
Lecture 1
Page 1

CS 111
Summer 2014

Introduction
CS 111

Operating System Principles
Peter Reiher

Lecture 1
Page 2

CS 111
Summer 2014

Outline

•  Administrative materials
•  Why study operating systems?

Lecture 1
Page 3

CS 111
Summer 2014

Administrative Issues

•  Instructor and TA
•  Load and prerequisites
•  Web site, syllabus, reading, and lectures
•  Exams, homework, projects
•  Grading
•  Academic honesty

Lecture 1
Page 4

CS 111
Summer 2014

Instructor: Peter Reiher

•  UCLA Computer Science department faculty
member

•  Long history of research in operating systems
•  Email: reiher@cs.ucla.edu
•  Office: 3532F Boelter Hall

– Office hours: TTh 1-2
– Often available at other times

Lecture 1
Page 5

CS 111
Summer 2014

TA

•  ???
•  Lab sessions Fridays from 10-12 AM, in

Geology 4660
•  Office hours to be announced

Lecture 1
Page 6

CS 111
Summer 2014

Instructor/TA Division of
Responsibilities

•  Instructor handles all lectures, readings, and
tests
– Ask me about issues related to these

•  TA handles projects
– Ask him about issues related to these

•  Generally, instructor won’t be involved with
project issues
– So direct those questions to the TA

Lecture 1
Page 7

CS 111
Summer 2014

Web Site
•  http://www.lasr.cs.ucla.edu/classes/cs111_summer2014
•  What’s there:

– Schedules for reading, lectures, exams, projects
– Copies of lecture slides (Powerpoint)
– Announcements
– Sample midterm and final problems

Lecture 1
Page 8

CS 111
Summer 2014

Prerequisite Subject Knowledge

•  CS 32 Introduction to Computer Science II
– Objects, data structures, queues, stacks, tables,

trees
•  CS 33 Introduction to Computer Organization

– Assembly language, registers, memory
– Linkage conventions, stack frames, register saving

•  CS 35 Software Construction Laboratory
– Fundamental software tools used in handling

complex systems

Lecture 1
Page 9

CS 111
Summer 2014

Course Format

•  Two weekly (average 20 page) reading assignments
–  Mostly from the primary text
–  A few supplementary articles available on web

•  Two weekly lectures
•  Midterm and final exams
•  Four (10-25 hour) team projects

–  Exploring and exploiting OS features
•  One design project (10-25 hours)

–  Working off one of the team projects

Lecture 1
Page 10

CS 111
Summer 2014

Course Load
•  Reputation: THE hardest undergrad CS class

– Fast pace through much non-trivial material
– Summer schedule only increases the pace

•  Expectations you should have
–  lectures 4-6 hours/week
–  reading 3-6 hours/week
– projects 3-20 hours/week
– exam study 5-15 hours (twice)

•  Keeping up (week by week) is critical
– Catching up is extremely difficult

Lecture 1
Page 11

CS 111
Summer 2014

Primary Text for Course

•  Saltzer and Kaashoek: Principles of Computer
Systems Design
– Background reading for most lectures

•  Supplemented with web-based materials

Lecture 1
Page 12

CS 111
Summer 2014

Course Grading
•  Basis for grading:

–  1 midterm exam 25%
–  Final exam 30%
–  Projects 45%

•  I do look at distribution for final grades
– But don’t use a formal curve

•  All scores available on MyUCLA
– Please check them for accuracy

Lecture 1
Page 13

CS 111
Summer 2014

Midterm Examination

•  When: end of the 4th week (in recitation section)
•  Scope: All lectures up to the exam date

–  Approximately 60% lecture, 40% text
•  Format:

–  Closed book
–  10-15 essay questions, most with short answers

•  Goals:
–  Test understanding of key concepts
–  Test ability to apply principles to practical problems

Lecture 1
Page 14

CS 111
Summer 2014

Final Exam

•  When: Last day of 8th week (recitation section)
•  Scope: Entire course
•  Format:

