-

Networking for Operating
Systems
CS 111
Operating Systems
Peter Rether

\

/ [Outline} \

* Introduction to networking

* Networking implications for operating systems
* Networking and distributed systems

\ /

CS 111 Lecture 11
Summer 2014 Page 2

/ [Networking: A Brief History} \

* In the early 1960s, operating systems rarely
had any concern with networks at all

* Today, networking 1s a core concern of almost
all operating systems

 How did we get from there to here?

\ /

CS 111 Lecture 11
Summer 2014 Page 3

/ The Analog Age of Networking\

* Point-to-Point connection technology

— Lay or lease (analog) dedicated lines
* Limited connectivity, very expensive, special purpose hardware

— Use the (analog) telephone network

* Limited bandwidth, intermittent connectivity, primitive modems

 Services

— Remote device connection
* Remote terminal (dial-in access)
» Remote card readers and printers (for job submission)

* Remote instrumentation (attached to phones)

\ — Computer-to-computer communication /

CS 111 Lecture 11
Summer 2014 Page 4

/ Modern Networking \

 Packet switched

— Not connection-oriented

e Based on combined wired/wireless
technologies

* Ubiquitously used by most systems

* OS 1s expected to maintain high quality
network access at all times

\ /

CS 111 Lecture 11
Summer 2014 Page 5

/ Networks and Distributed \
Computing

* A model where some or almost all of the computation
occurs on multiple machines

* Becoming increasingly important
— Most of the interesting resources are elsewhere
— A single system has limited capacity & bandwidth
— A single system 1s a single point of failure

* Rejects old model of software run on local CPU/OS

— With some resources fetched over a network

* Instead, the network 1s the computer

\ /

— The local CPU and OS are merely a point of access Lecture 11
CS 111
Summer 2014 Page 6

/" [Networking Implications | ™\
_ for the Operating System

* Increasing amounts of activity will require
networking

* Handling networking well will become ever
more critical

* The operating system must be better at
handling the special characteristics of networks

* Not just another peripheral device

\° Instead, the key demand on future systems y

CS 111 Lecture 11
Summer 2014 Page 7

/ Why Is the Network Different \
From Other Devices?

* More asynchronous

— Things can arrive at any moment

* Not purely responsive to the OS
— Remote machines can send unsolicited messages

— Messages can be sent to processes that didn’t ask for them
* So they’re not blocking

— Harder for OS to ensure reasonable load

* Input comes from another computer

— Can be quite complex

\ — Possible security implications /

CS 111 Lecture 11
Summer 2014 Page 8

/ Changing Paradigms \

* Network connectivity becomes “a given”
— New applications assume/exploit connectivity
— New distributed programming paradigms emerge

— New functionality depends on network services

* Thus, applications demand new services from the OS:
— Location independent operations
— Rendezvous between cooperating processes
— WAN scale communication, synchronization
— Support for splitting and migrating computations

— Better virtualization services to safely share resources

\ — Network performance becomes critical /

CS 111 Lecture 11
Summer 2014 Page 9

/ The Old Networking Clients \

* Most clients were basic networking applications

— Implementations of higher level remote access protocols
* telnet, FTP, SMTP, POP/IMAP, network printing

— Occasionally run, to explicitly access remote systems

— Applications specifically written to network services

* OS provided transport level services
— TCP or UDP, IP, NIC drivers

* Little impact on OS APIs

— OS objects were not expected to have network semantics

\ — Network apps provided services, did not implement objects /

CS 111 Lecture 11
Summer 2014 Page 10

/ The New Networking Clients \

e The OS itself 1s a client for network services

— OS may depend on network services
* netboot, DHCP, LDAP, Kerberos, etc.

— OS-supported objects may be remote

* Files may reside on remote file servers
* Console device may be a remote X11 client

* A cooperating process might be on another machine

* Implementations must become part of the OS

— For both performance and security reasons

* Local resources may acquire new semantics

\ — Remote objects may behave differently than local

CS 111

Summer 2014

/

Lecture 11
Page 11

/ The Old Implementations \

* Network protocol implemented in user-mode daemon

— Daemon talks to network through device driver

* Client requests
— Sent to daemon through IPC port

— Daemon formats messages, sends them to driver

* Incoming packets
— Daemon reads from driver and interprets them
— Unpacks data, forward to client through IPC port

