
Lecture 14
Page 1

CS 111
Summer 2013

Security in Operating Systems:
Basics
CS 111

Operating Systems
Peter Reiher

Lecture 14
Page 2

CS 111
Summer 2013

Outline

•  Basic concepts in computer security
•  Access control
•  Cryptography

Lecture 14
Page 3

CS 111
Summer 2013

Security: Basic Concepts
•  What do we mean by security?
•  What is trust?
•  Why is security a problem?

–  In particular, a problem with a different nature
than, say, performance

– Or even reliability

Lecture 14
Page 4

CS 111
Summer 2013

What Is Security?
•  Security is a policy

– E.g., “no unauthorized user may access this file”
•  Protection is a mechanism

– E.g., “the system checks user identity against
access permissions”

•  Protection mechanisms implement security policies
•  We need to understand our goals to properly set our

policies
– And threats to achieving our goals
– These factors drive which mechanisms we must

use

Lecture 14
Page 5

CS 111
Summer 2013

Security Goals
•  Confidentiality

–  If it’s supposed to be secret, be careful who hears it
•  Integrity

– Don’t let someone change something they
shouldn’t

•  Availability
– Don’t let someone stop others from using services

•  Exclusivity
– Don’t let someone use something he shouldn’t

•  Note that we didn’t mention “computers” here
– This classification of security goals is very general

Lecture 14
Page 6

CS 111
Summer 2013

Access Control
•  Security could be easy

– If we didn’t want anyone to get access to
anything

•  The trick is giving access to only the right
people

•  How do we ensure that a given resource can
only be accessed by the proper people?

•  The OS plays a major role in enforcing access
control

Lecture 14
Page 7

CS 111
Summer 2013

Goals for Access Control

•  Complete mediation
•  Least privilege
•  Useful in a networked environment
•  Scalability
•  Cost and usability

Lecture 14
Page 8

CS 111
Summer 2013

Common Mechanisms for Access
Control in Operating Systems

•  Access control lists
– Like a list of who gets to do something

•  Capabilities
– Like a ring of keys that open different doors

•  They have different properties
•  And are used by the OS in different ways

Lecture 14
Page 9

CS 111
Summer 2013

The Language of Access Control

•  Subjects are active entities that want to
gain access to something
– E.g., users or programs

•  Objects represent things that can be
accessed
– E.g., files, devices, database records

•  Access is any form of interaction with an
object

•  An entity can be both subject and object

Lecture 14
Page 10

CS 111
Summer 2013

Access Control Lists

•  ACLs
•  For each protected object, maintain a

single list
•  Each list entry specifies a subject who

can access the object
– And the allowable modes of access

•  When a subject requests access to a
object, check the access control list

Lecture 14
Page 11

CS 111
Summer 2013

An Analogy

Joe Hipster	

You’re
Not On

the List!

This is an
access

control list

Lecture 14
Page 12

CS 111
Summer 2013

An ACL Protecting a File

File
X

ACL for file X

A read
write

B write
C none

Subject A

Subject B

Subject C

read

denied

The file is the object
The process trying to access
it is the subject

Lecture 14
Page 13

CS 111
Summer 2013

Issues For Access Control Lists

•  How do you know the requestor is who
he says he is?

•  How do you protect the access control list
from modification?

•  How do you determine what resources a
user can access?

Lecture 14
Page 14

CS 111
Summer 2013

Who Is The Requestor?

•  Requires authentication
– At the granularity of the access control list

•  For operating systems, commonly that
granularity is user
– But could be process
– Or something else

•  We’ll discuss operating system authentication
later

Lecture 14
Page 15

CS 111
Summer 2013

Protecting the ACL

•  If entity can change the ACL, all protection
disappears
– Unless the entity is privileged to do so

•  ACLs are commonly controlled by the OS
•  Changes are made only through specific

interfaces
•  Allowing checks to be made at the time of the

requested change

Lecture 14
Page 16

CS 111
Summer 2013

An Example Use of ACLs:
the Unix File System

•  An ACL-based method for protecting files
– Developed in the 1970s

•  Still in very wide use today
– With relatively few modifications

•  Per-file ACLs (files are the objects)
•  Three subjects on list for each file

• Owner, group, other
•  And three modes

– Read, write, execute
– Sometimes these have special meanings

Lecture 14
Page 17

CS 111
Summer 2013

Storing the ACLs

•  They can be very small
– Since there are only three entries
– Basic ACL is only 9 bits

•  Therefore, kept inside the file descriptor
•  Makes it easy to find them

– Since trying to open the file requires the file
descriptor, anyway

•  Checking this ACL is not much more than a
logical AND with the requested access mode

Lecture 14
Page 18

CS 111
Summer 2013

Changing Access Permissions
With ACLS

•  Mechanically, the OS alone can change an ACL (in
most systems)

•  But who has the right to ask the OS to do so?
•  In simple ACL systems, each object has an owner

–  Only the owner can change the ACL
–  Plus there’s often a superuser who can do anything

•  In more sophisticated ACL systems, changing an
ACL is a mode of access to the object
–  Those with such access can give it to others
–  Or there can even be a meta-mode, which says if someone

who can change it can grant that permission to others

Lecture 14
Page 19

CS 111
Summer 2013

Pros and Cons of ACLs

+ Easy to figure out who can access a
resource

+ Easy to revoke or change access
permissions

– Hard to figure out what a subject can
access

– Changing access rights requires getting to
the object

Lecture 14
Page 20

CS 111
Summer 2013

Capabilities

•  Each subject keeps a set of data items that
specify his allowable accesses

•  Essentially, a set of tickets
•  To access an object, present the proper

capability
•  Possession of the capability for an object

implies that access is allowed

Lecture 14
Page 21

CS 111
Summer 2013

An Analogy

The key is a capability

Lecture 14
Page 22

CS 111
Summer 2013

Capabilities Protecting a File

Read X

Subject B

Subject C

Capabilities
for C

Capabilities
for A

File X
Read, Write

Capabilities
for B

File X
Read

File
X

Subject A

Capability
Checking

File X
Read, Write

File X
Read, Write

Check
validity of
capability

OK!

