•  An ACL-based method for protecting files
– Developed in the 1970s

•  Still in very wide use today
– With relatively few modifications

•  Per-file ACLs (files are the objects)
•  Three subjects on list for each file

• Owner, group, other
•  And three modes
– Read, write, execute
– Sometimes these have special meanings

Lecture 12
Page 11

CS 111
Summer 2014

Storing the ACLs

•  They can be very small
– Since there are only three entries
– Basic ACL is only 9 bits

•  Therefore, kept inside the file descriptor
•  Makes it easy to find them
– Since trying to open the file requires the file

descriptor, anyway
•  Checking this ACL is not much more than a

logical AND with the requested access mode

Lecture 12
Page 12

CS 111
Summer 2014

Pros and Cons of ACLs

+ Easy to figure out who can access a
resource

+ Easy to revoke or change access
permissions

– Hard to figure out what a subject can
access

– Changing access rights requires getting to
the object

Lecture 12
Page 13

CS 111
Summer 2014

Capabilities

•  Each subject keeps a set of data items that
specify his allowable accesses
•  Essentially, a set of tickets
•  To access an object, present the proper

capability
•  Possession of the capability for an object

implies that access is allowed

Lecture 12
Page 14

CS 111
Summer 2014

An Analogy

The key is a capability

Lecture 12
Page 15

CS 111
Summer 2014

Capabilities Protecting a File

Read X

Subject B

Subject C

Capabilities
for C

Capabilities
for A

File X
Read, Write

Capabilities
for B

File X
Read

File
X

Subject A

Capability
Checking

File X
Read, Write

File X
Read, Write

Check
validity of
capability

OK!

Lecture 12
Page 16

CS 111
Summer 2014

Capabilities Denying Access

write

User B

User C

Capabilities
for C

Capabilities
for A

File X
Read, Write

Capabilities
for B

File X
Read

File
X

User A

Capability
Checking

Check
validity of
capability

No
Capability
Provided!

Lecture 12
Page 17

CS 111
Summer 2014

Properties of Capabilities
•  Capabilities are essentially a data structure
– Ultimately, just a collection of bits

•  Merely possessing the capability grants access
– So they must not be forgeable

•  How do we ensure unforgeability for a
collection of bits?

•  One solution:
– Don’t let the user/process have them
– Store them in the operating system

Lecture 12
Page 18

CS 111
Summer 2014

Revoking Capabilities
•  A simple problem for capabilities stored in the

operating system
– Just have the OS get rid of it

•  Much harder if it’s not in the operating system
– E.g., in a network context

•  How do we make the bundle of bits change
from valid to invalid?

•  Consider the real world problem of a door lock
•  If several people have the key, how do we keep

one of them out?

Lecture 12
Page 19

CS 111
Summer 2014

Pros and Cons of Capabilities

+ Easy to determine what objects a subject can
access

+ Potentially faster than ACLs (in some
circumstances)

+ Easy model for transfer of privileges
– Hard to determine who can access an object
–  Requires extra mechanism to allow revocation
–  In network environment, need cryptographic

methods to prevent forgery

Lecture 12
Page 20

CS 111
Summer 2014

OS Use of Access Control
•  Operating systems often use both ACLs and

capabilities
– Sometimes for the same resource

•  E.g., Unix/Linux uses ACLs for file opens
•  That creates a file descriptor with a particular

set of access rights
– E.g., read-only

•  The descriptor is essentially a capability

Lecture 12
Page 21

CS 111
Summer 2014

Enforcing Access in an OS

•  Protected resources must be inaccessible
–  Hardware protection must be used to ensure this
–  So only the OS can make them accessible to a process

•  To get access, issue request to resource manager
–  Resource manager consults access control policy data

•  Access may be granted directly
–  Resource manager maps resource into process

•  Access may be granted indirectly
–  Resource manager returns a “capability” to process

Lecture 12
Page 22

CS 111
Summer 2014

Direct Access To Resources
•  OS checks access control on initial request
•  If OK, OS maps it into a process’ address space
–  The process manipulates resource with normal instructions
–  Examples: shared data segment or video frame buffer

•  Advantages:
–  Access check is performed only once, at grant time
–  Very efficient, process can access resource directly

•  Disadvantages:
–  Process may be able to corrupt the resource
–  Access revocation may be awkward

•  You’ve pulled part of a process’ address space out from under it

Lecture 12
Page 23

CS 111
Summer 2014

Indirect Access To Resources
•  Resource is not directly mapped into process
–  Process must issue service requests to use resource
–  Access control can be checked on each request
–  Examples: network and IPC connections

•  Advantages:
–  Only resource manager actually touches resource
–  Resource manager can ensure integrity of resource
–  Access can be checked, blocked, revoked at any time

•  If revoked, system call can just return error code

•  Disadvantages:
–  Overhead of system call every time resource is used

Lecture 12
Page 24

CS 111
Summer 2014

Protecting Operating
Systems Resources

•  How do we use these various tools to protect
actual OS resources?

