
Lecture 10
Page 1

CS 111
Summer 2014

File Systems: Memory
Management, Naming and

Reliability
CS 111

Operating Systems
Peter Reiher

Lecture 10
Page 2

CS 111
Summer 2014

Outline

•  Managing disk space for file systems
•  File naming and directories
•  File volumes
•  File system performance issues
•  File system reliability

Lecture 10
Page 3

CS 111
Summer 2014

Free Space and Allocation Issues

•  How do I keep track of a file system’s free
space?

•  How do I allocate new disk blocks when
needed?
– And how do I handle deallocation?

Lecture 10
Page 4

CS 111
Summer 2014

The Allocation/Deallocation
Problem

•  File systems usually aren’t static
•  You create and destroy files
•  You change the contents of files

– Sometimes extending their length in the process
•  Such changes convert unused disk blocks to

used blocks (or visa versa)
•  Need correct, efficient ways to do that
•  Typically implies a need to maintain a free list

of unused disk blocks

Lecture 10
Page 5

CS 111
Summer 2014

Creating a New File
•  Allocate a free file control block

– For UNIX
•  Search the super-block free I-node list
•  Take the first free I-node

– For DOS
•  Search the parent directory for an unused directory entry

•  Initialize the new file control block
– With file type, protection, ownership, ...

•  Give the new file a name

Lecture 10
Page 6

CS 111
Summer 2014

Extending a File

•  Application requests new data be assigned to a file
–  May be an explicit allocation/extension request
–  May be implicit (e.g., write to a currently non-existent

block – remember sparse files?)

•  Find a free chunk of space
–  Traverse the free list to find an appropriate chunk
–  Remove the chosen chunk from the free list

•  Associate it with the appropriate address in the file
–  Go to appropriate place in the file or extent descriptor
–  Update it to point to the newly allocated chunk

Lecture 10
Page 7

CS 111
Summer 2014

Deleting a File
•  Release all the space that is allocated to the file

– For UNIX, return each block to the free block list
– DOS does not free space

•  It uses garbage collection
•  So it will search out deallocated blocks and add them to

the free list at some future time

•  Deallocate the file control lock
– For UNIX, zero inode and return it to free list
– For DOS, zero the first byte of the name in the

parent directory
•  Indicating that the directory entry is no longer in use

Lecture 10
Page 8

CS 111
Summer 2014

Free Space Maintenance
•  File system manager manages the free space
•  Getting/releasing blocks should be fast operations

–  They are extremely frequent
–  We'd like to avoid doing I/O as much as possible

•  Unlike memory, it matters what block we choose
–  Best to allocate new space in same cylinder as file’s

existing space
–  User may ask for contiguous storage

•  Free-list organization must address both concerns
–  Speed of allocation and deallocation
–  Ability to allocate contiguous or near-by space

Lecture 10
Page 9

CS 111
Summer 2014

DOS File System Free
Space Management

•  Search for free clusters in desired cylinder
–  We can map clusters to cylinders

•  The BIOS Parameter Block describes the device geometry

–  Look at first cluster of file to choose the desired cylinder
–  Start search at first cluster of desired cylinder
–  Examine each FAT entry until we find a free one

•  If no free clusters, we must garbage collect
–  Recursively search all directories for existing files
–  Enumerate all of the clusters in each file
–  Any clusters not found in search can be marked as free
–  This won’t be fast . . .

Lecture 10
Page 10

CS 111
Summer 2014

Extending a DOS File

•  Note cluster number of current last cluster in file
•  Search the FAT to find a free cluster

–  Free clusters are indicated by a FAT entry of zero
–  Look for a cluster in the same cylinder as previous cluster
–  Put -1 in its FAT entry to indicate that this is the new EOF
–  This has side effect of marking the new cluster as “not

free”

•  Chain new cluster on to end of the file
–  Put the number of new cluster into FAT entry for last

cluster

Lecture 10
Page 11

CS 111
Summer 2014

DOS Free Space
boot
block

File Allocation
Table data clusters BIOS

parms

0 0 ## … 0 ##

Each FAT entry corresponds to a cluster, and contains the
number of the next cluster.