Lecture 14
Page 23

CS 111
Summer 2013

Capabilities Denying Access

write

User B

User C

Capabilities
for C

Capabilities
for A

File X
Read, Write

Capabilities
for B

File X
Read

File
X

User A

Capability
Checking

Check
validity of
capability

No
Capability
Provided!

Lecture 14
Page 24

CS 111
Summer 2013

Properties of Capabilities
•  Capabilities are essentially a data structure

– Ultimately, just a collection of bits

•  Merely possessing the capability grants access
– So they must not be forgeable

•  How do we ensure unforgeability for a
collection of bits?

•  One solution:
– Don’t let the user/process have them
– Store them in the operating system

Lecture 14
Page 25

CS 111
Summer 2013

Capabilities and Networks

Subject B

Subject C

Capabilities
for C

Capabilities
for B

File X
Read

Capabilities
for A

File X
Read, Write

Subject A

Capability
Checking

File
X

File X
Read, Write

Subject A

Subject B

File X
Read

Subject C

File X
Read, Write

How can we
tell if it’s a
good
capability?

File X
Read, Write
File X
Read, Write
File X
Read, Write
File X
Read, Write

Lecture 14
Page 26

CS 111
Summer 2013

Cryptographic Capabilities
•  Create unforgeable capabilities by using

cryptography
– We’ll discuss cryptography in detail in the next

lecture
•  Essentially, a user CANNOT create this

capability for himself
•  The examining entity can check the validity
•  Prevents creation of capabilities from nothing

– But doesn’t prevent copying them

Lecture 14
Page 27

CS 111
Summer 2013

Revoking Capabilities
•  A simple problem for capabilities stored in the

operating system
– Just have the OS get rid of it

•  Much harder if it’s not in the operating system
– E.g., in a network context

•  How do we make the bundle of bits change
from valid to invalid?

•  Consider the real world problem of a door lock
•  If several people have the key, how do we keep

one of them out?

Lecture 14
Page 28

CS 111
Summer 2013

Illustrating the Problem

Fred

Nancy

Accounts receivable

How do we take
away Fred’s
capability?

Without taking
away Nancy’s?

Lecture 14
Page 29

CS 111
Summer 2013

Changing Access Permissions
With Capabilities

•  Essentially, making a copy of the capability and
giving it to someone else

•  If capabilities are inside the OS, it must approve
•  If capabilities are in user/process hands, they just

copy the bits and hand out the copy
–  Crypto methods can customize a capability for one user,

though

•  Capability model often uses a particular type of
capability to control creating others
–  Or a mode associated with a capability

Lecture 14
Page 30

CS 111
Summer 2013

Pros and Cons of Capabilities

+ Easy to determine what objects a subject can
access

+ Potentially faster than ACLs (in some
circumstances)

+ Easy model for transfer of privileges
– Hard to determine who can access an object
–  Requires extra mechanism to allow revocation
–  In network environment, need cryptographic

methods to prevent forgery

Lecture 14
Page 31

CS 111
Summer 2013

OS Use of Access Control
•  Operating systems often use both ACLs and

capabilities
– Sometimes for the same resource

•  E.g., Unix/Linux uses ACLs for file opens
•  That creates a file descriptor with a particular

set of access rights
– E.g., read-only

•  The descriptor is essentially a capability

Lecture 14
Page 32

CS 111
Summer 2013

Enforcing Access in an OS

•  Protected resources must be inaccessible
–  Hardware protection must be used to ensure this
–  So only the OS can make them accessible to a process

•  To get access, issue request to resource manager
–  Resource manager consults access control policy data

•  Access may be granted directly
–  Resource manager maps resource into process

•  Access may be granted indirectly
–  Resource manager returns a “capability” to process

Lecture 14
Page 33

CS 111
Summer 2013

Direct Access To Resources
•  OS checks access control on initial request
•  If OK, OS maps it into a process’ address space

–  The process manipulates resource with normal instructions
–  Examples: shared data segment or video frame buffer

•  Advantages:
–  Access check is performed only once, at grant time
–  Very efficient, process can access resource directly

•  Disadvantages:
–  Process may be able to corrupt the resource
–  Access revocation may be awkward

•  You’ve pulled part of a process’ address space out from under it

Lecture 14
Page 34

CS 111
Summer 2013

Indirect Access To Resources
•  Resource is not directly mapped into process

–  Process must issue service requests to use resource
–  Access control can be checked on each request
–  Examples: network and IPC connections

•  Advantages:
–  Only resource manager actually touches resource
–  Resource manager can ensure integrity of resource
–  Access can be checked, blocked, revoked at any time

•  If revoked, system call can just return error code

•  Disadvantages:
–  Overhead of system call every time resource is used

