-

File Systems: Memory
Management, Naming and
Reliability
CS 111
Operating Systems
Peter Rether

/ [Outline} \

* Managing disk space for file systems

* File naming and directories
* File volumes

* File system performance issues

* File system reliability

\ /

CS 111 Lecture 10
Summer 2014 Page 2

m? ree Space and Allocation Issues}\

 How do I keep track of a file system’s free
space?

e How do I allocate new disk blocks when
needed?

— And how do I handle deallocation?

\ /

CS 111 Lecture 10
Summer 2014 Page 3

/ The Allocation/Deallocation \

Problem
* File systems usually aren’t static

* You create and destroy files
* You change the contents of files

— Sometimes extending their length 1n the process

* Such changes convert unused disk blocks to
used blocks (or visa versa)

* Need correct, efficient ways to do that

\° Typically implies a need to maintain a free list y
- of unused disk blocks et 10

Summer 2014 Page 4

/ Creating a New File \

 Allocate a free file control block

— For UNIX

* Search the super-block free I-node list
 Take the first free I-node

— For DOS

* Search the parent directory for an unused directory entry

* Initialize the new file control block
— With file type, protection, ownership, ...

e (Give the new file a name

\ /

CS 111 Lecture 10
Summer 2014 Page 5

-

Extending a File

* Application requests new data be assigned to a file

— May be an explicit allocation/extension request
— May be implicit (e.g., write to a currently non-existent

block — remember sparse files?)

* Find a free chunk of space
— Traverse the free list to find an appropriate chunk
— Remove the chosen chunk from the free list

* Associate 1t with the appropriate address 1n the file

— Go to appropriate place in the file or extent descriptor

\ — Update 1t to point to the newly allocated chunk

CS 111
Summer 2014

\

/

Lecture 10

Page 6

/ Deleting a File \

* Release all the space that is allocated to the file
— For UNIX, return each block to the free block list

— DOS does not free space
* [t uses garbage collection
* So 1t will search out deallocated blocks and add them to
the free list at some future time

* Deallocate the file control lock

— For UNIX, zero inode and return 1t to free list

— For DOS, zero the first byte of the name in the
parent directory

* Indicating that the directory entry is no longer in use / .
CS 111 ecture

Summer 2014 Page 7

/ Free Space Maintenance

* File system manager manages the free space

* Getting/releasing blocks should be fast operations
— They are extremely frequent
— We'd like to avoid doing I/O as much as possible

* Unlike memory, 1t matters what block we choose

— Best to allocate new space in same cylinder as file’s
existing space
— User may ask for contiguous storage

* Free-list organization must address both concerns

\ — Speed of allocation and deallocation
«, — Ability to allocate contiguous or near-by space

\

/

Lecture 10

Summer 2014

Page 8

Space Management

+ Search for free clusters in desired cylinder

— We can map clusters to cylinders
* The BIOS Parameter Block describes the device geometry

— Look at first cluster of file to choose the desired cylinder
— Start search at first cluster of desired cylinder
— Examine each FAT entry until we find a free one

* If no free clusters, we must garbage collect
— Recursively search all directories for existing files

— Enumerate all of the clusters in each file

\ — Any clusters not found 1n search can be marked as free

«s1;1 — This won’t be fast . . .
Summer 2014

a 'DOS File System Free | I

/

Lecture 10
Page 9

/ Extending a DOS File \

 Note cluster number of current last cluster in file

* Search the FAT to find a free cluster
— Free clusters are indicated by a FAT entry of zero
— Look for a cluster 1n the same cylinder as previous cluster
— Put -1 in its FAT entry to indicate that this is the new EOF

— This has side effect of marking the new cluster as “not
free”

 (Chain new cluster on to end of the file

— Put the number of new cluster into FAT entry for last

\ cluster /

CS 111 Lecture 10
Summer 2014 Page 10

/ DOS Free Space \

boot
block

Each FAT entry corresponds to a cluster, and contains the
number of the next cluster.

