
Lecture 9
Page 1

CS 111
Summer 2013

Virtual Memory
•  A generalization of what demand paging

allows
•  A form of memory where the system provides

a useful abstraction
– A very large quantity of memory
– For each process
– All directly accessible via normal addressing
– At a speed approaching that of actual RAM

•  The state of the art in modern memory
abstractions

Lecture 9
Page 2

CS 111
Summer 2013

The Basic Concept
•  Give each process an address space of

immense size
– Perhaps as big as your hardware’s word size allows

•  Allow processes to request segments within
that space

•  Use dynamic paging and swapping to support
the abstraction

•  The key issue is how to create the abstraction
when you don’t have that much real memory

Lecture 9
Page 3

CS 111
Summer 2013

The Key VM Technology:
Replacement Algorithms

•  The goal is to have each page already in
memory when a process accesses it

•  We can’t know ahead of time what pages will
be accessed

•  We rely on locality of access
–  In particular, to determine what pages to move out

of memory and onto disk
•  If we make wise choices, the pages we need in

memory will still be there

Lecture 9
Page 4

CS 111
Summer 2013

The Basics of Page Replacement
•  We keep some set of all possible pages in

memory
– Perhaps not all belonging to the current process

•  Under some circumstances, we need to replace
one of them with another page that’s on disk
– E.g., when we have a page fault

•  Paging hardware and MMU translation allows
us to choose any page for ejection to disk

•  Which one of them should go?

Lecture 9
Page 5

CS 111
Summer 2013

The Optimal Replacement
Algorithm

•  Replace the page that will be next referenced
furthest in the future

•  Why is this the right page?
–  It delays the next page fault as long as possible
– Fewer page faults per unit time = lower overhead

•  A slight problem:
– We would need an oracle to know which page this

algorithm calls for
– And we don’t have one

Lecture 9
Page 6

CS 111
Summer 2013

Do We Require Optimal
Algorithms?

•  Not absolutely
•  What’s the consequence of the algorithm being

wrong?
– We take an extra page fault that we shouldn’t have
– Which is a performance penalty, not a program

correctness penalty
– Often an acceptable tradeoff

•  The more often we’re right, the fewer page faults we
take

Lecture 9
Page 7

CS 111
Summer 2013

Approximating the Optimal
•  Rely on locality of reference
•  Note which pages have recently been used
– Perhaps with extra bits in the page tables
– Updated when the page is accessed

•  Use this data to predict future behavior
•  If locality of reference holds, the pages we

accessed recently will be accessed again soon

Lecture 9
Page 8

CS 111
Summer 2013

Candidate Replacement Algorithms
•  Random, FIFO
– These are dogs, forget ‘em

•  Least Frequently Used
– Sounds better, but it really isn’t

•  Least Recently Used
– Assert that near future will be like the recent past
–  If we haven’t used a page recently, we probably

won’t use it soon
– The computer science equivalent to the “unseen

hand”

Lecture 9
Page 9

CS 111
Summer 2013

Naïve LRU

•  Each time a page is accessed, record the time
•  When you need to eject a page, look at all

timestamps for pages in memory
•  Choose the one with the oldest timestamp
•  Will require us to store timestamps somewhere
•  And to search all timestamps every time we

need to eject a page

Lecture 9
Page 10

CS 111
Summer 2013

True LRU Page Replacement

a b c d a b d e f a b c d

Reference stream

Page table using true LRU

frame 0

frame 1

frame 2

frame 3

a e d

d

c

a

b

e

!

!

!

f

a

b

c

d

!

e

!

Loads 4
Replacements 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lecture 9
Page 11

CS 111
Summer 2013

Maintaining Information for LRU
•  Can we keep it in the MMU?

–  MMU notes the time whenever a page is referenced
–  MMU translation must be blindingly fast

•  Getting/storing time on every fetch would be very expensive
–  At best they will maintain a read and a written bit per page

•  Can we maintain this information in software?
–  Mark all pages invalid, even if they are in memory
–  Take a fault first time each page is referenced, note the time
–  Then mark this page valid for the rest of the time slice
–  Causing page faults to reduce the number of page faults???

•  We need a cheap software surrogate for LRU
–  No extra page faults
–  Can’t scan entire list each time, since it’s big

Lecture 9
Page 12

CS 111
Summer 2013

Clock Algorithms
•  A surrogate for LRU
•  Organize all pages in a circular list
•  MMU sets a reference bit for the page on access
•  Scan whenever we need another page
–  For each page, ask MMU if page has been referenced
–  If so, reset the reference bit in the MMU & skip this page
–  If not, consider this page to be the least recently used
–  Next search starts from this position, not head of list

•  Use position in the scan as a surrogate for age
•  No extra page faults, usually scan only a few pages

Lecture 9
Page 13

CS 111
Summer 2013

Clock Algorithm Page Replacement
a b c d a b d e f a b c d

Reference Stream

True LRU

LRU clock

frame 0
frame 1
frame 2
frame 3

frame 0
frame 1
frame 2
frame 3
clock
pos

a e d

d

c

a

b

e

d

a

b

f

a

b

c

d

a

e

d

loads 4, replacements 7

a

b

c

d

!

!

!

e

f

a

b

c

d

e

Loads 4
Replacements 7

0 1 2 3 0 0 0 0 3 1

!

!

3 1 1 0 2 3

! ! !

! !

! !

1 2 0

!

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lecture 9
Page 14

CS 111
Summer 2013

Comparing True LRU To Clock
Algorithm

•  Same number of loads and replacements
– But didn’t replace the same pages

•  What, if anything, does that mean?
•  Both are just approximations to the optimal
•  If LRU clock’s decisions are 98% as good as

true LRU
– And can be done for 1% of the cost (in hardware

and cycles)
–  It is a bargain!

Lecture 9
Page 15

CS 111
Summer 2013

Page Replacement and
Multiprogramming

•  We don’t want to clear out all the page frames
on each context switch

•  How do we deal with sharing page frames?
•  Possible choices:
– Single global pool
– Fixed allocation of page frames per process
– Working set-based page frame allocations

Lecture 9
Page 16

CS 111
Summer 2013

Single Global Page Frame Pool
•  Treat the entire set of page frames as a shared

resource
•  Approximate LRU for the entire set
•  Replace whichever process’ page is LRU
•  Probably a mistake
–  Bad interaction with round-robin scheduling
– The guy who was last in the scheduling queue will

find all his pages swapped out
– And not because he isn’t using them
– When he gets in, lots of page faults

Lecture 9
Page 17

CS 111
Summer 2013

Per-Process Page Frame Pools
•  Set aside some number of page frames for each

running process
– Use an LRU approximation separately for each

•  How many page frames per process?
•  Fixed number of pages per process is bad
–  Different processes exhibit different locality
•  Which pages are needed changes over time
•  Number of pages needed changes over time

–  Much like different natural scheduling intervals
•  We need a dynamic customized allocation

