
Lecture 7
Page 1

CS 111
Summer 2013

Memory Management
CS 111

Operating Systems
Peter Reiher

Lecture 7
Page 2

CS 111
Summer 2013

Outline
•  What is memory management about?
•  Memory management strategies:
– Fixed partition strategies
– Dynamic domains
– Buffer pools
– Garbage collection
– Memory compaction

Lecture 7
Page 3

CS 111
Summer 2013

Memory Management
•  Memory is one of the key assets used in

computing
•  In particular, memory abstractions that are

usable from a running program
– Which, in modern machines, typically means

RAM
•  We have a limited amount of it
•  Lots of processes want to use it
•  How do we manage its use?

Lecture 7
Page 4

CS 111
Summer 2013

What Is Memory Used For?

•  Anything that a program needs to access
– Except control and temporary values, which are

kept in registers
•  The code
– To allow the process to execute instructions

•  The stack
– To keep track of its state of execution

•  The heap
– To hold dynamically allocated variables

Lecture 7
Page 5

CS 111
Summer 2013

Other Uses of Memory

•  The operating system needs memory itself
•  For its own code, stack, and dynamic

allocations
•  For I/O buffers
•  To hold per-process control data
•  The OS shares the same physical memory that

user processes rely on
•  The OS provides overall memory management

Lecture 7
Page 6

CS 111
Summer 2013

Aspects of the Memory
Management Problem

•  Most processes can’t perfectly predict how much
memory they will use

•  The processes expect to find their existing data when
they need it where they left it

•  The entire amount of data required by all processes
may exceed physical memory

•  Switching between processes must be fast
–  So you can’t much delay for copying data from one place

to another

•  The cost of memory management itself must not be
too high

Lecture 7
Page 7

CS 111
Summer 2013

Memory Management Strategies

•  Fixed partition allocations
•  Dynamic domains
•  Paging
•  Virtual memory
•  We’ll talk about the last two in the next class

Lecture 7
Page 8

CS 111
Summer 2013

Fixed Partition Allocation
•  Pre-allocate partitions for n processes
– Usually one partition per process
• So n partitions

– Reserving space for largest possible process
•  Partitions come in one or a few set sizes
•  Very easy to implement
– Common in old batch processing systems
– Allocation/deallocation very cheap and easy

•  Well suited to well-known job mix

Lecture 7
Page 9

CS 111
Summer 2013

Memory Protection and Fixed
Partitions

•  Need to enforce the boundaries of each
partition

•  To prevent one process from accessing
another’s memory

•  Could use hardware similar to domain registers
for this purpose

•  On the flip side, hard to arrange for shared
memory
– Especially if only one segment per process

Lecture 7
Page 10

CS 111
Summer 2013

Problems With Fixed Partition
Allocation

•  Presumes you know how much memory will
be used ahead of time

•  Limits the number of processes supported to
the total of their memory requirements

•  Not great for sharing memory
•  Fragmentation causes inefficient memory use

Lecture 7
Page 11

CS 111
Summer 2013

Fragmentation

•  A problem for all memory management
systems
– Fixed partitions suffer it especially badly

•  Based on processes not using all the memory
they requested

•  As a result, you can’t provide memory for as
many processes as you theoretically could

Lecture 7
Page 12

CS 111
Summer 2013

Fragmentation Example

Partition 1
8MB

Partition 2
4MB

Partition 3
4MB

process
A

(6 MB) process
B

(3 MB)

process
C

(2 MB)

waste 2MB

waste 2MB waste 1MB

Total waste = 2MB + 1MB + 2MB =
5/16MB = 31%

Let’s say there are three processes, A, B, and C
Their memory requirements:

A: 6 MBytes
B: 3 MBytes
C: 2 MBytes

Available partition sizes:
8 Mbytes

4 Mbytes
4 Mbytes

Lecture 7
Page 13

CS 111
Summer 2013

Internal Fragmentation
•  Fragmentation comes in two kinds:
–  Internal and external

•  This is an example of internal fragmentation
– We’ll see external fragmentation later

•  Wasted space in fixed sized blocks
– The requestor was given more than he needed
– The unused part is wasted, can’t be used for others

•  Internal fragmentation can occur whenever you
force allocation in fixed-sized chunks

Lecture 7
Page 14

CS 111
Summer 2013

More on Internal Fragmentation

•  Internal fragmentation is caused by a mismatch
between
– The chosen sizes of a fixed-sized blocks
– The actual sizes that programs use

•  Average waste: 50% of each block
•  Overall waste reduced by multiple sizes
– Suppose blocks come in sizes S1 and S2
– Average waste = ((S1/2) + (S2 - S1)/2)/2

Lecture 7
Page 15

CS 111
Summer 2013

Multiple Fixed Partitions

•  You could allow processes to request multiple
partitions
– Of a single or a few sizes

•  Doesn’t really help the fragmentation problem
– Now there were more segments to fragment
– Even if each contained less memory

Lecture 7
Page 16

CS 111
Summer 2013

Summary of Fixed Partition
Allocation

•  Very simple
•  Inflexible
•  Subject to a lot of internal fragmentation
•  Not used in many modern systems
– But a possible option for special purpose systems,

like embedded systems
– Where we know exactly what our memory needs

will be

