
Lecture 6 
Page 1 

CS 111 
Summer 2013  

Deadlock Detection and Recovery 
•  Allow deadlocks to occur 
•  Detect them once they have happened 
– Preferably as soon as possible after they occur 

•  Do something to break the deadlock and allow 
someone to make progress 

•  Is this a good approach? 
– Either in general or when you don’t want to avoid 

or prevent 



Lecture 6 
Page 2 

CS 111 
Summer 2013  

Implementing Deadlock Detection 

•  Need to identify all resources that can be 
locked 

•  Need to maintain wait-for graph or equivalent 
structure 

•  When lock requested, structure is updated and 
checked for deadlock 
–  In which case, might it not be better just to reject 

the lock request? 
– And not let the requester block? 



Lecture 6 
Page 3 

CS 111 
Summer 2013  

Deadlock Detection and Health 
Monitoring 

•  Deadlock detection seldom makes sense 
–  It is extremely complex to implement 
–  Only detects “true deadlocks” for a known resources 
–  Not always clear cut what you should do if you detect one 

•  Service/application “health monitoring” makes more 
sense 
–  Monitor application progress/submit test transactions 
–  If response takes too long, declare service “hung” 

•  Health monitoring is easy to implement 
•  It can detect a wide range of problems 
–  Deadlocks, live-locks, infinite loops & waits, crashes 



Lecture 6 
Page 4 

CS 111 
Summer 2013  

Related Problems Health 
Monitoring Can Handle 

•  Live-lock 
–  Process is running, but won't free R1 until it gets message 
–  Process that will send the message is blocked for R1 

•  Sleeping Beauty, waiting for “Prince Charming” 
–  A process is blocked, awaiting some completion 
–  But, for some reason, it will never happen 

•  Neither of these is a true deadlock 
–  Wouldn't be found by deadlock detection algorithm 
–  Both leave the system just as hung as a deadlock 

•  Health monitoring handles them 



Lecture 6 
Page 5 

CS 111 
Summer 2013  

How To Monitor Process Health 
•  Look for obvious failures 
– Process exits or core dumps 

•  Passive observation to detect hangs 
–  Is process consuming CPU time, or is it blocked? 
–  Is process doing network and/or disk I/O? 

•  External health monitoring 
– “Pings”, null requests, standard test requests 

•  Internal instrumentation 
– White box audits, exercisers, and monitoring 



Lecture 6 
Page 6 

CS 111 
Summer 2013  

What To Do With “Unhealthy” 
Processes? 

•  Kill and restart “all of the affected software” 
•  How many and which processes to kill? 
–  As many as necessary, but as few as possible 
–  The hung processes may not be the ones that are broken 

•  How will kills and restarts affect current clients? 
–  That depends on the service APIs and/or protocols 
–  Apps must be designed for cold/warm/partial restarts 

•  Highly available systems define restart groups 
–  Groups of processes to be started/killed as a group 
–  Define inter-group dependencies (restart B after A) 



Lecture 6 
Page 7 

CS 111 
Summer 2013  

Failure Recovery Methodology 

•  Retry if possible ... but not forever 
–  Client should not be kept waiting indefinitely 
–  Resources are being held while waiting to retry 

•  Roll-back failed operations and return an error 
•  Continue with reduced capacity or functionality 
–  Accept requests you can handle, reject those you can't 

•  Automatic restarts (cold, warm, partial) 
•  Escalation mechanisms for failed recoveries 
–  Restart more groups, reboot more machines 



Lecture 6 
Page 8 

CS 111 
Summer 2013  

Priority Inversion and Deadlock 

•  Priority inversion isn’t necessarily deadlock, but it’s 
related 
–  A low priority process P1 has mutex M1 and is preempted 
–  A high priority process P2 blocks for mutex M1  
–  Process P2 is effectively reduced to priority of P1  

•  Solution: mutex priority inheritance 
–  Check for problem when blocking for mutex 
–  Compare priority of current mutex owner with blocker 
–  Temporarily promote holder to blocker's priority 
–  Return to normal priority after mutex is released 



Lecture 6 
Page 9 

CS 111 
Summer 2013  

Priority Inversion on Mars 

•  A real priority inversion problem occurred on 
the Mars Pathfinder rover 

•  Caused serious problems with system resets 
•  Difficult to find 



Lecture 6 
Page 10 

CS 111 
Summer 2013  

The Pathfinder Priority Inversion 

•  Special purpose hardware running VxWorks 
real time OS 

•  Used preemptive priority scheduling  
– So a high priority task should get the processor  

•  Multiple components shared an “information 
bus” 
– Used to communicate between components 
– Essentially a shared memory region 
– Protected by a mutex 



Lecture 6 
Page 11 

CS 111 
Summer 2013  

A Tale of Three Tasks 
•  A high priority bus management task (at P1) needed 

to run frequently 
–  For brief periods, during which it locked the bus 

•  A low priority meteorological task (at P3) ran 
occasionally 
–  Also for brief periods, during which it locked the bus 

•  A medium priority communications task (at P2) ran 
rarely 
–  But for a long time when it ran 
–  But it didn’t use the bus, so it didn’t need the lock 

•  P1>P2>P3 



Lecture 6 
Page 12 

CS 111 
Summer 2013  

What Went Wrong? 
•  Rarely, the following happened: 
– The meteorological task ran and acquired the lock 
– And then the bus management task would run 
–  It would block waiting for the lock 
•  Don’t pre-empt low priority if you’re blocked anyway 

•  Since meteorological task was short, usually 
not a problem 

•  But if the long communications task woke up 
in that short interval, what would happen? 



Lecture 6 
Page 13 

CS 111 
Summer 2013  

The Priority Inversion at Work 

M 

B 

C 

Pr
ior
i
ty 

Time 

Lock Bus 

Lock Bus 

B 

M 

C is running, at P2 

M can’t interrupt C, since it only has priority P3 

B’s priority of P1 is higher than C’s, but B can’t 
run because it’s waiting on a lock held by M 

M won’t release the lock until it runs again 

But M won’t run again until C completes 

RESULT? A HIGH PRIORITY TASK DOESN’T RUN 
AND A LOW PRIORITY TASK DOES 



Lecture 6 
Page 14 

CS 111 
Summer 2013  

The Ultimate Effect 

•  A watchdog timer would go off every so often 
– At a high priority 
–  It didn’t need the bus 
– A health monitoring mechanism 

•  If the bus management task hadn’t run for a 
long time, something was wrong 

•  So the watchdog code reset the system 
•  Every so often, the system would reboot 



Lecture 6 
Page 15 

CS 111 
Summer 2013  

Solving the Problem 
•  This was a priority inversion 
–  The lower priority communications task ran before the 

higher priority bus management task 

•  That needed to be changed 
•  How? 
•  Temporarily increase the priority of the 

meteorological task 
–  While the high priority bus management task was block by 

it 
–  So the communications task wouldn’t preempt it 
–  Priority inheritance: a general solution to this kind of 

problem 



Lecture 6 
Page 16 

CS 111 
Summer 2013  

B 

The Fix in Action 

Pr
ior
i
ty 

Time 

B 

Lock Bus 

M 

C C 

When M releases the 
lock it loses high 

priority 

B now gets the lock 
and unblocks 

Tasks run in proper priority order and 
Pathfinder can keep exploring Mars! 