–  6-8 hard multi-part essay questions
–  You get to pick a subset of them to answer

•  Goals:
–  Test mastery of key concepts
–  Test ability to apply key concepts to real problems
–  Use key concepts to gain insight into new problems

Lecture 1
Page 15

CS 111
Summer 2014

Lab Projects
•  Format:

– 4 regular projects
– 2 mini-projects
– May be done solo or in teams

•  Goals:
– Develop ability to exploit OS features
– Develop programming/problem solving ability
– Practice software project skills

•  Lab and lecture are fairly distinct
–  Instructor cannot help you with projects
– TA can’t help with lectures, exams

Lecture 1
Page 16

CS 111
Summer 2014

Design Problems

•  Each lab project contains suggestions for
extensions

•  Each student is assigned one design project
from among the labs
–  Individual or two person team

•  Requires more creativity than labs
– Usually requires some coding

•  Handled by the TA

Lecture 1
Page 17

CS 111
Summer 2014

Late Assignments & Make-ups

•  Labs
– Due dates set by TA
– TA also sets policy on late assignments

•  Exams
– Only possible with prior consent of the instructor
– Be careful of the exam dates!
–  If you miss it, you’re out of luck

Lecture 1
Page 18

CS 111
Summer 2014

Academic Honesty
•  It is OK to study with friends

–  Discussing problems helps you to understand them
•  It is OK to do independent research on a subject

–  There are many excellent treatments out there
•  But all work you submit must be your own

–  Do not write your lab answers with a friend
–  Do not copy another student's work
–  Do not turn in solutions from off the web
–  If you do research on a problem, cite your sources

•  I decide when two assignments are too similar
–  And I forward them immediately to the Dean

•  If you need help, ask the instructor

Lecture 1
Page 19

CS 111
Summer 2014

Academic Honesty – Projects
•  Do your own projects

–  Work only with your team-mate
–  If you need additional help, ask the TA

•  You must design and write all your own code
–  Other than cooperative work with your team-mate
–  Do not ask others how they solved the problem
–  Do not copy solutions from the web, files or listings
–  Cite any research sources you use

•  Protect yourself
–  Do not show other people your solutions
–  Be careful with old listings

Lecture 1
Page 20

CS 111
Summer 2014

Academic Honesty and the Internet
•  You might be able to find existing answers to

some of the assignments on line
•  Remember, if you can find it, so can we
•  It IS NOT OK to copy the answers from other

people’s old assignments
– People who tried that have been caught and

referred to the Office of the Dean of Students
•  ANYTHING you get off the Internet must be

treated as reference material
–  If you use it, quote it and reference it

Lecture 1
Page 21

CS 111
Summer 2014

Introduction to the Course

•  Purpose of course and relationships to other
courses

•  Why study operating systems?
•  Major themes & lessons in this course

Lecture 1
Page 22

CS 111
Summer 2014

What Will CS 111 Do?
•  Build on concepts from other courses

–  Data structures, programming languages, assembly
language programming, network protocols, computer
architectures, ...

•  Prepare you for advanced courses
–  Data bases and distributed computing
–  Security, fault-tolerance, high availability
–  Computer system modeling, queueing theory

•  Provide you with foundation concepts
–  Processes, threads, virtual address space, files
–  Capabilities, synchronization, leases, deadlock

Lecture 1
Page 23

CS 111
Summer 2014

Why Study Operating Systems?
•  Few of you will actually build OSs
•  But many of you will:

–  Set up, configure, manage computer systems
–  Write programs that exploit OS features
–  Work with complex, distributed, parallel software
–  Work with abstracted services and resources

•  Many hard problems have been solved in OS context
–  Synchronization, security, integrity, protocols, distributed

computing, dynamic resource management, ...
–  In this class, we study these problems and their solutions
–  These approaches can be applied to other areas

Lecture 1
Page 24

CS 111
Summer 2014

Why Are Operating Systems
Interesting?