A value of zero indicates a cluster that is not allocated to any
\ file, and 1s therefore free. /

Lecture 10
Page 11

CS 111
Summer 2014

/" TheBSD File System ™\
Free Space Management ;

__

e BSD 1s another version of Unix

* The details of 1ts inodes are similar to those of
Unix System V
— As previously discussed

* Other aspects are somewhat different
— Including free space management

— Typically more advanced

* Uses bit map approach to managing free space

/

O Keeping cylinder 1ssues 1n mind L

Summer 2014 Page 12

/ The BSD Approach \

* Instead of all control information at start of disk,

* Divide file system into cylinder groups

— Each cylinder group has i1ts own control information
* The cylinder group summary

— Active cylinder group summaries are kept in memory
— Each cylinder group has its own inodes and blocks
— Free block list 1s a bit-map in cylinder group summary

* Enables significant reductions in head motion

— Data blocks 1n file can be allocated in same cylinder

— Inode and its data blocks 1n same cylinder group

\ — Directories and their files in same cylinder group /
CS 111 Lecture 10

Summer 2014 Page 13

¢~ BSD Cylinder Groups ™\
and Free Space

cylinders 0 100 200 300 400

groups §

’
’
v
’
’
’
’
’
’
’
v
v
v

~~§~
S~
~~.
~\~\
~§~~
S~
~<o
S~
\\~~
_

file system & free block
cylinder group ~ bitma
parameters ’
\ free [-node /
Y bit_map Lecture 10

Summer 2014 Page 14

-

Bit Map Free Lists \

\

CS 111

0 0 1 0 1 1
4 X o
block #1 block #2 block #4
(in use) (in use) (in use)
Actual data blocks

BSD Unix file systems use bit-maps to keep
track of both free blocks and free I-nodes in
each cylinder group

Lecture 10

Summer 2014

/

Page 15

/ Extending a BSD/Unix File \

* Determine the cylinder group for the file’s inode

— Calculated from the inode’s 1dentifying number
* Find the cylinder for the previous block in the file

* Find a free block 1n the desired cylinder

— Search the free-block bit-map for a free block 1n the right
cylinder

— Update the bit-map to show the block has been allocated
* Update the mnode to point to the new block

— Go to appropriate block pointer in inode/indirect block

— If new indirect block 1s needed, allocate/assign it first
\ — Update inode/indirect to point to new block /

CS 111 Lecture 10
Summer 2014 Page 16

-~

block pointers
(in I-node)

\

CS 111

Unix File Extension

o

v

3d

1. Determine cylinder group and
get its information

2. Consult the cylinder group free
block bit map to find a good block
3. Allocate the block to the file

3.1 Set appropriate block pointer

to it

3.2 Update the free block bit map

ins ﬁ:l mxa
A
F

/

Lecture 10
Page 17

Summer 2014

/ [Naming in File Systems} \

 Each file needs some kind of handle to allow
us to refer to 1t

* Low level names (like inode numbers) aren’t
usable by people or even programs

* We need a better way to name our files
— User friendly

— Allowing for easy organization of large numbers of
files

\ — Readily realizable in file systems /

Lecture 10
Page 18

CS 111
Summer 2014

/ File Names and Binding \

* File system knows files by descriptor structures
* We must provide more useful names for users

* The file system must handle name-to-file mapping
— Associating names with new files
— Finding the underlying representation for a given name
— Changing names associated with existing files

— Allowing users to organize files using names

* Name spaces — the total collection of all names
known by some naming mechanism

\ — Sometimes all names that could be created by the)
.\, mechanism Lecture 1

Summer 2014 Page 19

/" Name Space Structure ~\

* There are many ways to structure a name space
— Flat name spaces
* All names exist in a single level

— Hierarchical name spaces
* A graph approach
* Can be a strict tree

* Or a more general graph (usually directed)

* Are all files on the machine under the same
name structure?

* Or are there several independent name spaces? /

CS 111 Lecture 10
Summer 2014 Page 20

/ Some Issues in Name
Space Structure

* How many files can have the same name?

