
Lecture 6 
Page 1 

CS 111 
Summer 2013  

Concurrency Solutions and 
Deadlock 
CS 111 

Operating Systems  
Peter Reiher 



Lecture 6 
Page 2 

CS 111 
Summer 2013  

Outline 

•  Concurrency issues 
– Asynchronous completion 

•  Other synchronization primitives 
•  Deadlock 

– Causes 
– Solution approaches 
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Asynchronous Completion 

•  The second big problem with parallelism 
– How to wait for an event that may take a while 
– Without wasteful spins/busy-waits 

•  Examples of asynchronous completions 
– Waiting for a held lock to be released 
– Waiting for an I/O operation to complete 
– Waiting for a response to a network request 
– Delaying execution for a fixed period of time 
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Using Spin Waits to Solve the 
Asynchronous Completion Problem 
•  Thread A needs something from thread B 

– Like the result of a computation 

•  Thread B isn’t done yet 
•  Thread A stays in a busy loop waiting 
•  Sooner or later thread B completes  
•  Thread A exits the loop and makes use of B’s 

result 
•  Definitely provides correct behavior, but . . . 
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Well, Why Not? 
•  Waiting serves no purpose for the waiting 

thread 
– “Waiting” is not a “useful computation” 

•  Spin waits reduce system throughput 
– Spinning consumes CPU cycles 
– These cycles can’t be used by other threads 
–  It would be better for waiting thread to “yield” 

•  They are actually counter-productive 
– Delays the thread that will post the completion 
– Memory traffic slows I/O and other processors 
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Another Solution  
•  Completion blocks 
•  Create a synchronization object 

– Associate that object with a resource or request 

•  Requester blocks awaiting event on that object 
– Yield the CPU until awaited event happens 

•  Upon completion, the event is “posted” 
– Thread that notices/causes event posts the object 

•  Posting event to object unblocks the waiter 
– Requester is dispatched, and processes the event 
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Blocking and Unblocking 
•  Exactly as discussed in scheduling lecture 
•  Blocking 

–  Remove specified process from the “ready” queue 
–  Yield the CPU (let scheduler run someone else) 

•  Unblocking 
–  Return specified process to the “ready” queue 
–  Inform scheduler of wakeup (possible preemption) 

•  Only trick is arranging to be unblocked 
–  Because it is so embarrassing to sleep forever 

•  Complexities if multiple entities are blocked on a 
resource – Who gets unblocked when it’s freed? 
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A Possible Problem 

•  The sleep/wakeup race condition 

void sleep( eventp *e ) { 
while(e->posted == FALSE) { 

add_to_queue( &e->queue, 
myproc ); 
myproc->runstate |= BLOCKED; 
yield(); 

} 
} 

void wakeup( eventp *e) { 
      struct proce *p; 

      e->posted = TRUE; 
      p = get_from_queue(&e-> 
queue); 
      if (p) { 

      p->runstate &= ~BLOCKED; 
      resched(); 

      }  /* if !p, nobody’s 
waiting */ 
} 

Consider this sleep code: And this wakeup code: 

What’s the problem with this? 
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A Sleep/Wakeup Race 

•  Let’s say thread B is using a resource and 
thread A needs to get it 

•  So thread A will call sleep() 
•  Meanwhile, thread B finishes using the 

resource 
– So thread B will call wakeup() 

•  No other threads are waiting for the resource  
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The Race At Work 
void sleep( eventp *e ) { 

while(e->posted == FALSE) { 

void wakeup( eventp *e) { 
struct proce *p; 

e->posted = TRUE; 
p = get_from_queue(&e-> queue); 

if (p) { 

 }  /* if !p, nobody’s waiting */ 
} 

Nope, nobody’s in the queue! 

add_to_queue( &e->queue, myproc ); 

myproc->runsate |= BLOCKED; 
yield(); 

  } 
   } 

Yep, somebody’s locked it! 

Thread A Thread B 

The effect?  
Thread A is sleeping But there’s no one to 

wake him up 

CONTEXT SWITCH! 