A value of zero indicates a cluster that is not allocated to any
file, and is therefore free.

-1

Lecture 10
Page 12

CS 111
Summer 2014

The BSD File System
Free Space Management

•  BSD is another version of Unix
•  The details of its inodes are similar to those of

Unix System V
– As previously discussed

•  Other aspects are somewhat different
–  Including free space management
– Typically more advanced

•  Uses bit map approach to managing free space
– Keeping cylinder issues in mind

Lecture 10
Page 13

CS 111
Summer 2014

The BSD Approach
•  Instead of all control information at start of disk,
•  Divide file system into cylinder groups

–  Each cylinder group has its own control information
•  The cylinder group summary

–  Active cylinder group summaries are kept in memory
–  Each cylinder group has its own inodes and blocks
–  Free block list is a bit-map in cylinder group summary

•  Enables significant reductions in head motion
–  Data blocks in file can be allocated in same cylinder
–  Inode and its data blocks in same cylinder group
–  Directories and their files in same cylinder group

Lecture 10
Page 14

CS 111
Summer 2014

BSD Cylinder Groups
and Free Space

I-nodes data blocks

file system &
cylinder group
parameters

free block
bit-map

free I-node
bit-map

cylinders

cylinder
groups

0 100 200 300 400

Lecture 10
Page 15

CS 111
Summer 2014

Bit Map Free Lists

block #1
(in use)

block #2
(in use)

block #3
(free)

block #4
(in use)

block #5
(free)

block #6
(free)

1 0 0 0 1 1 …

Actual data blocks

BSD Unix file systems use bit-maps to keep
track of both free blocks and free I-nodes in

each cylinder group

Lecture 10
Page 16

CS 111
Summer 2014

Extending a BSD/Unix File
•  Determine the cylinder group for the file’s inode

–  Calculated from the inode’s identifying number
•  Find the cylinder for the previous block in the file
•  Find a free block in the desired cylinder

–  Search the free-block bit-map for a free block in the right
cylinder

–  Update the bit-map to show the block has been allocated

•  Update the inode to point to the new block
–  Go to appropriate block pointer in inode/indirect block
–  If new indirect block is needed, allocate/assign it first
–  Update inode/indirect to point to new block

Lecture 10
Page 17

CS 111
Summer 2014

Unix File Extension

1st

2nd

1st

block pointers
(in I-node)

2nd

10th
11th
12th
13th

3rd
4th
5th
6th
7th
8th
9th

C.G.
summary

Free
I-node
bit map

Free
block

bit map

1. Determine cylinder group and
get its information
2. Consult the cylinder group free
block bit map to find a good block
3. Allocate the block to the file

3d

3.1 Set appropriate block pointer
to it
3.2 Update the free block bit map

✔

Lecture 10
Page 18

CS 111
Summer 2014

Naming in File Systems

•  Each file needs some kind of handle to allow
us to refer to it

•  Low level names (like inode numbers) aren’t
usable by people or even programs

•  We need a better way to name our files
– User friendly
– Allowing for easy organization of large numbers of

files
– Readily realizable in file systems

Lecture 10
Page 19

CS 111
Summer 2014

File Names and Binding
•  File system knows files by descriptor structures
•  We must provide more useful names for users
•  The file system must handle name-to-file mapping

–  Associating names with new files
–  Finding the underlying representation for a given name
–  Changing names associated with existing files
–  Allowing users to organize files using names

•  Name spaces – the total collection of all names
known by some naming mechanism
– Sometimes all names that could be created by the

mechanism

Lecture 10
Page 20

CS 111
Summer 2014

Name Space Structure
•  There are many ways to structure a name space

– Flat name spaces
•  All names exist in a single level

– Hierarchical name spaces
•  A graph approach
•  Can be a strict tree
•  Or a more general graph (usually directed)

•  Are all files on the machine under the same
name structure?

•  Or are there several independent name spaces?