— One per file system ... flat name spaces
— One per directory ... hierarchical name spaces

* How many different names can one file have?
— A single “true name”
— Only one “true name”, but aliases are allowed
— Arbitrarily many

— What’s different about “true names”?

Do different names have different characteristics?

\ — Does deleting one name make others disappear too?

11— Do all names see the same access permissions?

\

/

Lecture 10

Summer 2014

Page 21

/ Flat Name Spaces \

* There 1s one naming context per file system

— All file names must be unique within that context
* All files have exactly one true name
— These names are probably very long

* File names may have some structure

- E.g. CACI0FS 1 1IFECTIONDELIDESCECTURE Y1)

T'his structure may be used to optimize searches

— The structure 1s very useful to users but has no
meaning to the file system

\ Not widely used in modern file systems

CS 111 Lecture 10
Summer 2014 Page 22

/ Hierarchical Name Spaces \

* Essentially a graphical organization

* Typically organized using directories
— A file containing references to other files
— A non-leaf node in the graph

— It can be used as a naming context
* Each process has a current directory
* File names are interpreted relative to that directory

 Nested directories can form a tree

— A file name describes a path through that tree

— The directory tree expands from a “root” node
* A name beginning from root 1s called “fully qualified”

— May actually form a directed graph

* If files are allowed to have multiple names

CS 111

Summer 2014

/

Lecture 10
Page 23

/ A Rooted Directory Tree \

root
user 1 user 2 user 3
'
file a dir a file b file ¢ dir a
(/user 1/file a) (/user 1/dir a) (/user 2/file b) (/user 3/file ¢) (/user_3/dir_a)
ﬁle_a file b
(/user l/dir a/file a)

(/user 3/dir a/file b) /

\

CS 111 Lecture 10
Summer 2014 Page 24

/ Directories Are Files \

* Directories are a special type of file

— Used by OS to map file names into the associated files

* A directory contains multiple directory entries
— Each directory entry describes one file and its name

* User applications are allowed to read directories
— To get information about each file

— To find out what files exist

* Usually only the OS 1s allowed to write them

— Users can cause writes through special system calls
\ — The file system depends on the integrity of directories /

CS 111 Lecture 10
Summer 2014 Page 25

/ Traversing the Directory Tree \

* Some entries in directories point to child
directories

— Describing a lower level in the hierarchy

* To name a file at that level, name the parent
directory and the child directory, then the file

— With some kind of delimiter separating the file
name components

* Moving up the hierarchy 1s often useful

— Directories usually have special entry for parent
\ — Many file systems use the name “..” for that /

CS 111 Lecture 10
Summer 2014 Page 26

/ Example: The DOS File System\

* File & directory names separated by back-slashes
— E.g.,, \user 3\dir a\file b
* Directory entries are the file descriptors

— As such, only one entry can refer to a particular file

* Contents of a DOS directory entry
— Name (relative to this directory)
— Type (ordinary file, directory, ...)
— Location of first cluster of file

— Length of file in bytes
\ — Other privacy and protection attributes /

CS 111 Lecture 10
Summer 2014 Page 27

/ DOS File System Directories \

Root directory, starting in cluster #1

\

CS 111

file name type length 15t cluster
user 1 DIR | 256 bytes 9
user 2 DIR | 512 bytes 31
user 3 DIR | 284 bytes 114

— Directory \user 3, starting in cluster #114

file name type length I8t cluster
DIR 256 bytes 1
dir a DIR 512 bytes 62
file c FILE | 1824 bytes 102 /
Lecture 10
Page 28

Summer 2014

/ File Names Vs. Path Names \

* In flat name spaces, files had “true names™

— That name 1s recorded in some central location

— Name structure (a.b.c) 1s a convenient convention

* In DOS, a file 1s described by a directory entry
— Local name is specified in that directory entry

— Fully qualified name 1s the path to that directory entry
* E.g., start from root, to user 3, to dir_a, to file b

— But DOS files still have only one name

e What if files had no intrinsic names of their own?

