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Outline 

•  Basic concepts in computer security 
•  Access control 
•  Cryptography 
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Security: Basic Concepts 
•  What do we mean by security? 
•  What is trust? 
•  Why is security a problem? 

–  In particular, a problem with a different nature 
than, say, performance 

– Or even reliability 
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What Is Security? 
•  Security is a policy 

– E.g., “no unauthorized user may access this file” 
•  Protection is a mechanism 

– E.g., “the system checks user identity against 
access permissions” 

•  Protection mechanisms implement security policies 
•  We need to understand our goals to properly set our 

policies 
– And threats to achieving our goals 
– These factors drive which mechanisms we must 

use 
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Security Goals 
•  Confidentiality 

–  If it’s supposed to be secret, be careful who hears it 
•  Integrity 

– Don’t let someone change something they 
shouldn’t 

•  Availability 
– Don’t let someone stop others from using services 

•  Exclusivity 
– Don’t let someone use something he shouldn’t 

•  Note that we didn’t mention “computers” here 
– This classification of security goals is very general 
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Access Control 
•  Security could be easy 

– If we didn’t want anyone to get access to 
anything 

•  The trick is giving access to only the right 
people 

•  How do we ensure that a given resource can 
only be accessed by the proper people? 

•  The OS plays a major role in enforcing access 
control 
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Goals for Access Control 

•  Complete mediation 
•  Least privilege 
•  Useful in a networked environment 
•  Scalability 
•  Cost and usability 
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Common Mechanisms for Access 
Control in Operating Systems 

•  Access control lists 
– Like a list of who gets to do something 

•  Capabilities 
– Like a ring of keys that open different doors 

•  They have different properties  
•  And are used by the OS in different ways 
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The Language of Access Control 

•  Subjects are active entities that want to 
gain access to something 
– E.g., users or programs 

•  Objects represent things that can be 
accessed 
– E.g., files, devices, database records 

•  Access is any form of interaction with an 
object 

•  An entity can be both subject and object 
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Access Control Lists 

•  ACLs 
•  For each protected object, maintain a 

single list 
•  Each list entry specifies a subject who 

can access the object 
– And the allowable modes of access 

•  When a subject requests access to a 
object, check the access control list 
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An Analogy 

Joe Hipster	



You’re 
Not On 

the List! 

This is an 
access 

control list 
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An ACL Protecting a File 

File 
X 

ACL for file X 

A read 
write 

B write 
C none 

Subject A 

Subject B 

Subject C 

read 

denied 

The file is the object 
The process trying to access 
it is the subject 
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Issues For Access Control Lists 

•  How do you know the requestor is who 
he says he is? 

•  How do you protect the access control list 
from modification? 

•  How do you determine what resources a 
user can access? 
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Who Is The Requestor? 

•  Requires authentication 
– At the granularity of the access control list 

•  For operating systems, commonly that 
granularity is user 
– But could be process 
– Or something else 

•  We’ll discuss operating system authentication 
later 
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Protecting the ACL 

•  If entity can change the ACL, all protection 
disappears 
– Unless the entity is privileged to do so 

•  ACLs are commonly controlled by the OS 
•  Changes are made only through specific 

interfaces 
•  Allowing checks to be made at the time of the 

requested change 
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An Example Use of ACLs: 
the Unix File System 

•  An ACL-based method for protecting files  
– Developed in the 1970s 

•  Still in very wide use today 
– With relatively few modifications 

•  Per-file ACLs (files are the objects) 
•  Three subjects on list for each file 

• Owner, group, other 
•  And three modes 

– Read, write, execute 
– Sometimes these have special meanings 
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Storing the ACLs 

•  They can be very small 
– Since there are only three entries 
– Basic ACL is only 9 bits 

•  Therefore, kept inside the file descriptor 
•  Makes it easy to find them 

– Since trying to open the file requires the file 
descriptor, anyway 

•  Checking this ACL is not much more than a 
logical AND with the requested access mode 
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Changing Access Permissions  
With ACLS 

•  Mechanically, the OS alone can change an ACL (in 
most systems) 

•  But who has the right to ask the OS to do so? 
•  In simple ACL systems, each object has an owner 

–  Only the owner can change the ACL 
–  Plus there’s often a superuser who can do anything 

•  In more sophisticated ACL systems, changing an 
ACL is a mode of access to the object 
–  Those with such access can give it to others 
–  Or there can even be a meta-mode, which says if someone 

who can change it can grant that permission to others 
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Pros and Cons of ACLs 

+ Easy to figure out who can access a 
resource 

+ Easy to revoke or change access 
permissions 

– Hard to figure out what a subject can 
access 

– Changing access rights requires getting to 
the object 
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Capabilities 

•  Each subject keeps a set of data items that 
specify his allowable accesses 

•  Essentially, a set of tickets 
•  To access an object, present the proper 

capability 
•  Possession of the capability for an object 

implies that access is allowed 
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An Analogy 