Lecture 10
Page 21

CS 111
Summer 2014

Some Issues in Name
Space Structure

•  How many files can have the same name?
–  One per file system ... flat name spaces
–  One per directory ... hierarchical name spaces

•  How many different names can one file have?
–  A single “true name”
–  Only one “true name”, but aliases are allowed
–  Arbitrarily many
–  What’s different about “true names”?

•  Do different names have different characteristics?
–  Does deleting one name make others disappear too?
–  Do all names see the same access permissions?

Lecture 10
Page 22

CS 111
Summer 2014

Flat Name Spaces
•  There is one naming context per file system

– All file names must be unique within that context

•  All files have exactly one true name
– These names are probably very long

•  File names may have some structure
– E.g., CAC101.CS111.SECTION1.SLIDES.LECTURE_11

– This structure may be used to optimize searches
– The structure is very useful to users but has no

meaning to the file system
•  Not widely used in modern file systems

Lecture 10
Page 23

CS 111
Summer 2014

Hierarchical Name Spaces
•  Essentially a graphical organization
•  Typically organized using directories

–  A file containing references to other files
–  A non-leaf node in the graph
–  It can be used as a naming context

•  Each process has a current directory
•  File names are interpreted relative to that directory

•  Nested directories can form a tree
–  A file name describes a path through that tree
–  The directory tree expands from a “root” node

•  A name beginning from root is called “fully qualified”
–  May actually form a directed graph

•  If files are allowed to have multiple names

Lecture 10
Page 24

CS 111
Summer 2014

A Rooted Directory Tree
root

user_1 user_2 user_3

file_a

(/user_1/file_a)

file_b

(/user_2/file_b)

file_c

(/user_3/file_c)

dir_a

(/user_1/dir_a)

dir_a

(/user_3/dir_a)

file_a

(/user_1/dir_a/file_a)
file_b

(/user_3/dir_a/file_b)

Lecture 10
Page 25

CS 111
Summer 2014

Directories Are Files
•  Directories are a special type of file

–  Used by OS to map file names into the associated files
•  A directory contains multiple directory entries

–  Each directory entry describes one file and its name

•  User applications are allowed to read directories
–  To get information about each file
–  To find out what files exist

•  Usually only the OS is allowed to write them
–  Users can cause writes through special system calls
–  The file system depends on the integrity of directories

Lecture 10
Page 26

CS 111
Summer 2014

Traversing the Directory Tree
•  Some entries in directories point to child

directories
– Describing a lower level in the hierarchy

•  To name a file at that level, name the parent
directory and the child directory, then the file
– With some kind of delimiter separating the file

name components
•  Moving up the hierarchy is often useful

– Directories usually have special entry for parent
– Many file systems use the name “..” for that

Lecture 10
Page 27

CS 111
Summer 2014

Example: The DOS File System

•  File & directory names separated by back-slashes
–  E.g., \user_3\dir_a\file_b

•  Directory entries are the file descriptors
–  As such, only one entry can refer to a particular file

•  Contents of a DOS directory entry
–  Name (relative to this directory)
–  Type (ordinary file, directory, ...)
–  Location of first cluster of file
–  Length of file in bytes
–  Other privacy and protection attributes

Lecture 10
Page 28

CS 111
Summer 2014

DOS File System Directories

user_1 256 bytes 9 DIR …

Root directory, starting in cluster #1

file name length 1st cluster type …

user_2 512 bytes 31 DIR …

user_3 284 bytes 114 DIR …

Directory \user_3, starting in cluster #114

file name length 1st cluster type …

.. 256 bytes 1 DIR …

dir_a 512 bytes 62 DIR …

file_c 1824 bytes 102 FILE …

Lecture 10
Page 29

CS 111
Summer 2014

File Names Vs. Path Names

•  In flat name spaces, files had “true names”
–  That name is recorded in some central location
–  Name structure (a.b.c) is a convenient convention

•  In DOS, a file is described by a directory entry
–  Local name is specified in that directory entry
–  Fully qualified name is the path to that directory entry

•  E.g., start from root, to user_3, to dir_a, to file_b

–  But DOS files still have only one name

•  What if files had no intrinsic names of their own?
–  All names came from directory paths