\ — All names came from directory paths /

CS 111 Lecture 10
Summer 2014 Page 29

/ Example: Unix Directories \

* A file system that allows multiple file names

— So there 1s no single “true” file name, unlike DOS

* File names separated by slashes
— E.g., /user 3/dir a/file b

* The actual file descriptors are the inodes
— Directory entries only point to inodes

— Association of a name with an 1node is called a hard link
— Multiple directory entries can point to the same inode

* Contents of a Unix directory entry
— Name (relative to this directory) /
\ — Pointer to the inode of the associated file

CS 111 Lecture 10
Summer 2014 Page 30

/ Unix Directories \

Root directory, inode #1
inode # file name

But what’s this “.”
entry?

It’s a directory entry

that points to the

directory itself!
We’ll see why that’s
useful later

Directory /user 3,inode #114 «+———

inode # file name

[T

Here’s a “..” entry,
pointing to the parent

directory
/

\

CS 111 Lecture 10
Summer 2014 Page 31

/ Multiple File Names In Unix \

e How do links relate to files?

— They’re the names only

* All other metadata is stored in the file inode

— File owner sets file protection (e.g., read-only)

* All links provide the same access to the file

— Anyone with read access to file can create new link
— But directories are protected files too

* Not everyone has read or search access to every directory

* All links are equal

\ — There 1s nothing special about the first (or owner's) link /

CS 111 Lecture 10
Summer 2014 Page 32

/ [Links and De-allocation

\

CS 111

Files exist under multiple names
What do we do 1f one name 1s removed?

If we also removed the file itself, what about
the other names?
— Do they now point to something non-existent?

The Unix solution says the file exists as long
as at least one name exists

Implying we must keep and maintain a
reference count of links

— In the file inode, not 1n a directory

Summer 2014

\

Lecture 10
Page 33

/ Unix Hard Link Example \

Note that we now
associate names with links
rather than with files.

/user 1/file a and
/user 3/dir a/file Db

are both links to the same
1inode

Lecture 10

CS 111
Summer 2014 Page 34

ﬁ{ard Links, Directories, and Files\

inode #1, root directory

mode #9, directory <

— 1node #114, directory

— inode #29, file <

. /

CS 111 Lecture 10
Summer 2014 Page 35

/ Symbolic Links \

* A different way of giving files multiple names

* Symbolic links implemented as a special type of file
— An indirect reference to some other file
— Contents is a path name to another file

* OS recognizes symbolic links

— Automatically opens associated file instead

— If file 1s inaccessible or non-existent, the open fails
* Symbolic link 1s not a reference to the inode

— Symbolic links will not prevent deletion

\ — Do not guarantee ability to follow the specified path /

— Internet URLSs are similar to symbolic links .
CS 111 ecture 10
Summer 2014 Page 36

-

\

CS 111
Summer 2014

Symbolic Link Example

file b

" (/user 1/file a)

The link count for
this file 1s still 1,
though

\

/

Lecture 10

Page 37

/ Symbolic Links, Files, and \

N

\

CS 111

N\

inode #9, directory <

N\

inode #29, fileM N

Directories

inode #1, root directory

— 1node #114, directory

\
Link count inode #46, symlink +—

Summer 2014

Page 38

/[F 1le Systems and Multiple Disks}\

* You can usually attach more than one disk to a
machine
— And often do

* Would it make sense to have a single file system span
the several disks?

— Considering the kinds of disk-specific information a file
system keeps

— Like cylinder information

* Usually more trouble than 1t’s worth
— With the exception of RAID . . .