•  They are extremely complex
–  But try to appear simple enough for everyone to use

•  They are very demanding
–  They require vision, imagination, and insight
–  They must have elegance and generality
–  They demand meticulous attention to detail

•  They are held to very high standards
–  Performance, correctness, robustness,
–  Scalability, extensibility, reusability

•  They are the base we all work from

Lecture 1
Page 25

CS 111
Summer 2014

Recurring OS Themes
•  View services as objects and operations

–  Behind every object there is a data structure
•  Separate policy from mechanism

–  Policy determines what can/should be done
–  Mechanism implements basic operations to do it
–  Mechanisms shouldn’t dictate or limit policies
–  Must be able to change policies without changing

mechanisms

•  Parallelism and asynchrony are powerful and
necessary
–  But dangerous when used carelessly

Lecture 1
Page 26

CS 111
Summer 2014

More Recurring Themes
•  An interface specification is a contract

– Specifies responsibilities of producers &
consumers

– Basis for product/release interoperability

•  Interface vs. implementation
– An implementation is not a specification
– Many compliant implementations are possible
–  Inappropriate dependencies cause problems

•  Modularity and functional encapsulation
– Complexity hiding and appropriate abstraction

Lecture 1
Page 27

CS 111
Summer 2014

What Is An Operating System?

•  Many possible definitions
•  One is:

–  It is low level software . . .
– That provides better abstractions of hardware

below it
– To allow easy, safe, fair use and sharing of those

resources

Lecture 1
Page 28

CS 111
Summer 2014

What Does an OS Do?

•  It manages hardware for programs
– Allocates hardware and manages its use
– Enforces controlled sharing (and privacy)
– Oversees execution and handles problems

•  It abstracts the hardware
– Makes it easier to use and improves s/w portability
– Optimizes performance

•  It provides new abstractions for applications
– Powerful features beyond the bare hardware

Lecture 1
Page 29

CS 111
Summer 2014

What Does An OS Look Like?
•  A set of management & abstraction services

–  Invisible, they happen behind the scenes
•  Applications see objects and their services

–  CPU supports data-types and operations
•  Bytes, shorts, longs, floats, pointers, ...
•  Add, subtract, copy, compare, indirection, ...

–  So does an operating system, but at a higher level
•  Files, processes, threads, devices, ports, ...
•  Create, destroy, read, write, signal, ...

•  An OS extends a computer
–  Creating a much richer virtual computing platform

•  Supporting richer objects, more powerful operations

Lecture 1
Page 30

CS 111
Summer 2014

Where Does the OS Fit In?

Operating System"

 System Call Interface"

Hardware"

 Standard instruction set"Privileged instruction set"

(arithmetic, logical, copy, test, flow-control operations, ...)

System Services/Libraries"

 Application Binary Interface"

(e.g. string, random #s, encryption, graphics ...)

Applications Software"
(e.g. word processor, compiler, VOIP program, ...)

Lecture 1
Page 31

CS 111
Summer 2014

What’s Special About the OS?
•  It is always in control of the hardware

–  Automatically loaded when the machine boots
–  First software to have access to hardware
–  Continues running while apps come & go

•  It alone has complete access to hardware
–  Privileged instruction set, all of memory & I/O

•  It mediates applications’ access to hardware
–  Block, permit, or modify application requests

•  It is trusted
–  To store and manage critical data
–  To always act in good faith

•  If the OS crashes, it takes everything else with it
–  So it better not crash . . .

Lecture 1
Page 32

CS 111
Summer 2014

What Functionality Is In the OS?
•  As much as necessary, as little as possible

–  OS code is very expensive to develop and maintain
•  Functionality must be in the OS if it ...

–  Requires the use of privileged instructions
–  Requires the manipulation of OS data structures
–  Must maintain security, trust, or resource integrity

•  Functions should be in libraries if they ...
–  Are a service commonly needed by applications
–  Do not actually have to be implemented inside OS

•  But there is also the performance excuse
–  Some things may be faster if done in the OS

Lecture 1
Page 33

CS 111
Summer 2014

Where To Offer a Service?