CONTEXT SWITCH! 
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Solving the Problem 

•  There is clearly a critical section in sleep() 
– Starting before we test the posted flag 
– Ending after we put ourselves on the notify list 

•  During this section, we need to prevent 
– Wakeups of the event 
– Other people waiting on the event 

•  This is a mutual-exclusion problem 
– Fortunately, we already know how to solve those 
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Lock Contention 
•  The riddle of parallel multi-tasking: 

–  If one task is blocked, CPU runs another 
– But concurrent use of shared resources is difficult 
– Critical sections serialize tasks, eliminating 

parallelism 
•  What if everyone needs to share one resource? 

– One process gets the resource 
– Other processes get in line behind him 
– Parallelism is eliminated;  B runs after A finishes 
– That resource becomes a bottle-neck 
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What If It Isn’t That Bad? 
•  Say each thread is only somewhat likely to need a 

resource 
•  Consider the following system 

–  Ten processes, each runs once per second 
–  One resource they all use 5% of time (5ms/sec) 
–  Half of all time slices end with a preemption 

•  Chances of preemption while in critical section 
–  Per slice: 2.5%, per sec: 22%, over 10 sec: 92%  

•  Chances a 2nd process will need resource 
–  5% in next time slice, 37% in next second 

•  But once this happens, a line forms 
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Resource Convoys 
•  All processes regularly need the resource 

– But now there is a waiting line 
– Nobody can “just use the resource”, must get in 

line 
•  The delay becomes much longer 

– We don’t just wait a few µ-sec until resource is 
free 

– We must wait until everyone in front of us finishes 
– And while we wait, more people get into the line 

•  Delays rise, throughput falls, parallelism 
ceases 

•  Not merely a theoretical transient response 
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Resource Convoy Performance 

throughput  

offered load 

ideal 

convoy 
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Avoiding Contention Problems 
•  Eliminate the critical section entirely 

– Eliminate shared resource, use atomic instructions 
•  Eliminate preemption during critical section 

– By disabling interrupts … not always an option 
•  Reduce lingering time in critical section 

– Minimize amount of code in critical section 
– Reduce likelihood of blocking in critical section 

•  Reduce frequency of critical section entry  
– Reduce use of the serialized resource 
– Spread requests out over more resources 
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Lock Granularity 
•  How much should one lock cover? 

–  One object or many 
–  Important performance and usability implications 

•  Coarse grained - one lock for many objects 
–  Simpler, and more idiot-proof 
–  Results in greater resource contention 

•  Fine grained - one lock per object 
–  Spreading activity over many locks reduces contention 
–  Time/space overhead, more locks, more gets/releases 
–  Error-prone: harder to decide what to lock when 
–  Some operations may require locking multiple objects 

(which creates a potential for deadlock) 
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Other Important  
Synchronization Primitives 

•  Semaphores 
•  Mutexes 
•  Monitors 
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Semaphores 
•  Counters for sequence coord. and mutual exclusion 
•  Can be binary counters or more general 

–  E.g., if you have multiple copies of the resource 
•  Call wait() on the semaphore to obtain exclusive 

access to a critical section 
–  For binary semaphores, you wait till whoever had it signals 

they are done 

•  Call signal() when you’re done 
•  For sequence coordination, signal on a shared 

semaphore when you finish first step 
–  Wait before you do second step 
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Mutexes 

•  A synchronization construct to serialize access 
to a critical section 

•  Typically implemented using semaphores 
•  Mutexes are one per critical section 

– Unlike semaphores, which protect multiple copies 
of a resource 
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Monitors 
•  An object oriented synchronization primitive 

–  Sort of very OO mutexes 
–  Exclusion requirements depend on object/methods 
–  Implementation should be encapsulated in object 
–  Clients shouldn't need to know the exclusion rules 

•  A monitor is not merely a lock 
–  It is an object class, with instances, state, and methods 
–  All object methods protected by a semaphore 

•  Monitors have some very nice properties 
–  Easy to use for clients, hides unnecessary details 
–  High confidence of  adequate protection 


