-

Summer 2013

Security 1n Operating Systems:

Basics
CS 111
Operating Systems
Peter Rether

~

/ [Outline } \

* Basic concepts 1n computer security

* Access control
* Cryptography

\ /

CS 111 Lecture 14
Summer 2013 Page 2

/ [Security: Basic Concepts} \

* What do we mean by security?
* What 1s trust?

* Why 1s security a problem?

— In particular, a problem with a different nature
than, say, performance

— Or even reliability

\ /

CS 111 Lecture 14
Summer 2013 Page 3

/ What Is Security? \

* Security 1s a policy
— E.g., “no unauthorized user may access this file”
* Protection 1s a mechanism

— E.g., “the system checks user identity against
access permissions’

* Protection mechanisms implement security policies
* We need to understand our goals to properly set our
policies
— And threats to achieving our goals
— These factors drive which mechanisms we must

\ usc /

CS 111 Lecture 14
Summer 2013 Page 4

/ Security Goals \

* Confidentiality

— If 1t’s supposed to be secret, be careful who hears it
Integrity

— Don’t let someone change something they

shouldn’t

Availability

— Don’t let someone stop others from using services
Exclusivity

— Don’t let someone use something he shouldn’t
* Note that we didn’t mention “computers” here
\ — This classification of security goals 1s very general)

CS 111 Lecture 14
Summer 2013 Page 5

/ [Access Control} \

* Security could be easy

—If we didn’t want anyone to get access to
anything
* The trick 1s giving access to only the right
people
 How do we ensure that a given resource can
only be accessed by the proper people?

* The OS plays a major role in enforcing access
\control)

CS 111 Lecture 14
Summer 2013 Page 6

/ Goals for Access Control \

* Complete mediation

* Least privilege

* Useful 1in a networked environment
* Scalability

* Cost and usability

\ /

CS 111 Lecture 14
Summer 2013 Page 7

/Common Mechanisms for Access\

* Access control lists
—Like a list of who ge
* Capabilities
—Like a ring of keys |

Control 1n Operating Systems

ts to do something

* They have different

\

CS 111

properties

* And are used by the OS 1n different ways

nat open different doors

Summer 2013

Lecture 14
Page 8

ﬁf he Language of Access Control\

* Subjects are active entities that want to
gain access to something

—E.g., users or programs

* Objects represent things that can be
accessed

—E.g., files, devices, database records

* Access 1s any form of interaction with an
object
* An entity can be both subject and object

CS 111 Lecture 14
Summer 2013 Page 9

/" Access Control Lists|

__

* ACLs

* For each protected object, maintain a
single list

* Each list entry specifies a subject who
can access the object

—And the allowable modes of access

* When a subject requests access to a
\ object, check the access control list /

CS 111 Lecture 14
Summer 2013 Page 10

/ An Analogy \

This 1s an
access
control list

TJoe ﬂ-ﬁ’j)s‘wr

\ /

CS 111 Lecture 14
Summer 2013 Page 11

An ACL Protecting a File \

N

The file 1s the object
Subject A The process trying to access
4, it 1s the subject
4)
File

Subject B

e\

ACL for file X

read

Subject C

Y

N NS
>
¢ | %
.‘«ii
)
>
-

A
@!
@

e\

denied

\ /

CS 111 Lecture 14
Summer 2013 Page 12

/ Issues For Access Control Lists\

* How do you know the requestor 1s who
he says he 1s?

* How do you protect the access control list
from modification?

* How do you determine what resources a
user can access”?

\ /

CS 111 Lecture 14
Summer 2013 Page 13

/ Who Is The Requestor? \

* Requires authentication

— At the granularity of the access control list

* For operating systems, commonly that
granularity 1s user

— But could be process

— Or something else

* We’ll discuss operating system authentication
later

\ /

CS 111 Lecture 14
Summer 2013 Page 14

/ Protecting the ACL \

* If entity can change the ACL, all protection
disappears

— Unless the entity is privileged to do so
* ACLs are commonly controlled by the OS

* Changes are made only through specific
interfaces

* Allowing checks to be made at the time of the
requested change

\ /

CS 111 Lecture 14
Summer 2013 Page 15

An Example Use of ACLs: \

the Unix File System

* An ACL-based method for protecting files

—Developed 1n the 1970s
* Still in very wide use today

— With relatively few modifications
» Per-file ACLs (files are the objects)
* Three subjects on list for each file

* Owner, group, other
* And three modes
—Read, write, execute

Cs\m —Sometimes these have special meanings ...

Summer 2013 Page 16

/ Storing the ACLs \

* They can be very small

— Since there are only three entries
— Basic ACL 1s only 9 bits

* Therefore, kept inside the file descriptor

* Makes it easy to find them

— Since trying to open the file requires the file
descriptor, anyway

* Checking this ACL 1s not much more than a
\ logical AND with the requested access mode /

CS 111 Lecture 14
Summer 2013 Page 17

/ Changing Access Permissions \
With ACLS

* Mechanically, the OS alone can change an ACL (in
most systems)

* But who has the right to ask the OS to do so?