\° Instead, put separate file system on each disk /

CS 111 Lecture 10
Summer 2014 Page 39

ﬁow About the Other Way Around%

* Multiple file systems on one disk

* Divide physical disk into multiple logical disks
— Often implemented within disk device drivers
— Rest of system sees them as separate disk drives

* Typical motivations
— Permit multiple OSes to coexist on a single disk
* E.g., a notebook that can boot either Windows or Linux

— Separation for installation, back-up and recovery

* E.g., separate personal files from the installed OS file system

\ — Separation for free-space

S * Running out of space on one file system doesn't affect others

Summer 2014

/

Lecture 10
Page 40

/ Working With Multiple File \
Systems

* So you might have miltiple independent file systems
on one machine

— Each handling its own disk layout, free space, and other
organizational 1ssues

How will the overall system work with those several
file systems?

* Treat them as totally independent namespaces?
* Or somehow stitch the separate namespaces together?
* Key questions:

\ 1. How does an application specify which file it wants? /
2. How does the OS find that file?

CS 111 Lecture 10
Summer 2014 Page 41

/ Finding Files With Multiple \
File Systems

* Finding files 1s easy if there 1s only one file system
— Any file we want must be on that one file system

— Directories enable us to name files within a file system

* What if there are multiple file systems available?

— Somehow, we have to say which one our file 1s on

* How do we specify which file system to use?
— One way or another, it must be part of the file name
— It may be implicit (e.g., same as current directory)

— Or explicit (e.g., every name specifies it)

\ — Regardless, we need some way of specifying which file /

s system to look into for a given file name Lecture 10
Summer 2014 Page 42

Options for Naming With \

Multiple Partitions
* Could specity the physical device it resides on

—E.g., /devices/pci/pcil000,4/disk/lunl/partition?
* That would get old real quick
* Could assign logical names to our partitions
—E.g., “A:”, “C.”, “D.”
* You only have to think physical when you set them up
* But you still have to be aware multiple volumes exist

* Could weave a multi-file-system name space

\ — E.g., Unix mounts Y,

CS 111 Lecture 10
Summer 2014 Page 43

/ Unix File System Mounts \
* Goal:

— To make many file systems appear to be one giant
one

— Users need not be aware of file system boundaries

e Mechanism:

— Mount device on directory

— Creates a warp from the named directory to the
top of the file system on the specified device

— Any file name beneath that directory 1s interpreted
\ relative to the root of the mounted file system

CS 111 Lecture 10
Summer 2014 Page 44

/ Unix Mounted File System \
Example

root file system

mount filesystem2 on /export/userl
mount filesystem3 on /export/user2

mount filesystem4 on /opt AWA /opt /bin

userl user2

s AN AN AN

o file system 2 file system 3 file system 4 | ceum 10

Summer 2014 Page 45

/ How Does This Actually Work?\

* Mark the directory that was mounted on

* When file system opens that directory, don’t
treat 1t as an ordinary directory

— Instead, consult a table of mounts to figure out
where the root of the new file system 1s

* (o to that device and open its root directory
* And proceed from there

\ /

CS 111 Lecture 10
Summer 2014 Page 46

/[File System Performance Issues}\

* Key factors 1n file system performance
— Disk 1ssues

e Head movement
 Block size

* Possible optimizations for file systems
— Read-ahead
— Delayed writes

— Caching (general and special purpose)

\ /

CS 111 Lecture 10
Summer 2014 Page 47

/ File Systems and Disk Drives \

* The physics of disk drives impact the
performance of file systems

— Which 1s unfortunate
* OS designers want to hide that impact

* To do so, they must hide variable disk delays

— Preferably without making everything go at the
slowest possible delay

* This requires many optimizations

\ — Often based on having a queue of outstanding disk)
CS 111 requeStS Lecture 10

Summer 2014 Page 48

/" Optimizing Disk /O)\

* Don't start I/O until disk 1s on-cylinder or near sector
— I/0O ties up the controller, locking out other operations
— Other drives seek while one drive 1s doing I/0
* Minimize head motion
— Do all possible reads in current cylinder before moving
— Make minimum number of trips in small increments
* Encourage efficient data requests
— Have lots of requests to choose from

— Encourage cylinder locality

— Encourage largest possible block sizes
\ — All by OS design choices, not influencing programs/users /