* Advantages — user mode code 1s easily changed

* Disadvantages — lack of generality, poor performance,
\ weak security /

CS 111 Lecture 11
Summer 2014 Page 12

User-Mode Protocol \

Implementations
SMTP — mailglelivery application
user mode socket API
kernel mode
device read/
write
ethernet NI driver
\ L And off to the packet’s destination! /
CS 111 Lecture 11

Summer 2014 Page 13

/ The New Implementations \

* Basic protocols implemented as OS modules

— Each protocol implemented 1n its own module

— Protocol layering implemented with module plumbing

— Layering and interconnections are configurable
* User-mode clients attach via IPC-ports

— Which may map directly to internal networking plumbing
* Advantages

— Modularity (enables more general layering)

— Performance (less overhead from entering/leaving kernel)

— Security (most networking functionality inside the kernel)

\° A disadvantage — larger, more complex OS /

CS 111 Lecture 11
Summer 2014 Page 14

/ In-Kernel Protocol \

Implementations

Instant messaging application SMTP — mail dgdivery application
user mode
Socket APT
kernel mode —

] [Streams

iI Streams

1L] o

Streams

] [Streams

And off to the
packet’s destination!

o d——ERSPSTERLIN m-port driver

Summer 2014

] [Data Link Provider Interface

/

Lecture 11
Page 15

/ IPC Implications \

* IPC used to be used occasionally for pipes
— Now 1t 1s used for all types of services
* Demanding richer semantics, and better performance
* Used to interconnect local processes

— Now 1t interconnects agents all over the world

* Need naming service to register & find partners
* Must interoperate with other OSes IPC mechanisms

* Used to be stimple and fast inside the OS

— We can no longer depend on shared memory

\ — We must be prepared for new modes of failure

CS 111

Summer 2014

/

Lecture 11
Page 16

/ Improving Our OS Plumbing \

* Protocol stack performance becomes critical
— To support file access, network servers

* High performance plumbing: UNIX Streams

— General bi-directional in-kernel communications
* Can interconnect any two modules 1n kernel
* Can be created automatically or manually

— Message based communication

* Put (to stream head) and service (queued messages)

\ * Accessible via read/write/putmsg/getmsg system calls /

CS 111 Lecture 11
Summer 2014 Page 17

/ Network Protocol Performance\

* Layered implementation is flexible and modular

— But all those layers add overhead
* Calls, context switches and queuing between layers
* Potential data recopy at boundary of each layer

— Protocol stack plumbing must also be high performance
* High bandwidth, low overhead
* Copies can be avoided by clever data structures
— Messages can be assembled from multiple buffers

 Pass buffer pointers rather than copying messages

* Increasingly more of the protocol stack 1s in the NIC

CS 111 Lecture 11
Summer 2014 Page 18

// Implications of Networking for\\
} Operating Systems

* Centralized system management

)

* Centralized services and servers

* The end of “self-contained” systems

* A new view of architecture

* Performance, scalability, and availability

 The rise of middleware

\ /

CS 111 Lecture 11
Summer 2014 Page 19

. For all computers 1n one local network,
manage them as a single type of resource

— Ensure consistent service configuration

— Eliminate problems with mis-configured clients

* Have all management done across the network

— To a large extent, 1n an automated fashion

— E.g., automatically apply software upgrades to all
machines at one time

* Possibly from one central machine

.\ —For high scale, maybe more distributed .

Summer 2014 Page 20

/" Benefits of Central Management

o Zero client-side administration

— Plug 1in a new client, and 1t should just work

 Since everything it needs to get going will be automatically
delivered over the network

— Reduced (per client) costs of support

 Since all management info is centralized, rarely have to manually
examine a client machine

* Uniform & ubiquitous computer services
— All data and services available from all clients

— Global authentication and resource domain

* Security benefits
\ — All important security patches get applied with certainty /

cs1n — Individual users can’t screw up their machine’s security reoture 11
Summer 2014 Page 21

/ Dangers of Central Management\

* Screw-ups become ubiquitous
* Loss of local autonomy for users

* Administrators gain extreme power

— So you’d better be sure they’re trustworthy and
competent

* Security disadvantages

— All machines are arbitrarily reconfigurable from
remote sites

\ — Encourages monocultures, which are susceptible to /
CS 111 malware Lecture 11

Summer 2014 Page 22

Centralized Services and Servers ;

* Networking encourages tendency to move
services from all machines to one machine

— E.g. file servers, web servers, authentication
Servers

 Other machines can access and use the services
remotely
— So they don’t need local versions