•  Memory?
•  Files?
•  Devices?
•  IPC?
•  Secure booting

Lecture 12
Page 25

CS 111
Summer 2014

Protecting Memory

•  Most modern operating systems provide strong
memory protection

•  Usually hardware-based
•  Most commonly through use of page tables

and paging hardware
•  To remind you, addresses issued by programs

translated by hardware to physical addresses
–  If page tables handled right, process can’t even

name other processes’ memory

Lecture 12
Page 26

CS 111
Summer 2014

Protecting Files

•  We’ve already discussed this
•  Most file systems have a built-in access control

model
•  The OS must enforce it
•  All file access done through system calls
•  Which gives the OS a chance to enforce the

access control policy
•  Typically checked on open

Lecture 12
Page 27

CS 111
Summer 2014

A File Protection Vulnerability
•  Unix/Linux systems only check access

permissions on open
•  The open file descriptor limits access to what

was checked for
•  But if the access permissions change while the

file is open, access is NOT revoked
•  Sometimes possible to keep files open for a

long, long time
•  So if user once had access to a file, may be

hard to ever push him out again

Lecture 12
Page 28

CS 111
Summer 2014

Another File Data Vulnerability

•  What if someone bypasses the operating
system?

•  Directly accessing the disk as a device
•  The OS typically won’t allow that to happen
–  If it’s still in control . . .

•  But there can be flaws or misconfigurations
•  Or the disk can be moved to another machine
– Which may not enforce the access permissions it

specifies

Lecture 12
Page 29

CS 111
Summer 2014

Full Disk Encryption
•  FDE
•  A solution to this problem
•  Encrypt everything you put on the disk
•  Decrypt data moved from the disk to memory
•  Can be done in hardware
– Typically in the disk drive or controller

•  Or software
– Typically by the operating system

•  Various options for storing the key

Lecture 12
Page 30

CS 111
Summer 2014

Protecting Devices

•  Most devices are treated as files
•  So the file protection model applies
•  In some cases, some parts of the devices are

memory mapped into processes
– Memory protections apply, here
– But potential issues if you map them into more

than one process
•  Non-OS controlled bus interfaces can also

cause problems (e.g., Firewire)

Lecture 12
Page 31

CS 111
Summer 2014

Protecting IPC

•  IPC channels are often also treated like files
•  So the same protection model and mechanisms

apply
•  Even shared memory is handled this way
– But especially important to remember that you

don’t get complete mediation here
– And granularity of protection is the segment, not

the word or page or block

Lecture 12
Page 32

CS 111
Summer 2014

Secure Boot
•  Our OS-based protection mechanisms rely on

one fundamental assumption
– We are running an OS that properly implements

them
•  What if we aren’t running the OS that we think

we are?
•  Then all bets are off
•  The false OS can do whatever it wants
•  So we need to be sure we’ve booted what we

wanted to boot

Lecture 12
Page 33

CS 111
Summer 2014

The Bootstrap Process

•  When a computer is powered on, the OS is not
usually resident in memory

•  It gets put there by a bootstrap loader
•  The bootstrap program is usually very short
•  Located in an easily defined place
•  Hardware finds it, loads it, runs it
•  Bootstrap then takes care of initializing the OS

Lecture 12
Page 34

CS 111
Summer 2014

Booting and Security

•  Most systems make it hard to change bootstrap
loader
– But it must have enough flexibility to load

different OSes
– From different places on machine

•  Malware likes to corrupt the bootstrap
•  Trusted computing platforms can help secure

bootstrapping

Lecture 12
Page 35

CS 111
Summer 2014

Approaches to Bootstrap Security
•  TPM – an industry standard
•  A hardware-assisted method to guarantee that

the right bootstrap was loaded
– And, from that, guarantee that the right OS was

booted
– And possibly build up further security from that

•  SecureBoot – a Microsoft technology
•  Built into the boot hardware and SW
•  Essentially, only allows booting of particular

OS versions

