
Lecture 6
Page 1

CS 111
Summer 2013

Deadlock

•  What is a deadlock?
•  A situation where two entities have each

locked some resource
•  Each needs the other’s locked resource to

continue
•  Neither will unlock till they lock both

resources
•  Hence, neither can ever make progress

Lecture 6
Page 2

CS 111
Summer 2013

Why Are Deadlocks Important?
•  A major peril in cooperating parallel processes
–  They are relatively common in complex applications
–  They result in catastrophic system failures

•  Finding them through debugging is very difficult
–  They happen intermittently and are hard to diagnose
–  They are much easier to prevent at design time

•  Once you understand them, you can avoid them
–  Most deadlocks result from careless/ignorant design
–  An ounce of prevention is worth a pound of cure

Lecture 6
Page 3

CS 111
Summer 2013

Types of Deadlocks
•  Commodity resource deadlocks
– E.g., memory, queue space

•  General resource deadlocks
– E.g., files, critical sections

•  Heterogeneous multi-resource deadlocks
– E.g., P1 needs a file P2 holds, P2 needs memory

which P1 is using
•  Producer-consumer deadlocks
– E.g., P1 needs a file P2 is creating, P2 needs a

message from P1 to properly create the file

Lecture 6
Page 4

CS 111
Summer 2013

Four Basic Conditions
For Deadlocks

•  For a deadlock to occur, all of these conditions
must hold:

1.  Mutual exclusion
2.  Incremental allocation
3.  No pre-emption
4.  Circular waiting

Lecture 6
Page 5

CS 111
Summer 2013

Deadlock Conditions: 1. Mutual
Exclusion

•  The resources in question can each only be
used by one entity at a time

•  If multiple entities can use a resource, then just
give it to all of them

•  If only one can use it, once you’ve given it to
one, no one else gets it
– Until the resource holder releases it

Lecture 6
Page 6

CS 111
Summer 2013

Deadlock Condition 2:
Incremental Allocation

•  Processes/threads are allowed to ask for
resources whenever they want
– As opposed to getting everything they need before

they start
•  If they must pre-allocate all resources, either:
– They get all they need and run to completion
– They don’t get all they need and abort

•  In either case, no deadlock

Lecture 6
Page 7

CS 111
Summer 2013

Deadlock Condition 3: No
Pre-emption

•  When an entity has reserved a resource, you
can’t take it away from him
– Not even temporarily

•  If you can, deadlocks are simply resolved by
taking someone’s resource away
– To give to someone else

•  But if you can’t take it away from anyone,
you’re stuck

Lecture 6
Page 8

CS 111
Summer 2013

Deadlock Condition 4: Circular
Waiting

•  A waits on B which waits on A
•  In graph terms, there’s a cycle in a graph of

resource requests
•  Could involve a lot more than two entities
•  But if there is no such cycle, someone can

complete without anyone releasing a resource
– Allowing even a long chain of dependencies to

eventually unwind
– Maybe not very fast, though . . .

Lecture 6
Page 9

CS 111
Summer 2013

A Wait-For Graph

Thread 1 Thread 2

Critical
Section

A

Critical
Section

B

Thread 1
acquires a
lock for
Critical

Section A

Thread 2
acquires a
lock for
Critical

Section B

Thread 1
requests a
lock for
Critical

Section B

Thread 2
requests a
lock for
Critical

Section A

No problem!

Deadlock!

We can’t give him
the lock right now,

but . . .

Hmmmm . . .

Lecture 6
Page 10

CS 111
Summer 2013

Deadlock Avoidance

•  Use methods that guarantee that no deadlock
can occur, by their nature

•  Advance reservations
– The problems of under/over-booking

•  Practical commodity resource management
•  Dealing with rejection
•  Reserving critical resources

Lecture 6
Page 11

CS 111
Summer 2013

Avoiding Deadlock Using
Reservations

•  Advance reservations for commodity resources
– Resource manager tracks outstanding reservations
– Only grants reservations if resources are available

•  Over-subscriptions are detected early
– Before processes ever get the resources

•  Client must be prepared to deal with failures
–  But these do not result in deadlocks

•  Dilemma: over-booking vs. under-utilization

Lecture 6
Page 12

CS 111
Summer 2013

Overbooking Vs. Under Utilization
•  Processes generally cannot perfectly predict

their resource needs
•  To ensure they have enough, they tend to ask

for more than they will ever need
•  Either the OS:
– Grants requests till everything’s reserved
•  In which case most of it won’t be used

– Or grants requests beyond the available amount
•  In which case sometimes someone won’t get a resource

he reserved

Lecture 6
Page 13

CS 111
Summer 2013

Handling Reservation Problems

•  Clients seldom need all resources all the time
•  All clients won't need max allocation at the

same time
•  Question: can one safely over-book resources?
–  For example, seats on an airplane

•  What is a “safe” resource allocation?
–  One where everyone will be able to complete
–  Some people may have to wait for others to complete
–  We must be sure there are no deadlocks

Lecture 6
Page 14

CS 111
Summer 2013

Commodity Resource
Management in Real Systems

•  Advanced reservation mechanisms are common
–  Unix brk() and sbrk() system calls
–  Disk quotas, Quality of Service contracts

