
Lecture 9
Page 1

CS 111
Summer 2013

Working Sets
•  Give each running process an allocation of page

frames matched to its needs
•  How do we know what its needs are?
•  Use working sets
•  Set of pages used by a process in a fixed length

sampling window in the immediate past1

•  Allocate enough page frames to hold each process’
working set

•  Each process runs replacement within its own set

1This definition paraphrased from Peter Denning’s definition

Lecture 9
Page 2

CS 111
Summer 2013

The Natural Working Set Size

Number
of page
faults

Working set size

The
sweet
spot

Insufficient space
leads to huge

numbers of page
faults

Little marginal benefit
for additional space

More, is just “more”.

And if you give page frames to
one process, you can’t give them

to another one

Lecture 9
Page 3

CS 111
Summer 2013

Optimal Working Sets
•  What is optimal working set for a process?
–  Number of pages needed during next time slice

•  What if try to run the process in fewer pages?
–  Needed pages will replace one another

continuously
–  This is called thrashing

•  How can we know what working set size is?
–  By observing the process’ behavior

•  Which pages should be in the working-set?
–  No need to guess, the process will fault for them

Lecture 9
Page 4

CS 111
Summer 2013

Implementing Working Sets

•  Manage the working set size
–  Assign page frames to each in-memory process
–  Processes page against themselves in working set
–  Observe paging behavior (faults per unit time)
–  Adjust number of assigned page frames accordingly

•  Page stealing (WS-Clock) algorithms
–  Track last use time for each page, for owning process
–  Find page least recently used (by its owner)
–  Processes that need more pages tend to get more
–  Processes that don't use their pages tend to lose them

Lecture 9
Page 5

CS 111
Summer 2013

Working Set Clock Algorithm

1

0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 1 0 0

page
frame

P0

15 51 65 80 15 70 72 54 23 45 25 47

referenced
process
last ref

Clock pointer

13 14

0 1 1 1 0

P0 P0 P0 P0 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

69 33 25

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

current execution times P0 = 55 P1 = 75 P2 = 80

P0 gets a fault
page 6 was just referenced

clear ref bit, update time
page 7 is (55-33=22) ms old

 P0 replaces his own page

0

75

0

t = 15

Lecture 9
Page 6

CS 111
Summer 2013

Stealing a Page
0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 0 0

P0

15 51 65 80 15 70 72 54 23 45 25 47

referenced
process
last ref

13 14

0 1 1 1 0

P0 P0 P0 P0 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2

69 33 25

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

current execution times P0 = 55 P1 = 75 P2 = 80

P0 gets a fault
page 6 was just referenced
page 7 is (55-33=22) ms old
page 8 is (80-72=8) ms old
page 9 is (55-54=1) ms old
page 10 is (75-23=52) ms old

 P0 steals this page from P1

0

75

0 0

P0

t = 25

Page
frame

Clock pointer

P0 has been experiencing
too many page faults

recently

Lecture 9
Page 7

CS 111
Summer 2013

Thrashing
•  Working set size characterizes each process
–  How many pages it needs to run for τ milliseconds

•  What if we don’t have enough memory?
–  Sum of working sets exceeds available memory
–  We will thrash unless we do something

•  We cannot squeeze working set sizes
–  This will also cause thrashing

•  Reduce number of competing processes
–  Swap some of the ready processes out
–  To ensure enough memory for the rest to run

•  We can round-robin who is in and out

Lecture 9
Page 8

CS 111
Summer 2013

Pre-Loading
•  What happens when process comes in from

disk?
•  Pure swapping
–  All pages present before process is run, no page faults

•  Pure demand paging
–  Pages are only brought in as needed
–  Fewer pages per process, more processes in memory

•  What if we pre-loaded the last working set?
–  Far fewer pages to be read in than swapping
–  Probably the same disk reads as pure demand paging
–  Far fewer initial page faults than pure demand paging

Lecture 9
Page 9

CS 111
Summer 2013

Clean Vs. Dirty Pages
•  Consider a page, recently brought in from disk
–  There are two copies, one on disk, one in memory

•  If the in-memory copy has not been modified, there is
still a valid copy on disk
–  The in-memory copy is said to be “clean”
–  Clean pages can be replaced without writing them back to

disk

•  If the in-memory copy has been modified, the copy
on disk is no longer up-to-date
–  The in-memory copy is said to be “dirty”
–  If swapped out of memory, must be written to disk

Lecture 9
Page 10

CS 111
Summer 2013

Dirty Pages and Page Replacement
•  Clean pages can be replaced at any time
– The copy on disk is already up to date

•  Dirty pages must be written to disk before the
frame can be reused
– A slow operation we don’t want to wait for

•  Could only swap out clean pages
– But that would limit flexibility

•  How to avoid being hamstrung by too many
dirty page frames in memory?

Lecture 9
Page 11

CS 111
Summer 2013

Pre-Emptive Page Laundering
•  Clean pages give memory scheduler flexibility
– Many pages that can, if necessary, be replaced

•  We can increase flexibility by converting dirty
pages to clean ones

•  Ongoing background write-out of dirty pages
– Find and write-out all dirty, non-running pages
•  No point in writing out a page that is actively in use

– On assumption we will eventually have to page out
– Make them clean again, available for replacement

•  An outgoing equivalent of pre-loading