Lecture 10
Page 30

CS 111
Summer 2014

Example: Unix Directories
•  A file system that allows multiple file names

–  So there is no single “true” file name, unlike DOS

•  File names separated by slashes
–  E.g., /user_3/dir_a/file_b

•  The actual file descriptors are the inodes
–  Directory entries only point to inodes
–  Association of a name with an inode is called a hard link
–  Multiple directory entries can point to the same inode

•  Contents of a Unix directory entry
–  Name (relative to this directory)
–  Pointer to the inode of the associated file

Lecture 10
Page 31

CS 111
Summer 2014

Unix Directories

user_1 9

file name inode #

user_2 31

user_3 114

Directory /user_3, inode #114

dir_a

file_c

. 1

.. 1

Root directory, inode #1

194

307

. 114

.. 1

file name inode #

Here’s a “..” entry,
pointing to the parent
directory

But what’s this “.”
entry?

It’s a directory entry
that points to the
directory itself!

We’ll see why that’s
useful later

Lecture 10
Page 32

CS 111
Summer 2014

Multiple File Names In Unix
•  How do links relate to files?

–  They’re the names only

•  All other metadata is stored in the file inode
–  File owner sets file protection (e.g., read-only)

•  All links provide the same access to the file
–  Anyone with read access to file can create new link
–  But directories are protected files too

•  Not everyone has read or search access to every directory

•  All links are equal
–  There is nothing special about the first (or owner's) link

Lecture 10
Page 33

CS 111
Summer 2014

Links and De-allocation
•  Files exist under multiple names
•  What do we do if one name is removed?
•  If we also removed the file itself, what about

the other names?
– Do they now point to something non-existent?

•  The Unix solution says the file exists as long
as at least one name exists

•  Implying we must keep and maintain a
reference count of links
–  In the file inode, not in a directory

Lecture 10
Page 34

CS 111
Summer 2014

Unix Hard Link Example

root

user_1 user_3

dir_a file_c

file_a

file_b

Note that we now
associate names with links
rather than with files.

/user_1/file_a and

/user_3/dir_a/file_b

are both links to the same
inode

Lecture 10
Page 35

CS 111
Summer 2014

Hard Links, Directories, and Files

user_1 9

user_2 31

user_3 114

inode #9, directory

dir_a

file_c

. 1

.. 1

inode #1, root directory

194

29

. 114

.. 1

inode #114, directory

dir_a

file_a

118

29

. 9

.. 1

inode #29, file

Lecture 10
Page 36

CS 111
Summer 2014

Symbolic Links
•  A different way of giving files multiple names
•  Symbolic links implemented as a special type of file

–  An indirect reference to some other file
–  Contents is a path name to another file

•  OS recognizes symbolic links
–  Automatically opens associated file instead
–  If file is inaccessible or non-existent, the open fails

•  Symbolic link is not a reference to the inode
–  Symbolic links will not prevent deletion
–  Do not guarantee ability to follow the specified path
–  Internet URLs are similar to symbolic links

Lecture 10
Page 37

CS 111
Summer 2014

Symbolic Link Example

root

user_1 user_3

dir_a file_c

file_a

file_b
(/user_1/file_a)

The link count for
this file is still 1,
though

Lecture 10
Page 38

CS 111
Summer 2014

Symbolic Links, Files, and
Directories

user_1 9

user_2 31

user_3 114

inode #9, directory

dir_a

file_c

. 1

.. 1

inode #1, root directory

194

46

. 114

.. 1

inode #114, directory

dir_a

file_a

118

29

. 9

.. 1

inode #29, file

/user_1/file_a

inode #46, symlink Link count
still equals 1!

Lecture 10
Page 39

CS 111
Summer 2014

File Systems and Multiple Disks
•  You can usually attach more than one disk to a

machine
–  And often do

•  Would it make sense to have a single file system span
the several disks?
–  Considering the kinds of disk-specific information a file

system keeps
–  Like cylinder information

•  Usually more trouble than it’s worth
–  With the exception of RAID . . .