— Or perhaps only simplified local versions

\ /

CS 111 Lecture 11
Summer 2014 Page 23

/Beneﬁts of Service Centralization\

* Quality and reliability of service
— “Guaranteed” to be up 24x7
— Performance monitored, software kept up-to-date
— Regular back-ups taken
* Price performance
— Powerful servers amortized over many clients
* Ease of use
— No need to install and configure per client services

— Services are available from any client

* Allows thinner, cheaper clients

— Or allows existing clients to devote resources to their users /
CS 111 Lecture 11

Summer 2014 Page 24

/ Dangers of Centralized Services\

* Forces reliance on networking
— Which 1s “almost always” available, but . . .
— Makes network congestion more likely

* Makes per-user customization harder
— Sometimes that’s a good thing, though

* From a security perspective, one big fat target

— As opposed to lots of little skinny targets

— But automation of attacks makes this less
important

~* Can lead to huge privacy breaches ettt

Summer 2014 Page 25

/" TheBndofSelf

__

* Years ago, each computer was nearly totally
self-sufficient

* Maybe you got some data from some other
machine

* Or used some specialized hardware on one
machine

* Or shared a printer over the network

* But your computer could do almost all of what
\ you wanted to do, on 1ts own /

CS 111 Lecture 11
Summer 2014 Page 26

/ Now Vital Services Provided \
Over the Network

Authentication
— Active Directory, LDAP, Kerberos, ...

* Configuration and control
— Active Directory, LDAP, DHCP, CIM/WBEM, SNMP, ...

* External data services
— CIFS, NFS, Andrew, Amazon S3, ...

Remote devices

— X11, web user interfaces, network printers

* Even power management, bootstrap, installation
\ — vPro, PXE boot, bootp, live CDs, automatic s/w updates /

CS 111 Lecture 11
Summer 2014 Page 27

/ Benefits of Relying on Others \

* Remote specialized servers often do the job
better

* Your machine doesn’t need to pay the costs of
doing the work 1tself

* Advantages of centralized administration

* Generally possible 1f any networking available

— And, for modern use, relatively little 1s possible
when networking 1sn’t available, anyway

\ /

CS 111 Lecture 11
Summer 2014 Page 28

6angers of Losing Self Sufﬁciency\

* Your device 1s a brick without connectivity

* Your security depends on the security of many
others

* Worse, your privacy is dependent on a bunch
of service providers

— In many cases, their business model is using your
information . . .

* Harder, maybe impossible, to customize
_ services to your needs /

CS 111 Lecture 11
Summer 2014 Page 29

/ ~ A New View of System \
5 Architecture i

* The old view 1s that we build systems

— Which are capable of running programs that their
owners want executed

— Each system 1s largely self-contained and only
worries about 1ts own concerns and needs

* New view 1s that system 1s only a conduit for
SErvices

— Which are largely provided over the network

\

CS 111 Lecture 11
Summer 2014 Page 30

/" The New Architectural Vision

* Customers want services, not systems

— We design and build systems to provide services

* Services are built up from protocols

— Service 1s delivered to customers via a network
— Service 1s provided by collaborating servers
— Which are run by remote providers, often as a business

e The fundamental unit of service 1s a node

— Provides defined services over defined protocols

— Language, OS, ISA are mere implementation details

* Anode 1s not a single machine

\ — It may be a collection of collaborating machines /
11— Maybe widely distributed Lecture 11

Summer 2014 Page 31

/ Benetits of This View \

* Moves away from computer users as computer
experts

— Which most of them aren’t, and don’t want to be

A more realistic view of what modern
machines are for

* Abstracts many of the ugly details of networks
and distributed systems below human level

* Clarifies what we should really be concerned
\ about /

CS 111 Lecture 11
Summer 2014 Page 32

/ Dangers of This Vision \

* Requires a lot of complex stuff under the
COVErS

* Many problems we are expected to solve are
difficult

— Perhaps unsolvable, in some cases

* Higher degree of proper automated behavior 1s
required

* Tends to lead to lots of reliance on proper

\ behavior by other machines

< — Extra privacy and security concerns Lecture 11

Summer 2014 Page 33

/" Performance, Avail ability, N

° Used to be an easy answer for achieving these:

— Moore’s law (and its friends)