CS 111 Lecture 10
Summer 2014 Page 49

/ Head Motion and File System \

Performance
* File system organization affects head motion

— If blocks 1n a single file are spread across the disk
— If files are spread randomly across the disk
— If files and “meta-data” are widely separated

* All files are not used equally often
— 5% of the files account for 90% of disk accesses

— File locality should translate into head cylinder
locality

\° How can these factors to reduce head motion? |

CS 111 Lecture 10
Summer 2014 Page 50

/ Ways To Reduce Head Motion \

* Keep blocks of a file together
— Easiest to do on original write
— Try to allocate each new block close to the last one
— Especially keep them 1n the same cylinder
* Keep metadata close to files
— Again, easiest to do at creation time
* Keep files in the same directory close together
— On the assumption directory implies locality of reference

* If performing compaction, move popular files close
\ together)

CS 111 Lecture 10
Summer 2014 Page 51

/ File System Performance and \
Block Size

Larger block sizes result 1n efficient transfers

— DMA 1s very fast, once 1t gets started
— Per request set-up and head-motion 1s substantial

They also result in internal fragmentation
— Expected waste: Y2 block per file

As disks get larger, speed outweighs wasted space

— File systems support ever-larger block sizes

* Clever schemes can reduce fragmentation

— E.g., use smaller block size for the last block of a file

\ /

CS 111 Lecture 10
Summer 2014 Page 52

 If we read blocks before we actually need
them, we don’t have to wait for them

* If we write blocks long after we told the

writes?

* Some optimizations depend on good answers
\ to these questions

CS 111
Summer 2014

— But how can we know which blocks to read early?

application it was done, we don’t have to wait

— But are there bad consequences of delaying those

/" Read Early, Write Late ~ \

Lecture 10
Page 53

/ Read-Ahead \

* Request blocks from the disk before any
process asked for them

* Reduces process wait time

* When does 1t make sense?
— When client specifically requests sequential access
— When client seems to be reading sequentially

e What are the risks?

— May waste disk access time reading unwanted
blocks

— May waste buffer space on unneeded blocks -
CS 111 Y

Summer 2014 Page 54

Delayed Writes \

* Don’t wait for disk write to complete to tell
application it can proceed

Written block 1s 1n a buffer in memory

o Wait until it’s “convenient” to write 1t to disk
— Handle reads from in-memory buffer
 Benefits:

— Applications don’t wait for disk writes
— Writes to disk can be optimally ordered
— If file 1s deleted soon, may never need to perform disk I/O

* Potential problems:

\ — Lost writes when system crashes /

cs11 — Buffers holding delayed writes can’t be re-used Lecture 10
Summer 2014 Page 55

__

__

* Big performance wins are possible if caches
work well

— They typically contain the block you’re looking for

* Should we have one big LRU cache for all
purposes?

* Should we have some special-purpose caches?
— If so, 1s LRU right for them?

\ /

CS 111 Lecture 10
Summer 2014 Page 56

/Common Types of Disk Caching\

* General block caching
— Popular files that are read frequently
— Files that are written and then promptly re-read
— Provides buffers for read-ahead and deferred write

* Special purpose caches
— Directory caches speed up searches of same dirs

— Inode caches speed up re-uses of same file

* Special purpose caches are more complex
\ — But they often work much better /

CS 111 Lecture 10
Summer 2014 Page 57

/Performance Gain For Different\

Types of Caches

b Special Purpose Cache

¥

f

N

rél General Block Cache
C

¢

Cs 111 Cache size (bytes) Lecture 10
Summer 2014 Page 58

Why Are Special Purpose
Caches More Effective?

* They match caching granularity to their need

— E.g., cache modes or directory entries
— Rather than full blocks

* Why does that help?

* Consider an example:

— A block might contain 100 directory entries, only four of
which are regularly used

— Caching the other 96 as part of the block 1s a waste of
cache space

— Caching 4 entries allows more popular entries to be cached
\ — Tending to lead to higher hit ratios /

CS 111 Lecture 10
Summer 2014 Page 59

/ [File Systems Reliability J \

* File systems are meant to store data
persistently

* Meaning they are particularly sensitive to
errors that screw things up

— Other elements can sometimes just reset and restart
— But if a file 1s corrupted, that’s really bad

* How can we ensure our file system’s integrity
1S not compromised?