•  Instead, put separate file system on each disk

Lecture 10
Page 40

CS 111
Summer 2014

How About the Other Way Around?

•  Multiple file systems on one disk
•  Divide physical disk into multiple logical disks

–  Often implemented within disk device drivers
–  Rest of system sees them as separate disk drives

•  Typical motivations
–  Permit multiple OSes to coexist on a single disk

•  E.g., a notebook that can boot either Windows or Linux

–  Separation for installation, back-up and recovery
•  E.g., separate personal files from the installed OS file system

–  Separation for free-space
•  Running out of space on one file system doesn't affect others

Lecture 10
Page 41

CS 111
Summer 2014

Working With Multiple File
Systems

•  So you might have multiple independent file systems
on one machine
–  Each handling its own disk layout, free space, and other

organizational issues

•  How will the overall system work with those several
file systems?

•  Treat them as totally independent namespaces?
•  Or somehow stitch the separate namespaces together?
•  Key questions:

1.  How does an application specify which file it wants?
2.  How does the OS find that file?

Lecture 10
Page 42

CS 111
Summer 2014

Finding Files With Multiple
File Systems

•  Finding files is easy if there is only one file system
–  Any file we want must be on that one file system
–  Directories enable us to name files within a file system

•  What if there are multiple file systems available?
–  Somehow, we have to say which one our file is on

•  How do we specify which file system to use?
–  One way or another, it must be part of the file name
–  It may be implicit (e.g., same as current directory)
–  Or explicit (e.g., every name specifies it)
–  Regardless, we need some way of specifying which file

system to look into for a given file name

Lecture 10
Page 43

CS 111
Summer 2014

Options for Naming With
Multiple Partitions

•  Could specify the physical device it resides on
– E.g., /devices/pci/pci1000,4/disk/lun1/partition2

•  That would get old real quick

•  Could assign logical names to our partitions
– E.g., “A:”, “C:”, “D:”

•  You only have to think physical when you set them up
•  But you still have to be aware multiple volumes exist

•  Could weave a multi-file-system name space
– E.g., Unix mounts

Lecture 10
Page 44

CS 111
Summer 2014

Unix File System Mounts
•  Goal:

– To make many file systems appear to be one giant
one

– Users need not be aware of file system boundaries

•  Mechanism:
– Mount device on directory
– Creates a warp from the named directory to the

top of the file system on the specified device
– Any file name beneath that directory is interpreted

relative to the root of the mounted file system

Lecture 10
Page 45

CS 111
Summer 2014

Unix Mounted File System
Example

file system 4 file system 2 file system 3

root file system

/bin /opt /export

user1 user2

mount filesystem2 on /export/user1
mount filesystem3 on /export/user2
mount filesystem4 on /opt

Lecture 10
Page 46

CS 111
Summer 2014

How Does This Actually Work?

•  Mark the directory that was mounted on
•  When file system opens that directory, don’t

treat it as an ordinary directory
–  Instead, consult a table of mounts to figure out

where the root of the new file system is
•  Go to that device and open its root directory
•  And proceed from there

Lecture 10
Page 47

CS 111
Summer 2014

File System Performance Issues

•  Key factors in file system performance
– Disk issues

•  Head movement
•  Block size

•  Possible optimizations for file systems
– Read-ahead
– Delayed writes
– Caching (general and special purpose)

Lecture 10
Page 48

CS 111
Summer 2014

File Systems and Disk Drives
•  The physics of disk drives impact the

performance of file systems
– Which is unfortunate

•  OS designers want to hide that impact
•  To do so, they must hide variable disk delays

– Preferably without making everything go at the
slowest possible delay

•  This requires many optimizations
– Often based on having a queue of outstanding disk

requests

Lecture 10
Page 49

CS 111
Summer 2014

Optimizing Disk I/O
•  Don't start I/O until disk is on-cylinder or near sector

–  I/O ties up the controller, locking out other operations
–  Other drives seek while one drive is doing I/O

•  Minimize head motion
–  Do all possible reads in current cylinder before moving
–  Make minimum number of trips in small increments

•  Encourage efficient data requests
–  Have lots of requests to choose from
–  Encourage cylinder locality
–  Encourage largest possible block sizes
–  All by OS design choices, not influencing programs/users

Lecture 10
Page 50

CS 111
Summer 2014

Head Motion and File System
Performance

•  File system organization affects head motion
–  If blocks in a single file are spread across the disk
–  If files are spread randomly across the disk
–  If files and “meta-data” are widely separated

•  All files are not used equally often
– 5% of the files account for 90% of disk accesses
– File locality should translate into head cylinder

locality
•  How can these factors to reduce head motion?

