
Lecture 9
Page 1

CS 111
Summer 2013

Swapping

•  Segmented paging allows us to have non-
contiguous allocations

•  But it still limits us to the size of physical
RAM

•  How can we avoid that?
•  By keeping some segments somewhere else
•  Where?
•  Maybe on a disk

Lecture 9
Page 2

CS 111
Summer 2013

Swapping Segments To Disk

•  An obvious strategy to increase effective
memory size

•  When a process yields, copy its segments to
disk

•  When it is scheduled, copy them back
•  Paged segments mean we need not put any of

this data in the same place as before yielding
•  Each process could see a memory space as big

as the total amount of RAM

Lecture 9
Page 3

CS 111
Summer 2013

Downsides To Segment Swapping

•  If we actually move everything out, the costs
of a context switch are very high
– Copy all of RAM out to disk
– And then copy other stuff from disk to RAM
– Before the newly scheduled process can do

anything
•  We’re still limiting processes to the amount of

RAM we actually have

Lecture 9
Page 4

CS 111
Summer 2013

Demand Paging

•  What is paging?
– What problem does it solve?
– How does it do so?

•  Locality of reference
•  Page faults and performance issues

Lecture 9
Page 5

CS 111
Summer 2013

What Is Demand Paging?

•  A process doesn’t actually need all its pages in
memory to run

•  It only needs those it actually references
•  So, why bother loading up all the pages when a

process is scheduled to run?
•  And, perhaps, why get rid of all of a process’

pages when it yields?
•  Move pages onto and off of disk “on demand”

Lecture 9
Page 6

CS 111
Summer 2013

How To Make Demand
Paging Work

•  The MMU must support “not present” pages
– Generates a fault/trap when they are referenced
– OS can bring in page and retry the faulted

reference
•  Entire process needn’t be in memory to start

running
– Start each process with a subset of its pages
– Load additional pages as program demands them

•  The big challenge will be performance

Lecture 9
Page 7

CS 111
Summer 2013

Achieving Good Performance for
Demand Paging

•  Demand paging will perform poorly if most
memory references require disk access
– Worse than bringing in all the pages at once,

maybe
•  So we need to be sure most don’t
•  How?
•  By ensuring that the page holding the next

memory reference is already there
– Almost always

Lecture 9
Page 8

CS 111
Summer 2013

Demand Paging and
Locality of Reference

•  How can we predict which pages we need in
memory?
– Since they’d better be there when we ask

•  Primarily, rely on locality of reference
– Put simply, the next address you ask for is likely to

be close to the last address you asked for
•  Do programs typically display locality of

reference?
•  Fortunately, yes!

Lecture 9
Page 9

CS 111
Summer 2013

Instruction Locality of Reference

•  Code usually executes sequences of
consecutive instructions

•  Most branches tend to be relatively short
distances (into code in the same routine)

•  Even routine calls tend to come in clusters
– E.g., we’ll do a bunch of file I/O, then we’ll do a

bunch of list operations

Lecture 9
Page 10

CS 111
Summer 2013

Stack Locality of Reference

•  Obvious locality here
•  We typically need access to things in the

current stack frame
– Either the most recently created one
– Or one we just returned to from another call

•  Since the frames usually aren’t huge, obvious
locality here

Lecture 9
Page 11

CS 111
Summer 2013

Heap Data Locality of Reference

•  Many data references to recently allocated
buffers or structures
– E.g., creating or processing a message

•  Also common to do a great deal of processing
using one data structure
– Before using another

•  But more chances for non-local behavior than
with code or the stack

Lecture 9
Page 12

CS 111
Summer 2013

Page Faults
•  Page tables no longer necessarily contain

pointers to pages of RAM
•  In some cases, the pages are not in RAM, at

the moment
– They’re out on disk

•  When a program requests an address from such
a page, what do we do?

•  Generate a page fault
– Which is intended to tell the system to go get it

Lecture 9
Page 13

CS 111
Summer 2013

Handling a Page Fault
•  Initialize page table entries to “not present”
•  CPU faults if “not present” page is referenced
– Fault enters kernel, just like any other trap
– Forwarded to page fault handler
– Determine which page is required, where it resides
– Schedule I/O to fetch it, then block the process
– Make page table point at newly read-in page
– Back up user-mode PC to retry failed instruction
– Return to user-mode and try again

•  Meanwhile, other processes can run

Lecture 9
Page 14

CS 111
Summer 2013

Pages and Secondary Storage
•  When not in memory, pages live on secondary

storage
–  Typically a disk
–  In an area called “swap space”

•  How do we manage swap space?
–  As a pool of variable length partitions?

•  Allocate a contiguous region for each process

–  As a random collection of pages?
•  Just use a bit-map to keep track of which are free

–  As a file system?
•  Create a file per process (or segment)
•  File offsets correspond to virtual address offsets

Lecture 9
Page 15

CS 111
Summer 2013

Swap Space and Segments
•  Should the swap space be organized somehow by

segments?
•  A paging MMU eliminates need to store consecutive

virtual pages in contiguous physical pages
•  But locality of reference suggests pages in segments

are likely to be used together
•  Disk pays a big performance penalty particularly for

spreading operations across multiple cylinders
•  Well-clustered allocation may lead to more efficient

I/O when we are moving pages in and out
•  Organizing swap by segments can help

Lecture 9
Page 16

CS 111
Summer 2013

Demand Paging Performance
•  Page faults may result in shorter time slices
– Standard overhead/response-time tradeoff

•  Overhead (fault handling, paging-in and out)
– Process is blocked while we are reading in pages
– Delaying execution and consuming cycles
– Directly proportional to the number of page faults

•  Key is having the “right” pages in memory
– Right pages -> few faults, little paging activity
– Wrong pages -> many faults, much paging

•  We can’t control what pages we read in
– Key to performance is choosing which to kick out

