
Lecture 9
Page 1

CS 111
Summer 2013

Memory Management: Paging
and Virtual Memory

CS 111
Operating Systems

Peter Reiher

Lecture 9
Page 2

CS 111
Summer 2013

Outline
•  Paging
•  Swapping and demand paging
•  Virtual memory

Lecture 9
Page 3

CS 111
Summer 2013

Paging

•  What is paging?
– What problem does it solve?
– How does it do so?

•  Paged address translation
•  Paging and fragmentation
•  Paging memory management units
•  Paging and segmentation

Lecture 9
Page 4

CS 111
Summer 2013

Segmentation Revisited
•  Segment relocation solved the relocation

problem for us
•  It used base registers to compute a physical

address from a virtual address
– Allowing us to move data around in physical

memory
– By only updating the base register

•  It did nothing about external fragmentation
–  Because segments are still required to be

contiguous
•  We need to eliminate the “contiguity

requirement”

Lecture 9
Page 5

CS 111
Summer 2013

The Paging Approach
•  Divide physical memory into units of a single

fixed size
– A pretty small one, like 1-4K bytes or words
– Typically called a page frame

•  Treat the virtual address space in the same way
•  For each virtual address space page, store its

data in one physical address page frame
•  Use some magic per-page translation

mechanism to convert virtual to physical pages

Lecture 9
Page 6

CS 111
Summer 2013

Paged Address Translation

CODE DATA STACK

process virtual address space

physical memory

Lecture 9
Page 7

CS 111
Summer 2013

Paging and Fragmentation

•  A segment is implemented as a set of virtual
pages

•  Internal fragmentation
−  Averages only ½ page (half of the last one)

•  External fragmentation
−  Completely non-existent
−  We never carve up pages

Lecture 9
Page 8

CS 111
Summer 2013

How Does This Compare To
Segment Fragmentation?

•  Consider this scenario:
–  Average requested allocation is 128K
–  256K fixed size segments available
–  In the paging system, 4K pages

•  For segmentation, average internal fragmentation is 50%
(128K of 256K used)

•  For paging?
–  Only the last page of an allocation is not full
–  On average, half of it is unused, or 2K
–  So 2K of 128K is wasted, or around 1.5%

•  Segmentation: 50% waste •  Paging: 1.5% waste

Lecture 9
Page 9

CS 111
Summer 2013

Providing the Magic
Translation Mechanism

•  On per page basis, we need to change a virtual
address to a physical address

•  Needs to be fast
– So we’ll use hardware

•  The Memory Management Unit (MMU)
– A piece of hardware designed to perform the magic

quickly

Lecture 9
Page 10

CS 111
Summer 2013

Paging and MMUs

page # page # offset offset

Virtual address Physical address

page #

page #

page #

page #

page #

page #

Page Table

V
V
V

V

V
V
0

0

Virtual page number is
used as an index into

the page table

Selected entry contains
physical page number

Offset within page
remains the same

Valid bit is checked to
ensure that this virtual
page number is legal

Lecture 9
Page 11

CS 111
Summer 2013

Some Examples

0004 041F 1C08 1C08

Virtual address Physical address

0C20

0105

00A1

041F

0D10

0AC3

Page Table

V
V
V

V

V
V
0

0

0000 0100 0C20 0100 0005 3E28

Hmm, no address
Why might that
happen?
And what can we do
about it?

Lecture 9
Page 12

CS 111
Summer 2013

The MMU Hardware
•  MMUs used to sit between the CPU and bus
–  Now they are typically integrated into the CPU

•  What about the page tables?
– Originally implemented in special fast registers
– But there’s a problem with that today
–  If we have 4K pages, and a 64 Gbyte memory, how

many pages are there?
– 236/212 = 224
– Or 16 M of pages
– We can’t afford 16 M of fast registers

Lecture 9
Page 13

CS 111
Summer 2013

Handling Big Page Tables
•  16 M entries in a page table means we can’t use

registers
•  So now they are stored in normal memory
•  But we can’t afford 2 bus cycles for each memory

access
–  One to look up the page table entry
–  One to get the actual data

•  So we have a very fast set of MMU registers used as
a cache
–  Which means we need to worry about hit ratios, cache

invalidation, and other nasty issues
–  TANSTAAFL

Lecture 9
Page 14

CS 111
Summer 2013

The MMU and Multiple Processes

•  There are several processes running
•  Each needs a set of pages
•  We can put any page anywhere
•  But if they need, in total, more pages than

we’ve physically got,
•  Something’s got to go
•  How do we handle these ongoing paging

requirements?

Lecture 9
Page 15

CS 111
Summer 2013

Ongoing MMU Operations

•  What if the current process adds or removes pages?
–  Directly update active page table in memory
–  Privileged instruction to flush (stale) cached entries

•  What if we switch from one process to another?
–  Maintain separate page tables for each process
–  Privileged instruction loads pointer to new page table
–  A reload instruction flushes previously cached entries

•  How to share pages between multiple processes?
–  Make each page table point to same physical page
–  Can be read-only or read/write sharing

Lecture 9
Page 16

CS 111
Summer 2013

So Is Paging Perfect?
•  Pages are a very nice memory allocation unit
– They eliminate internal and external fragmentation
– They require a very simple but powerful MMU

•  They are not a particularly natural unit of data
– Programmers don’t think in terms of pages
– Programs are comprised of, and operate on,

segments
– Segments are the natural “chunks” of virtual

address space
•  E.g., we map a new segment into the virtual address

space
– Each code, data, stack segment contains many

pages

Lecture 9
Page 17

CS 111
Summer 2013

Paging and Segmentation
•  We can use both segments and pages
•  Programs request segments
– Each code, data, stack segment contains many

pages
•  Requires two levels of memory management

abstraction
– A virtual address space is comprised of segments
– Relocation & swapping is done on a page basis
– Segment based addressing, with page based

relocation
•  User processes see segments, paging is

invisible

Lecture 9
Page 18

CS 111
Summer 2013

Relationships Between
Segments and Pages

•  A segment is a named collection of pages
•  Operations on segments:
– Create/open/destroy
– Map/unmap segment to/from process
– Find physical page number of virtual page n

•  Connection between paging & segmentation
– Segment mapping implemented with page

mapping
– Page faulting uses segments to find requested page

Lecture 9
Page 19

CS 111
Summer 2013

Segmentation on Top of Paging
Process virtual address space

cs

ss

Segment base
registers

ds

es

Process physical address space

