- ‘Working Sets N

__

* Give each running process an allocation of page
frames matched to 1ts needs

« How do we know what 1ts needs are?
* Use working sets

* Set of pages used by a process 1n a fixed length
sampling window in the immediate past'

9

* Allocate enough page frames to hold each process
working set

* Each process runs replacement within 1ts own set

/

cs11 'This definition paraphrased from Peter Denning’s definition Lecture 9
Summer 2013 Page 1

/ The Natural Working Set Size \

Insufficient space
leads to huge
numbers of page

Number
of page
faults

\ /

st Working set size et 0
Summer 2013 Page 2

/ Optimal Working Sets \

* What is optimal working set for a process?

— Number of pages needed during next time slice

* What if try to run the process in fewer pages?

— Needed pages will replace one another
continuously

— This is called thrashing
* How can we know what working set size 1s?

— By observing the process’ behavior

\° Which pages should be 1n the working-set?)

s — No need to guess, the process will fault for them recureo

Summer 2013 Page 3

/ Implementing Working Sets \

* Manage the working set size
— Assign page frames to each in-memory process
— Processes page against themselves in working set
— Observe paging behavior (faults per unit time)
— Adjust number of assigned page frames accordingly

* Page stealing (WS-Clock) algorithms
— Track last use time for each page, for owning process

— Find page least recently used (by its owner)
— Processes that need more pages tend to get more

\ — Processes that don't use their pages tend to lose them /

CS 111 Lecture 9
Summer 2013 Page 4

/ Working Set Clock Algorithm \

P, gets a fault
page 6 was just referenced
clear ref bit, update time
\ page 7 is (55-33=22) ms old

P, replaces his own page

CS 111

page
o|1 (2 (3[4 |56 |78 |9 1011 |12]13] 14
frame
referenced
process | Py | Py | Py | Py | Py [Py [Py | Py | Py | Py [Py | Py| Py | P | Py
lastref | 15|51 |69 | 65|80 | 15| 75|33 |72 |54 |23 |25 |45 |25|47
Clock pointer
current execution times | P,=55 P, =75 P,=80 t=15

Summer 2013

/

Lecture 9
Page 5

/ Stealing a Page \

Page
o|j1 (234|567 |8 |9 |10]11|12]13] 14
frame
referenced
process | Py | Py | Py | Py | Py [Py | Py | Py | Py | Py | Py | Py| Py| P | Py
lastref | 15|51 (69 | 65|80 | 15|75 |33 |72 54 25 1 45| 25|47
Clock pointer
current execution times P,=55 P, =75 P,= 80 t=25
L P, gets a fault
P, has been experiencing 0 8 .
page 6 was just referenced
too many page faults page 7 is (55-33=22) ms old
recently page 8 is (80-72=8) ms old
page 9 1s (55-54=1) ms old
\ page 10 1s (75-23=52) ms old /
CS 111

P, steals this page from P, Lecture9
Summer 2013 Page 6

/ Thrashing \

* Working set size characterizes each process

— How many pages it needs to run for T milliseconds

* What if we don’t have enough memory?
— Sum of working sets exceeds available memory

— We will thrash unless we do something

* We cannot squeeze working set sizes
— This will also cause thrashing
* Reduce number of competing processes

— Swap some of the ready processes out
— To ensure enough memory for the rest to run

\' We can round-robin who 1s in and out /

CS 111 Lecture 9
Summer 2013 Page 7

/ Pre-Loading \

* What happens when process comes 1n from
disk?

* Pure swapping

— All pages present before process 1s run, no page faults

* Pure demand paging
— Pages are only brought in as needed

— Fewer pages per process, more processes in memory

* What if we pre-loaded the last working set?

— Far fewer pages to be read in than swapping

\ — Probably the same disk reads as pure demand paging /

csin — Far fewer initial page faults than pure demand paging recureo
Summer 2013 Page 8

/ Clean Vs. Dirty Pages \

* Consider a page, recently brought in from disk
— There are two copies, one on disk, one in memory
* If the in-memory copy has not been modified, there 1s
still a valid copy on disk
— The in-memory copy is said to be “clean”
— Clean pages can be replaced without writing them back to
disk
* If the n-memory copy has been modified, the copy
on disk 1s no longer up-to-date

— The mm-memory copy is said to be “dirty”
\ — If swapped out of memory, must be written to disk /

CS 111 Lecture 9
Summer 2013 Page 9

/Dirty Pages and Page Replacemerh

* Clean pages can be replaced at any time
— The copy on disk 1s already up to date

* Dirty pages must be written to disk before the
frame can be reused

— A slow operation we don’t want to wait for

* Could only swap out clean pages
— But that would limit flexibility

* How to avoid being hamstrung by too many
\ dirty page frames in memory?)

CS 111 Lecture 9
Summer 2013 Page 10

/ Pre-Emptive Page Laundering \

* Clean pages give memory scheduler flexibility
— Many pages that can, if necessary, be replaced
* We can increase flexibility by converting dirty
pages to clean ones
* Ongoing background write-out of dirty pages

— Find and write-out all dirty, non-running pages
* No point in writing out a page that 1s actively in use

— On assumption we will eventually have to page out

— Make them clean again, available for replacement

«i1® An outgoing equivalent of pre-loading Lecture

Summer 2013 Page 11