Lecture 10
Page 51

CS 111
Summer 2014

Ways To Reduce Head Motion
•  Keep blocks of a file together

–  Easiest to do on original write
–  Try to allocate each new block close to the last one
–  Especially keep them in the same cylinder

•  Keep metadata close to files
–  Again, easiest to do at creation time

•  Keep files in the same directory close together
–  On the assumption directory implies locality of reference

•  If performing compaction, move popular files close
together

Lecture 10
Page 52

CS 111
Summer 2014

File System Performance and
Block Size

•  Larger block sizes result in efficient transfers
–  DMA is very fast, once it gets started
–  Per request set-up and head-motion is substantial

•  They also result in internal fragmentation
–  Expected waste: ½ block per file

•  As disks get larger, speed outweighs wasted space
–  File systems support ever-larger block sizes

•  Clever schemes can reduce fragmentation
–  E.g., use smaller block size for the last block of a file

Lecture 10
Page 53

CS 111
Summer 2014

Read Early, Write Late

•  If we read blocks before we actually need
them, we don’t have to wait for them
– But how can we know which blocks to read early?

•  If we write blocks long after we told the
application it was done, we don’t have to wait
– But are there bad consequences of delaying those

writes?
•  Some optimizations depend on good answers

to these questions

Lecture 10
Page 54

CS 111
Summer 2014

Read-Ahead
•  Request blocks from the disk before any

process asked for them
•  Reduces process wait time
•  When does it make sense?

– When client specifically requests sequential access
– When client seems to be reading sequentially

•  What are the risks?
– May waste disk access time reading unwanted

blocks
– May waste buffer space on unneeded blocks

Lecture 10
Page 55

CS 111
Summer 2014

Delayed Writes
•  Don’t wait for disk write to complete to tell

application it can proceed
•  Written block is in a buffer in memory
•  Wait until it’s “convenient” to write it to disk

–  Handle reads from in-memory buffer
•  Benefits:

–  Applications don’t wait for disk writes
–  Writes to disk can be optimally ordered
–  If file is deleted soon, may never need to perform disk I/O

•  Potential problems:
–  Lost writes when system crashes
–  Buffers holding delayed writes can’t be re-used

Lecture 10
Page 56

CS 111
Summer 2014

Caching and Performance

•  Big performance wins are possible if caches
work well
– They typically contain the block you’re looking for

•  Should we have one big LRU cache for all
purposes?

•  Should we have some special-purpose caches?
–  If so, is LRU right for them?

Lecture 10
Page 57

CS 111
Summer 2014

Common Types of Disk Caching
•  General block caching

– Popular files that are read frequently
– Files that are written and then promptly re-read
– Provides buffers for read-ahead and deferred write

•  Special purpose caches
– Directory caches speed up searches of same dirs
–  Inode caches speed up re-uses of same file

•  Special purpose caches are more complex
– But they often work much better

Lecture 10
Page 58

CS 111
Summer 2014

Performance Gain For Different
Types of Caches

General Block Cache

Special Purpose Cache

Cache size (bytes)

Per
formance

Lecture 10
Page 59

CS 111
Summer 2014

Why Are Special Purpose
Caches More Effective?