\ /

CS 111 Lecture 10
Summer 2014 Page 60

/ Causes of System Data Loss \

* OS or computer stops with writes still pending
— .1-100/year per system

Defects in media render data unreadable
— .1 — 10/year per system

Operator/system management error
— .01-.1/year per system

* Bugs 1n file system and system utilities
— .01-.05/year per system

 (Catastrophic device failure
\ — .001-.01/year per system Y,

CS 111 Lecture 10
Summer 2014 Page 61

/ Dealing With Media Failures \

e Most media failures are for a small section of the
device, not huge extents of it
e Don't use known bad sectors

— Identify all known bad sectors (factory list, testing)
— Assign them to a “never use” list in file system

— Since they aren't free, they won't be used by files

* Deal promptly with newly discovered bad blocks

— Most failures start with repeated “recoverable” errors
— Copy the data to another block ASAP
— Assign new block to file in place of failing block

\ — Assign failing block to the “never use” list /

CS 111 Lecture 10
Summer 2014 Page 62

@oblems Involving System FailuQ

* Delayed writes lead to many problems when
the system crashes

* Other kinds of corruption can also damage file
systems

* We can combat some of these problems using
ordered writes

* But we may also need mechanisms to check
file system integrity

\ — And fix obvious problems /

CS 111 Lecture 10
Summer 2014 Page 63

/ Deferred Writes — Promise and \
Dangers

* Deferring disk writes can be a big performance win
— When user updates files in small increments

— When user repeatedly updates the same data

* It may also make sense for meta-data
— Writing to a file may update an indirect block many times
— Unpacking a zip creates many files in same directory
— It also allocates many consecutive inodes

* But deferring writes can also create big problems

— If the system crashes before the writes are done

\ — Some user data may be lost /

s — Or even some meta-data updates may be lost Lecture 10
Summer 2014 Page 64

/ Performance and Integrity \

* It 1s very important that file systems be fast
— File system performance drives system
performance
* It 1s absolutely vital that they be robust
— Files are used to store important data
* E.g., student projects, grades, video games, ...
* We must know that our files are safe

— That the files will not disappear after they are
written

— That the data will not be corrupted /

CS 111 Lecture 10
Summer 2014 Page 65

/ Deferred Writes — A Worst Case\
Scenario

* Process allocates a new block for file A

— We get a new block (x) from the free list
— We write the updated inode for file A

* Including a pointer to x
— We defer free-list write-back (which happens all the time)
* The system crashes, and after 1t reboots
— A new process wants a new block for file B
— We get block x from the (stale) free list

 Two different files now contain the same block
\ — When file A 1s written, file B gets corrupted /

csii — When file B is written, file A gets corrupted Lecture 10
Summer 2014 Page 66

/ Ordering Writes \

* Many file system corruption problems can be solved
by carefully ordering related writes

* Write out data before writing pointers to it
— Unreferenced objects can be garbage collected

— Pointers to incorrect data/meta-data are much more serious

* Write out deallocations before allocations
— Disassociate resources from old files ASAP
— Free list can be corrected by garbage collection
— Improperly shared blocks more serious than unlinked ones

* But it may reduce disk I/O efficiency

C&ﬂ — Creating more head motion than elevator scheduling Lecmrz o

Summer 2014 Page 67

/ Backup — The Ultimate Solution\

* All files should be regularly backed up
* Permits recovery from catastrophic failures
* Complete vs. incremental back-ups

* Desirable features
— Ability to back-up a running file system
— Ability to restore individual files

— Ability to back-up w/o human assistance

* Should be considered as part of FS design

\ — I.e., make file system backup-friendly Y,

CS 111 Lecture 10
Summer 2014 Page 68