* In simple ACL systems, each object has an owner
— Only the owner can change the ACL
— Plus there’s often a superuser who can do anything

* In more sophisticated ACL systems, changing an
ACL 1s a mode of access to the object

— Those with such access can give it to others

\ — Or there can even be a meta-mode, which says 1f someone /

csi who can change it can grant that permission to others Lecture 14
ummer age

/ Pros and Cons of ACLs \

+ Easy to figure out who can access a
resource

+ Easy to revoke or change access
permissions

— Hard to figure out what a subject can
access

— Changing access rights requires getting to
CS 111 the ObjeCt Lecture 14

Summer 2013 Page 19

* Each subject keeps a set of data items that
specify his allowable accesses

* Essentially, a set of tickets

* To access an object, present the proper
capability

* Possession of the capability for an object
implies that access 1s allowed

\ /

CS 111 Lecture 14
Summer 2013 Page 20

/ An Analogy \

\ The key 1s a capability)

CS 111 Lecture 14
Summer 2013 Page 21

/ Capabilities Protecting a File \

 Capabilities
for A

File X
Read, Write

/’eqd

' Capabilities OK!— File

. for B X
Subject B
' - Y,
Resd Check

Read File X

Read. Write R
: Capabilities validity of
. forC capability
Subject € Capability
\ Checking /
CS 111 Lecture 14
Page 22

Summer 2013

User A

for A

File X

Read, Write

User B

: Capabilities

for B

File X

Read

User C
\ writ

 Capabilities

for C

CS 111

o

—

No
Capability
Provided!

Capability
Checking

/ Capabilities Denying Access \

' Capabilities

4)
File
X
- J
Check
validity of
capability

Summer 2013

/

Lecture 14
Page 23

/ Properties of Capabilities \

* Capabilities are essentially a data structure

— Ultimately, just a collection of bits
* Merely possessing the capability grants access
— So they must not be forgeable

* How do we ensure unforgeability for a
collection of bits?

 One solution:

— Don’t let the user/process have them

\ — Store them in the operating system)

CS 111 Lecture 14
Summer 2013 Page 24

/ Capabilities and Networks \

Canabilit How can we
t coels
APOTHES tell if it’s a
for A
Subject A good
Eielegdx Write Cap ablllty?
Capabilities
for B
Subject B
File X
Read
Capabilities
for C
Subject C
e Capability
\ Checking /
CS 111 Lecture 14

Summer 2013 Page 25

/ Cryptographic Capabilities \
* Create unforgeable capabilities by using
cryptography

— We’ll discuss cryptography in detail in the next
lecture

* Essentially, a user CANNOT create this
capability for himself

* The examining entity can check the validity

* Prevents creation of capabilities from nothing

— But doesn’t prevent copying them

\ /

CS 111 Lecture 14
Summer 2013 Page 26

/" Revoking Capabilities

* A simple problem for capabilities stored in the
operating system
— Just have the OS get rid of 1t

* Much harder if 1t’s not in the operating system

— E.g., 1n a network context

* How do we make the bundle of bits change
from valid to invalid?

* Consider the real world problem of a door lock

\° If several people have the key, how do we keep)
s one of them out? Lectune 14

Summer 2013 Page 27

-

\

CS 111
Summer 2013

[llustrating the Problem \

How do we take
@ away Fred’s
capability?
== Accounts receivable P Y

Without taking
away Nancy’s?

/

Lecture 14
Page 28

/~ Changing Access Permissions ™\
With Capabilities
* Essentially, making a copy of the capability and
giving it to someone else

 If capabilities are inside the OS, 1t must approve

 If capabilities are in user/process hands, they just
copy the bits and hand out the copy
— Crypto methods can customize a capability for one user,
though
» (Capability model often uses a particular type of
capability to control creating others

\ — Or a mode associated with a capability /

CS 111 Lecture 14
Summer 2013 Page 29

/ Pros and Cons of Capabilities \

+ Easy to determine what objects a subject can
access

+ Potentially faster than ACLs (1n some
circumstances)

+ Easy model for transfer of privileges
— Hard to determine who can access an object
— Requires extra mechanism to allow revocation

— In network environment, need cryptographic
methods to prevent forgery

\ /

CS 111 Lecture 14
Summer 2013 Page 30

/ [OS Use of Access Control} \

* Operating systems often use both ACLs and
capabilities

— Sometimes for the same resource
* E.g., Unix/Linux uses ACLs for file opens

* That creates a file descriptor with a particular
set of access rights

— E.g., read-only

* The descriptor 1s essentially a capability

\ /

CS 111 Lecture 14
Summer 2013 Page 31

/ Enforcing Access 1n an OS \

Protected resources must be 1naccessible

— Hardware protection must be used to ensure this
— So only the OS can make them accessible to a process

* To get access, 1ssue request to resource manager

— Resource manager consults access control policy data

* Access may be granted directly

— Resource manager maps resource into process

* Access may be granted indirectly

— Resource manager returns a “capability” to process

\ /

CS 111 Lecture 14
Summer 2013 Page 32

/ Direct Access To Resources \

* OS checks access control on 1nitial request

* If OK, OS maps it into a process’ address space
— The process manipulates resource with normal instructions

— Examples: shared data segment or video frame buffer

* Advantages:
— Access check 1s performed only once, at grant time
— Very efficient, process can access resource directly
* Disadvantages:

— Process may be able to corrupt the resource

— Access revocation may be awkward

\ * You’ve pulled part of a process’ address space out from under it /
CS 111 Lecture 14
Summer 2013 Page 33

/ Indirect Access To Resources \

* Resource 1s not directly mapped into process
— Process must 1ssue service requests to use resource
— Access control can be checked on each request
— Examples: network and IPC connections

* Advantages:
— Only resource manager actually touches resource
— Resource manager can ensure integrity of resource

— Access can be checked, blocked, revoked at any time

 If revoked, system call can just return error code

* Disadvantages:

\ — Overhead of system call every time resource 1s used /

CS 111 Lecture 14
Summer 2013 Page 34