•  Hardware, OS, library or application?
•  Increasing requirements for stability as you

move through these options
•  Hardware services rarely change
•  OS services can change, but it’s a big deal
•  Libraries a bit more dynamic
•  Applications can change services much more

readily

Lecture 1
Page 34

CS 111
Summer 2014

Another Reason For This Choice

•  Who uses it?
•  Things literally everyone uses belong lower in

the hierarchy
– Particularly if the same service needs to work the

same for everyone
•  Things used by fewer/more specialized parties

belong higher
– Particularly if each party requires a substantially

different version of the service

Lecture 1
Page 35

CS 111
Summer 2014

The OS and Speed

•  One reason operating systems get big is based on
speed

•  It’s faster to offer a service in the OS than outside it
–  If it involves processes communicating, working at app

level requires scheduling and swapping them
–  The OS has direct access to many pieces of state and

system services
–  The OS can make direct use of privileged instructions

•  Thus, there’s a push to move services with strong
performance requirements down to the OS

Lecture 1
Page 36

CS 111
Summer 2014

The OS and Abstraction

•  One major function of an OS is to offer
abstract versions of resources
– As opposed to actual physical resources

•  Essentially, the OS implements the abstract
resources using the physical resources
– E.g., processes (an abstraction) are implemented

using the CPU and RAM (physical resources)
– And files (an abstraction) are implemented using

disks (a physical resource)

Lecture 1
Page 37

CS 111
Summer 2014

Why Abstract Resources?
•  The abstractions are typically simpler and better

suited for programmers and users
–  Easier to use than the original resources

•  E.g., don’t need to worry about keeping track of disk interrupts

–  Compartmentalize/encapsulate complexity
•  E.g., need not be concerned about what other executing code is

doing and how to stay out of its way

–  Eliminate behavior that is irrelevant to user
•  E.g., hide the sectors and tracks of the disk

–  Create more convenient behavior
•  E.g., make it look like you have the network interface entirely for

your own use

Lecture 1
Page 38

CS 111
Summer 2014

Common Types of OS Resources

•  Serially reusable resources
•  Partitionable resources
•  Sharable resources

Lecture 1
Page 39

CS 111
Summer 2014

Serially Reusable Resources

•  Used by multiple clients, but only one at a time
– Time multiplexing

•  Require access control to ensure exclusive use
•  Require graceful transitions from one user to

the next
– A switch that totally hides the fact that the resource

used to belong to someone else
•  Examples: printers, bathroom stalls

Lecture 1
Page 40

CS 111
Summer 2014

Partitionable Resources

•  Divided into disjoint pieces for multiple clients
– Spatial multiplexing

•  Needs access control to ensure:
– Containment: you cannot access resources outside

of your partition
– Privacy: nobody else can access resources in your

partition
•  Examples: disk space, dormitory rooms

Lecture 1
Page 41

CS 111
Summer 2014

Shareable Resources
•  Usable by multiple concurrent clients

– Clients do not have to “wait” for access to resource
– Clients don’t “own” a particular subset of resource

•  May involve (effectively) limitless resources
– Air in a room, shared by occupants
– Copy of the operating system, shared by processes

•  May involve under-the-covers multiplexing
– Cell-phone channel (time and frequency

multiplexed)
– Shared network interface (time multiplexed)

Lecture 1
Page 42

CS 111
Summer 2014

General OS Trends

•  They have grown larger and more sophisticated
•  Their role has fundamentally changed

–  From shepherding the use of the hardware
–  To shielding the applications from the hardware
–  To providing powerful application computing platform

•  They still sit between applications and hardware
•  Best understood through services they provide

–  Capabilities they add
–  Applications they enable
–  Problems they eliminate

Lecture 1
Page 43

CS 111
Summer 2014

Another Important OS Trend
•  Convergence

– There are a handful of widely used OSs
– New ones come along very rarely

•  OSs in the same family (e.g., Windows or
Linux) are used for vastly different purposes
– Making things challenging for the OS designer