* The machines (and everything else) got faster
and cheaper

— So performance got better

— More people could afford machines that did
particular things

— Problems too big to solve today fell down when
\ speeds got fast enough /

CS 111 Lecture 11
Summer 2014 Page 34

/ The Old Way Vs. The New Way\

* The old way — better components (4-40%/year)
— Find and optimize all avoidable overhead
— Get the OS to be as reliable as possible
— Run on the fastest and newest hardware

* The new way — better systems (1000x)
— Add more $150 blades and a bigger switch

— Spreading the work over many nodes is a huge win

* Performance — may be linear with the number of blades

\ * Availability — service continues despite node failures /

CS 111 Lecture 11
Summer 2014 Page 35

/ Benefits of the New Approach \

* Allows us to leap past many hard problems

— E.g., don’t worry about how to add the sixth nine
of reliability to your machine

* Generally a lot cheaper
— Adding more of something 1s just some dollars

— Instead of having some brilliant folks create a new
solution

\ /

CS 111 Lecture 11
Summer 2014 Page 36

/ Dangers of the New Solution \

* Adds a different set of hard problems

— Like solving distributed and parallel processing
problems

* Your performance 1s largely out of your hands

— E.g., will your service provider choose to spring
for a bunch of new hardware?

* Behaviors of large scale systems not
necessarily well understood

\ — Especially 1n pathological conditions Y,
CS 111 Lecture 11
Summer 2014 Page 37

The Rise of Middleware =~

* Traditionally, there was the OS and your application
— With little or nothing between them

* Since your application was “obviously” written to run
on your OS

* Now, the same application must run on many
machines, with different OSes

* Enabled by powerful middleware

— Which offer execution abstractions at higher levels than the
OS

— Essentially, powerful virtual machines that hide grubby
\ physical machines and their OSes /

Lecture 11
Page 38

CS 111
Summer 2014

/ The OS and Middleware \
* Old model — the OS was the platform

— Applications are written for an operating system

— OS implements resources to enable applications

* New model — the OS enables the platform

— Applications are written to a middleware layer

* E.g., Enterprise Java Beans, Component Object Model,
etc.

— Object management is user-mode and distributed
» E.g., CORBA, SOAP

\ — OS APIs less relevant to applications developers /

Cs 111 * The network 1s the computer Lecture 11
Summer 2014 Page 39

/Beneﬁts of the Rise of Middlewala

* Easy portability
— Make the middleware run on whatever

— Then the applications written to the middleware
will run there

« Middleware interfaces offer better abstractions

— Allowing quicker creation of more powerful
programs

\ /

CS 111 Lecture 11
Summer 2014 Page 40

/Dangers of the Rise of Middlewala

* Not always easy to provide totally transparent
portability

* The higher level abstractions can hide some of
the power of sitmple machines

— Particularly in performance

\ /

CS 111 Lecture 11
Summer 2014 Page 41

// Networking and Distributed \\

5 Systems
* Challenges of distributed computing

)

* Distributed synchronization

 Distributed consensus

\ /

CS 111 Lecture 11
Summer 2014 Page 42

- What Is Distributed Computing?

* Having more than one computer work cooperatively
on some task
* Implies the use of some form of communication

— Usually networking

* Adding the second computer immensely complicates
all problems

— And adding a third makes it worse

 Ideally, with total transparency

— Entirely hide the fact that the computation/service 1s being
\ offered by a distributed system /

CS 111 Lecture 11
Summer 2014 Page 43

/" Challenges of Distributed ™\
Computing

* Heterogeneity
— Different CPUs have different data representations
— Different OSes have different object semantics and
operations
* Intermittent Connectivity
— Remote resources will not always be available
— We must recover from failures in mid-computation

— We must be prepared for conflicts when we reconnect
* Distributed Object Coherence

\ — Object management is easy with one in-memory copy

s — How do we ensure multiple hosts agree on state of object2ecture 11
Summer 2014 Page 44

/ Deutsch's “Seven Fallacies of \
Network Computing”

. The network 1s reliable

. There 1s no latency (instant response time)

. The available bandwidth 1s infinite

. The network 1s secure

. The topology of the network does not change

AN D0 B~ W N~

. There 1s one administrator for the whole network

7. The cost of transporting additional data 1s zero

Bottom Line: true transparency 1s not achievable

\ /

CS 111 Lecture 11
Summer 2014 Page 45

__

* As we’ve already seen, synchronization 1s
crucial in proper computer system behavior