•  Once granted, system must guarantee reservations
–  Allocation failures only happen at reservation time
–  Hopefully before the new computation has begun
–  Failures will not happen at request time
–  System behavior more predictable, easier to handle

•  But clients must deal with reservation failures

Lecture 6
Page 15

CS 111
Summer 2013

Dealing With Reservation Failures
•  Resource reservation eliminates deadlock
•  Apps must still deal with reservation failures
– Application design should handle failures

gracefully
•  E.g., refuse to perform new request, but continue

running

– App must have a way of reporting failure to
requester
•  E.g., error messages or return codes

– App must be able to continue running
•  All critical resources must be reserved at start-up time

Lecture 6
Page 16

CS 111
Summer 2013

System Services and Reservations
•  System services must never deadlock for memory
•  Potential deadlock: swap manager
–  Invoked to swap out processes to free up memory
–  May need to allocate memory to build I/O request
–  If no memory available, unable to swap out processes
–  So it can’t free up memory, and system wedges

•  Solution:
–  Pre-allocate and hoard a few request buffers
–  Keep reusing the same ones over and over again
–  Little bit of hoarded memory is a small price to pay to

avoid deadlock

•  That’s just one example system service, of course

Lecture 6
Page 17

CS 111
Summer 2013

Deadlock Prevention

•  Deadlock avoidance tries to ensure no lock
ever causes deadlock

•  Deadlock prevention tries to assure that a
particular lock doesn’t cause deadlock

•  By attacking one of the four necessary
conditions for deadlock

•  If any one of these conditions doesn’t hold, no
deadlock

Lecture 6
Page 18

CS 111
Summer 2013

Four Basic Conditions
For Deadlocks

•  For a deadlock to occur, these conditions must
hold:

1.  Mutual exclusion
2.  Incremental allocation
3.  No pre-emption
4.  Circular waiting

Lecture 6
Page 19

CS 111
Summer 2013

1. Mutual Exclusion

•  Deadlock requires mutual exclusion
– P1 having the resource precludes P2 from getting it

•  You can't deadlock over a shareable resource
– Perhaps maintained with atomic instructions
– Even reader/writer locking can help
•  Readers can share, writers may be handled other ways

•  You can't deadlock on your private resources
– Can we give each process its own private

resource?

Lecture 6
Page 20

CS 111
Summer 2013

2. Incremental Allocation
•  Deadlock requires you to block holding resources

while you ask for others
1.  Allocate all of your resources in a single operation
–  If you can’t get everything, system returns failure and

locks nothing
–  When you return, you have all or nothing

2.  Non-blocking requests
–  A request that can't be satisfied immediately will fail

3.  Disallow blocking while holding resources
–  You must release all held locks prior to blocking
–  Reacquire them again after you return

Lecture 6
Page 21

CS 111
Summer 2013

Releasing Locks Before Blocking
•  Could be blocking for a reason not related to

resource locking
•  How can releasing locks before you block

help?
•  Won’t the deadlock just occur when you

attempt to reacquire them?
– When you reacquire them, you will be required to

do so in a single all-or-none transaction
–  Such a transaction does not involve hold-and-

block, and so cannot result in a deadlock

Lecture 6
Page 22

CS 111
Summer 2013

3. No Pre-emption

•  Deadlock can be broken by resource confiscation
–  Resource “leases” with time-outs and “lock breaking”
–  Resource can be seized & reallocated to new client

•  Revocation must be enforced
–  Invalidate previous owner's resource handle
–  If revocation is not possible, kill previous owner

•  Some resources may be damaged by lock breaking
–  Previous owner was in the middle of critical section
–  May need mechanisms to audit/repair resource

•  Resources must be designed with revocation in mind

Lecture 6
Page 23

CS 111
Summer 2013

When Can The OS “Seize” a
Resource?

•  When it can revoke access by invalidating a
process’ resource handle
–  If process has to use a system service to access the

resource, that service can no longer honor requests
•  When is it not possible to revoke a process’

access to a resource?
–  If the process has direct access to the object
•  E.g., the object is part of the process’ address space
•  Revoking access requires destroying the address space
•  Usually killing the process.

Lecture 6
Page 24

CS 111
Summer 2013

4. Circular Dependencies
•  Use total resource ordering
– All requesters allocate resources in same order
– First allocate R1 and then R2 afterwards
– Someone else may have R2 but he doesn't need R1

•  Assumes we know how to order the resources
– Order by resource type (e.g. groups before

members)
– Order by relationship (e.g. parents before children)

•  May require complex and inefficient releasing
and re-acquiring of locks

Lecture 6
Page 25

CS 111
Summer 2013

Which Approach Should You Use?

•  There is no one universal solution to all deadlocks
–  Fortunately, we don't need one solution for all resources
–  We only need a solution for each resource

•  Solve each individual problem any way you can
–  Make resources sharable wherever possible
–  Use reservations for commodity resources
–  Ordered locking or no hold-and-block where possible
–  As a last resort, leases and lock breaking

•  OS must prevent deadlocks in all system services
–  Applications are responsible for their own behavior

Lecture 6
Page 26

CS 111
Summer 2013

One More Deadlock “Solution”

•  Ignore the problem
•  In many cases, deadlocks are very improbable
•  Doing anything to avoid or prevent them might

be very expensive
•  So just forget about them and hope for the best
•  But what if the best doesn’t happen?