•  Most OSs are based on pretty old models
– Linux comes from Unix (1970s vintage)
– Windows from the early 1980s

Lecture 1
Page 44

CS 111
Summer 2014

A Resulting OS Challenge

•  We are basing the OS we use today on an
architecture designed 30-40 years ago

•  We can make some changes in the architecture
•  But not too many

– Due to compatibility
– And fundamental characteristics of the architecture

•  Requires OS designers and builders to
shoehorn what’s needed today into what made
sense yesterday

Lecture 1
Page 45

CS 111
Summer 2014

Important OS Properties

•  For real operating systems built and used by
real people

•  Differs depending on who you are talking
about
– Users
– Service providers
– Application developers
– OS developers

Lecture 1
Page 46

CS 111
Summer 2014

For the End Users,

•  Reliability
•  Performance
•  Upwards compatibility in releases
•  Support for differing hardware

– Currently available platforms
– What’s available in the future

•  Availability of key applications
•  Security

Lecture 1
Page 47

CS 111
Summer 2014

Reliability

•  Your OS really should never crash
– Since it takes everything else down with it

•  But also need dependability in a different sense
– The OS must be depended on to behave as it’s

specified
– Nobody wants surprises from their operating

system
– Since the OS controls everything, unexpected

behavior could be arbitrarily bad

Lecture 1
Page 48

CS 111
Summer 2014

Performance

•  A loose goal
•  The OS must perform well in critical situations
•  But optimizing the performance of all OS

operations not always critical
•  Nothing can take too long
•  But if something is “fast enough,” adding

complexity to make it faster not worthwhile

Lecture 1
Page 49

CS 111
Summer 2014

Upward Compatibility

•  People want new releases of an OS
– New features, bug fixes, enhancements
– Security patches to protect from malware

•  People also fear new releases of an OS
– OS changes can break old applications

•  What makes the compatibility issue
manageable?
– Stable interfaces

Lecture 1
Page 50

CS 111
Summer 2014

Stable Interfaces

•  Designers should start with well specified
Application Interfaces
– Must keep them stable from release to release

•  Application developers should only use
committed interfaces
– Don’t use undocumented features or erroneous

side effects

Lecture 1
Page 51

CS 111
Summer 2014

APIs
•  Application Program Interfaces

– A source level interface, specifying:
•  Include files, data types, constants
•  Macros, routines and their parameters

•  A basis for software portability
– Recompile program for the desired architecture
– Linkage edit with OS-specific libraries
– Resulting binary runs on that architecture and OS

•  An API compliant program will compile & run
on any compliant system

Lecture 1
Page 52

CS 111
Summer 2014

ABIs
•  Application Binary Interfaces

– A binary interface, specifying
•  Dynamically loadable libraries (DLLs)
•  Data formats, calling sequences, linkage conventions

– The binding of an API to a hardware architecture
•  A basis for binary compatibility

– One binary serves all customers for that hardware
•  E.g. all x86 Linux/BSD/MacOS/Solaris/…
•  May even run on Windows platforms

•  An ABI compliant program will run
(unmodified) on any compliant system

Lecture 1
Page 53

CS 111
Summer 2014

For the Service Providers,
•  Reliability
•  Performance
•  Upwards compatibility in releases
•  Platform support (wide range of platforms)
•  Manageability
•  Total cost of ownership
•  Support (updates and bug fixes)
•  Flexibility (in configurations and applications)
•  Security

Lecture 1
Page 54

CS 111
Summer 2014

For the Application Developers,
•  Reliability
•  Performance
•  Upwards compatibility in releases
•  Standards conformance
•  Functionality (current and roadmap)
•  Middleware and tools
•  Documentation
•  Support (how to ...)