* When things don’t happen 1n the required
order, we get bad results

* Distributed computing has all the
synchronization problems of single machines

* Plus genuinely independent interpreters and
memories

\ /

CS 111 Lecture 11
Summer 2014 Page 46

-z Why Is Distributed I

Synchronization Harder?
* Spatial separation
— Different processes run on different systems
— No shared memory for (atomic instruction) locks
— They are controlled by different operating systems
* Temporal separation
— Can’t “totally order” spatially separated events

— “Before/simultaneous/after” become fuzzy

* Independent modes of failure
\ — One partner can die, while others continue /

CS 111 Lecture 11
Summer 2014 Page 47

/" How Do We Manage I

Distributed Synchronization?
* Distributed analogs to what we do 1n a single
machine

* But they are constrained by the fundamental
differences of distributed environments

* They tend to be:
— Less efficient

— More fragile and error prone

— More complex
' — Often all three

CS 111
Summer 2014

Lecture 11
Page 48

/ [.eases \

A relative of locks

* Obtained from an entity that manages a resource
— Gives client exclusive right to update the file
— The lease “cookie” must be passed to server with an update

— Lease can be released at end of critical section

* Only valid for a limited period of time
— After which the lease cookie expires

» Updates with stale cookies are not permitted

— After which new leases can be granted

* Handles a wide range of failures

\ — Process, node, network /
CS 111 Lecture 11

Summer 2014 Page 49

/ A Lease Example \

G)
Update file X Gl A
Request lease on file X has leased
file X till 2
\/ \@ PM
REJECTED!
"~ Lease on file X granted Resource
) Manager
Request lease on file X K j
Y
N A
REJECTED!
d
\)
CS 111 Lecture 11

Summer 2014 Page 50

/ What Is This Lease? \

* It’s essentially a ticket that allows the leasee to
do something

— In our example, update file X
* In other words, 1t’s a bunch of bits

* But proper synchronization requires that only
the manager create one

* So 1t can’t be forgeable

 How do we create an unforgeable bunch of
\ bits? /

CS 111 Lecture 11
Summer 2014 Page 51

/ What’s Good About Leases? \

* The resource manager controls access centrally

— So we don’t need to keep multiple copies of a lock
up to date

— Remember, easiest to synchronize updates to data
if only one party can write it

* The manager uses his own clock for leases

— So we don’t need to synchronize clocks

* What if a lease holder dies, losing 1ts lease?

\ — No big deal, the lease would expire eventually Y,

CS 111 Lecture 11
Summer 2014 Page 52

/ Atomic Transactions \

* What if we want guaranteed uninterrupted, all-or-
none execution?

* That requires true atomic transactions

* Solves multiple-update race conditions

— All updates are made part of a transaction

* Updates are accumulated, but not actually made
— After all updates are made, transaction 1s committed
— Otherwise the transaction is aborted

* E.g., if client, server, or network fails before the commit

\° Resource manager guarantees “all-or-none”)
— Even 1f 1t crashes in the middle of the updates

CS 111 Lecture 11
Summer 2014 Page 53

/ Atomic Transaction Example \
client @

[send startTransaction } ------------------------ ? server
) v . T
send updateOne | updateOne ~N N
e \ 4 N
send updateTwo | updateTwo
e \ 4 N
send updateThree | updateThree — @@
A 4
send commit

\ /

CS 111 Lecture 11
Summer 2014 Page 54

/ What If There’s a Failure?

client @

[send startTransaction }

A 4

send updateOne

A 4

send updateTwo

A 4

send abort

(or timeout)

\

CS 111

updateOne

updateTwo

/

Lecture 11

Summer 2014

Page 55

/ Providing Transactions \

* Basic mechanism 1s a journal

* Don’t actually perform operations as they are
submitted

* Instead, save them 1n a journal

* On commiut, first write the journal to persistent
storage

— This 1s true commit action

* Then run through journal and make updates

* Some obvious complexities /

CS 111 Lecture 11
Summer 2014 Page 56

/~ Transactions Spanning Multiple
Machines

 Journals are fine if the data is all on one
resource manager

* What if we need to atomically update data on
multiple machines?

* Just keeping a journal on one machine 1s not
enough

* How do we achieve the all-or-nothing effect
\ when each machine acts asynchronously?