The key is a capability 
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Capabilities Protecting a File 

Read X 

Subject B 

Subject C 

Capabilities 
for C 

Capabilities 
for A 

File X 
Read, Write 

Capabilities 
for B 

File X 
Read 

File  
X 

Subject A 

Capability 
Checking 

File X 
Read, Write 

File X 
Read, Write 

Check 
validity of 
capability 

OK! 
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Capabilities Denying Access 

write 

User B 

User C 

Capabilities 
for C 

Capabilities 
for A 

File X 
Read, Write 

Capabilities 
for B 

File X 
Read 

File 
X 

User A 

Capability 
Checking 

Check 
validity of 
capability 

No 
Capability 
Provided! 
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Properties of Capabilities 
•  Capabilities are essentially a data structure 

– Ultimately, just a collection of bits 

•  Merely possessing the capability grants access 
– So they must not be forgeable 

•  How do we ensure unforgeability for a 
collection of bits? 

•  One solution: 
– Don’t let the user/process have them 
– Store them in the operating system  
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Capabilities and Networks 

Subject B 

Subject C 

Capabilities 
for C 

Capabilities 
for B 

File X 
Read 

Capabilities 
for A 

File X 
Read, Write 

Subject A 

Capability 
Checking 

File 
X 

File X 
Read, Write 

Subject A 

Subject B 

File X 
Read 

Subject C 

File X 
Read, Write 

How can we 
tell if it’s a 
good 
capability? 

File X 
Read, Write 
File X 
Read, Write 
File X 
Read, Write 
File X 
Read, Write 
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Cryptographic Capabilities 
•  Create unforgeable capabilities by using 

cryptography 
– We’ll discuss cryptography in detail in the next 

lecture 
•  Essentially, a user CANNOT create this 

capability for himself 
•  The examining entity can check the validity 
•  Prevents creation of capabilities from nothing 

– But doesn’t prevent copying them 
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Revoking Capabilities 
•  A simple problem for capabilities stored in the 

operating system 
– Just have the OS get rid of it 

•  Much harder if it’s not in the operating system 
– E.g., in a network context 

•  How do we make the bundle of bits change 
from valid to invalid? 

•  Consider the real world problem of a door lock 
•  If several people have the key, how do we keep 

one of them out? 
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Illustrating the Problem 

Fred 

Nancy 

Accounts receivable 

How do we take 
away Fred’s 
capability? 

Without taking 
away Nancy’s? 
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Changing Access Permissions  
With Capabilities 

•  Essentially, making a copy of the capability and 
giving it to someone else 

•  If capabilities are inside the OS, it must approve 
•  If capabilities are in user/process hands, they just 

copy the bits and hand out the copy 
–  Crypto methods can customize a capability for one user, 

though 

•  Capability model often uses a particular type of 
capability to control creating others 
–  Or a mode associated with a capability 
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Pros and Cons of Capabilities 

+ Easy to determine what objects a subject can 
access 

+ Potentially faster than ACLs (in some 
circumstances) 

+ Easy model for transfer of privileges 
– Hard to determine who can access an object 
–  Requires extra mechanism to allow revocation 
–  In network environment, need cryptographic 

methods to prevent forgery 
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OS Use of Access Control 
•  Operating systems often use both ACLs and 

capabilities 
– Sometimes for the same resource 

•  E.g., Unix/Linux uses ACLs for file opens 
•  That creates a file descriptor with a particular 

set of access rights 
– E.g., read-only 

•  The descriptor is essentially a capability 
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Enforcing Access in an OS 

•  Protected resources must be inaccessible 
–  Hardware protection must be used to ensure this 
–  So only the OS can make them accessible to a process 

•  To get access, issue request to resource manager 
–  Resource manager consults access control policy data 

•  Access may be granted directly 
–  Resource manager maps resource into process 

•  Access may be granted indirectly 
–  Resource manager returns a “capability” to process 
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Direct Access To Resources 
•  OS checks access control on initial request 
•  If OK, OS maps it into a process’ address space 

–  The process manipulates resource with normal instructions 
–  Examples: shared data segment or video frame buffer 

•  Advantages: 
–  Access check is performed only once, at grant time 
–  Very efficient, process can access resource directly 

•  Disadvantages: 
–  Process may be able to corrupt the resource 
–  Access revocation may be awkward 

•  You’ve pulled part of a process’ address space out from under it 
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Indirect Access To Resources 
•  Resource is not directly mapped into process 

–  Process must issue service requests to use resource 
–  Access control can be checked on each request 
–  Examples: network and IPC connections 

•  Advantages: 
–  Only resource manager actually touches resource 
–  Resource manager can ensure integrity of resource 
–  Access can be checked, blocked, revoked at any time 

•  If revoked, system call can just return error code 

•  Disadvantages: 
–  Overhead of system call every time resource is used 