Lecture 1
Page 55

CS 111
Summer 2014

For the OS Developers,

•  Reliability
•  Performance
•  Maintainability
•  Low cost of development

– Original and ongoing

Lecture 1
Page 56

CS 111
Summer 2014

Maintainability
•  Operating systems have very long lives

– Solaris, the “new kid on the block,” came out in 1993

•  Basic requirements will change many times
•  Support costs will dwarf initial development
•  This makes maintainability critical
•  Aspects of maintainability:

– Understandability
– Modularity/modifiability
– Testability

Lecture 1
Page 57

CS 111
Summer 2014

Critical OS Abstractions

•  One of the main roles of an operating system is
to provide abstract services
– Services that are easier for programs and users to

work with
•  What are the important abstractions an OS

provides?

Lecture 1
Page 58

CS 111
Summer 2014

Abstractions of Memory

•  Many resources used by programs and people
relate to data storage
– Variables
– Chunks of allocated memory
– Files
– Database records
– Messages to be sent and received

•  These all have some similar properties

Lecture 1
Page 59

CS 111
Summer 2014

The Basic Memory Operations

•  Regardless of level or type, memory
abstractions support a couple of operations
– WRITE(name, value)

•  Put a value into a memory location specified by name

– value <- READ(name)
•  Get a value out of a memory location specified by name

•  Seems pretty simple
•  But going from a nice abstraction to a physical

implementation can be complex

Lecture 1
Page 60

CS 111
Summer 2014

An Example Memory Abstraction
•  A typical file
•  We can read or write the file
•  We can read or write arbitrary amounts of data
•  If we write the file, we expect our next read to

reflect the results of the write
– Coherence

•  If there are several reads/writes to the file, we
expect each to occur in some order
– With respect to the others

Lecture 1
Page 61

CS 111
Summer 2014

Abstractions of Interpreters

•  An interpreter is something that performs
commands

•  Basically, the element of a computer (abstract
or physical) that gets things done

•  At the physical level, we have a processor
•  That level is not easy to use
•  The OS provides us with higher level

interpreter abstractions

Lecture 1
Page 62

CS 111
Summer 2014

Basic Interpreter Components
•  An instruction reference

– Tells the interpreter which instruction to do next

•  A repertoire
– The set of things the interpreter can do

•  An environment reference
– Describes the current state on which the next

instruction should be performed
•  Interrupts

– Situations in which the instruction reference
pointer is overriden

Lecture 1
Page 63

CS 111
Summer 2014

An Example Interpreter Abstraction

•  A CPU
•  It has a program counter register indicating

where the next instruction can be found
– An instruction reference

•  It supports a set of instructions
–  Its repertoire

•  It has contents in registers and RAM
–  Its environment

Lecture 1
Page 64

CS 111
Summer 2014

Abstractions of
Communications Links

•  A communication link allows one interpreter to
talk to another
– On the same or different machines

•  At the physical level, wires and cables
•  At more abstract levels, networks and

interprocess communication mechanisms
•  Some similarities to memory abstractions

– But also differences

Lecture 1
Page 65

CS 111
Summer 2014

Basic Communication Link
Operations

•  SEND(link_name, outgoing_message_buffer)
– Send some information contained in the buffer on

the named link
•  RECEIVE(link_name,

incoming_message_buffer)
– Read some information off the named link and put

it into the buffer
•  Like WRITE and READ, in some respects

Lecture 1
Page 66

CS 111
Summer 2014

An Example Communications
Link Abstraction

•  A Unix-style socket
•  SEND interface:

– send(int sockfd, const void *buf, size_t len, int
flags)

– The sockfd is the link name
– The buf is the outgoing message buffer

•  RECEIVE interface:
–  recv(int sockfd, void *buf, size_t len, int flags)
– Same parameters as for send

Lecture 1
Page 67

CS 111
Summer 2014

Some Other Abstractions
•  Actors

– Users or other “active” entities

•  Virtual machines
– Collections of other abstractions

•  Protection environments
– Security related, usually

•  Names
•  Not a complete list
•  Not everyone would agree on what’s distinct