., —And can fail at any moment? Leoture 11

Summer 2014 Page 57

/ Commitment Protocols \

* Used to implement distributed commitment

— Provide for atomic all-or-none transactions

— Simultaneous commitment on multiple hosts

* Challenges
— Asynchronous conflicts from other hosts

— Nodes fail in the middle of the commitment process

* Multi-phase commitment protocol:
— Confirm no conflicts from any participating host
— All participating hosts are told to prepare for commit
\ — All participating hosts are told to “make 1t so” /

CS 111 Lecture 11
Summer 2014 Page 58

Three Phase Commit

Coordinator @

[send canCommit } ““““““““““““““““““““““““““ 0 Participant(s)

receive canCommit

nak I PR
timeout e
] all ack]
abort [send startCommit } ------------------- wait a.bort » abort
timeout
A
receive startCommit
nak
timeout prep j4TTTTTmmmmm oo { send ack]
all ack
[send Commit } ------------------------
)) timeout
Y receive Commit
\ confirm J=--------mooooommmoooo oo oo { send ack]—> Commit

CS 111

Summer 2014

/

Lecture 11
Page 59

/ Why Three Phases? \

* First phase tells everyone a commit is in
progress

* Second phase ensures that everyone knows
that everyone else was told

— No chance that only some were told
* Third phase actually performs the commit

* Three phases ensures that failures of
coordinator plus another participant is non-
\ ambiguous y

CS 111 Lecture 11
Summer 2014 Page 60

/" Distributed Consensus ~ \

. Achlevmg simultaneous, unanimous
agreement

— Even 1n the presence of node & network failures
— Requires agreement, termination, validity, integrity
— Desired: bounded time

* Consensus algorithms tend to be complex

— And may take a long time to converge

* So they tend to be used sparingly

\ — E.g., use consensus to elect a leader)

s — Who makes all subsequent decisions by fiat Lecture 11

Summer 2014 Page 61

/ A Typical Election Algorithm \

1. Each interested member broadcasts his nomination

2. All parties evaluate the received proposals
according to a fixed and well known rule

— E.g., largest ID number wins

3. After a reasonable time for proposals, each voter
acknowledges the best proposal 1t has seen

4. If a proposal has a majority of the votes, the
proposing member broadcasts a resolution claim

5. Each party that agrees with the winner’s claim
acknowledges the announced resolution

6. Election is over when a quorum acknowledges the

\ result /

CS 111 Lecture 11
Summer 2014 Page 62

-

Cluster Membership \

* A cluster 1s a group of nodes ...
— All of whom are in communication with one another
— All of whom agree on an elected cluster master

— All of whom abide by the cluster master’s decisions

* He may (centrally) arbitrate all issues directly
* He may designate other nodes to make some decisions

* Useful idea because it formalizes set of parties who
are working together

* Highly available service clusters
— Cluster master assigns work to all of the other nodes

\ — If a node falls out of the cluster, its work 1s reassigned

CS 111
Summer 2014

/

Lecture 11
Page 63

/ Maintaining Cluster Membership\

* Primarily through heartbeats

“I’m still alive” messages, exchanged in cluster

* Cluster master monitors the other nodes
— Regularly confirm each node 1s working properly
— Promptly detect any node falling out of the cluster
— Promptly reassign work to surviving nodes

e Some nodes must monitor the cluster master

— To detect the failure of the cluster master

— To trigger the election of a new cluster master

\ /

CS 111 Lecture 11
Summer 2014 Page 64

/ The Split Brain Problem \

* What if the participating nodes are partitioned?

* One set can talk to each other, and another set
can also

— But the two sets can’t exchange messages
* We then have two separate clusters providing
the same service

— Which can lead to big problems, depending on the
situation

\ /

CS 111 Lecture 11
Summer 2014 Page 65

/ Quorums \

* The simplest solution to the split-brain problem i1s to
require a quorum

— In a cluster that has been provisioned for N nodes,
becoming the cluster master requires (N/2)+1 votes

— This completely prevents split-brain
* It also prevents recovering from the loss of N/2 nodes
* Some systems use a “quorum device”
— E.g., a shared (multi-ported) disk

» Cluster master must be able to reserve/lock this device

* Device won’t allow simultaneous locking by two different nodes

— Failure of this device takes down whole system

* Some systems use special election hardware /

CS 111 Lecture 11
Summer 2014 Page 66

/ [Conclusion} \

* Networking has become a vital service for
most machines

* The operating system 1s increasingly involved
in networking

— From providing mere access to a network device
— To supporting sophisticated distributed systems
* An increasing trend

* Future OSes might be primarily all about
\ networking

Lecture 11
Summer 2014

Page 67