•  They match caching granularity to their need
–  E.g., cache inodes or directory entries
–  Rather than full blocks

•  Why does that help?
•  Consider an example:

–  A block might contain 100 directory entries, only four of
which are regularly used

–  Caching the other 96 as part of the block is a waste of
cache space

–  Caching 4 entries allows more popular entries to be cached
–  Tending to lead to higher hit ratios

Lecture 10
Page 60

CS 111
Summer 2014

File Systems Reliability
•  File systems are meant to store data

persistently
•  Meaning they are particularly sensitive to

errors that screw things up
– Other elements can sometimes just reset and restart
– But if a file is corrupted, that’s really bad

•  How can we ensure our file system’s integrity
is not compromised?

Lecture 10
Page 61

CS 111
Summer 2014

Causes of System Data Loss
•  OS or computer stops with writes still pending

–  .1-100/year per system
•  Defects in media render data unreadable

–  .1 – 10/year per system

•  Operator/system management error
–  .01-.1/year per system

•  Bugs in file system and system utilities
–  .01-.05/year per system

•  Catastrophic device failure
–  .001-.01/year per system

Lecture 10
Page 62

CS 111
Summer 2014

Dealing With Media Failures
•  Most media failures are for a small section of the

device, not huge extents of it
•  Don't use known bad sectors

–  Identify all known bad sectors (factory list, testing)
–  Assign them to a “never use” list in file system
–  Since they aren't free, they won't be used by files

•  Deal promptly with newly discovered bad blocks
–  Most failures start with repeated “recoverable” errors
–  Copy the data to another block ASAP
–  Assign new block to file in place of failing block
–  Assign failing block to the “never use” list

Lecture 10
Page 63

CS 111
Summer 2014

Problems Involving System Failure

•  Delayed writes lead to many problems when
the system crashes

•  Other kinds of corruption can also damage file
systems

•  We can combat some of these problems using
ordered writes

•  But we may also need mechanisms to check
file system integrity
– And fix obvious problems

Lecture 10
Page 64

CS 111
Summer 2014

Deferred Writes – Promise and
Dangers

•  Deferring disk writes can be a big performance win
–  When user updates files in small increments
–  When user repeatedly updates the same data

•  It may also make sense for meta-data
–  Writing to a file may update an indirect block many times
–  Unpacking a zip creates many files in same directory
–  It also allocates many consecutive inodes

•  But deferring writes can also create big problems
–  If the system crashes before the writes are done
–  Some user data may be lost
–  Or even some meta-data updates may be lost

Lecture 10
Page 65

CS 111
Summer 2014

Performance and Integrity
•  It is very important that file systems be fast

– File system performance drives system
performance

•  It is absolutely vital that they be robust
– Files are used to store important data

•  E.g., student projects, grades, video games, …

•  We must know that our files are safe
– That the files will not disappear after they are

written
– That the data will not be corrupted

Lecture 10
Page 66

CS 111
Summer 2014

Deferred Writes – A Worst Case
Scenario

•  Process allocates a new block for file A
–  We get a new block (x) from the free list
–  We write the updated inode for file A

•  Including a pointer to x

–  We defer free-list write-back (which happens all the time)
•  The system crashes, and after it reboots

–  A new process wants a new block for file B
–  We get block x from the (stale) free list

•  Two different files now contain the same block
–  When file A is written, file B gets corrupted
–  When file B is written, file A gets corrupted

Lecture 10
Page 67

CS 111
Summer 2014

Ordering Writes
•  Many file system corruption problems can be solved

by carefully ordering related writes
•  Write out data before writing pointers to it

–  Unreferenced objects can be garbage collected
–  Pointers to incorrect data/meta-data are much more serious

•  Write out deallocations before allocations
–  Disassociate resources from old files ASAP
–  Free list can be corrected by garbage collection
–  Improperly shared blocks more serious than unlinked ones

•  But it may reduce disk I/O efficiency
–  Creating more head motion than elevator scheduling

Lecture 10
Page 68

CS 111
Summer 2014

Backup – The Ultimate Solution
•  All files should be regularly backed up
•  Permits recovery from catastrophic failures
•  Complete vs. incremental back-ups
•  Desirable features

– Ability to back-up a running file system
– Ability to restore individual files
– Ability to back-up w/o human assistance

•  Should be considered as part of FS design
–  I.e., make file system backup-friendly

