
Lecture 6
Page 1

CS 111
Summer 2013

Concurrency Solutions and
Deadlock
CS 111

Operating Systems
Peter Reiher

Lecture 6
Page 2

CS 111
Summer 2013

Outline

•  Concurrency issues
– Asynchronous completion

•  Other synchronization primitives
•  Deadlock

– Causes
– Solution approaches

Lecture 6
Page 3

CS 111
Summer 2013

Asynchronous Completion

•  The second big problem with parallelism
– How to wait for an event that may take a while
– Without wasteful spins/busy-waits

•  Examples of asynchronous completions
– Waiting for a held lock to be released
– Waiting for an I/O operation to complete
– Waiting for a response to a network request
– Delaying execution for a fixed period of time

Lecture 6
Page 4

CS 111
Summer 2013

Using Spin Waits to Solve the
Asynchronous Completion Problem
•  Thread A needs something from thread B

– Like the result of a computation

•  Thread B isn’t done yet
•  Thread A stays in a busy loop waiting
•  Sooner or later thread B completes
•  Thread A exits the loop and makes use of B’s

result
•  Definitely provides correct behavior, but . . .

Lecture 6
Page 5

CS 111
Summer 2013

Well, Why Not?
•  Waiting serves no purpose for the waiting

thread
– “Waiting” is not a “useful computation”

•  Spin waits reduce system throughput
– Spinning consumes CPU cycles
– These cycles can’t be used by other threads
–  It would be better for waiting thread to “yield”

•  They are actually counter-productive
– Delays the thread that will post the completion
– Memory traffic slows I/O and other processors

Lecture 6
Page 6

CS 111
Summer 2013

Another Solution
•  Completion blocks
•  Create a synchronization object

– Associate that object with a resource or request

•  Requester blocks awaiting event on that object
– Yield the CPU until awaited event happens

•  Upon completion, the event is “posted”
– Thread that notices/causes event posts the object

•  Posting event to object unblocks the waiter
– Requester is dispatched, and processes the event

Lecture 6
Page 7

CS 111
Summer 2013

Blocking and Unblocking
•  Exactly as discussed in scheduling lecture
•  Blocking

–  Remove specified process from the “ready” queue
–  Yield the CPU (let scheduler run someone else)

•  Unblocking
–  Return specified process to the “ready” queue
–  Inform scheduler of wakeup (possible preemption)

•  Only trick is arranging to be unblocked
–  Because it is so embarrassing to sleep forever

•  Complexities if multiple entities are blocked on a
resource – Who gets unblocked when it’s freed?

Lecture 6
Page 8

CS 111
Summer 2013

A Possible Problem

•  The sleep/wakeup race condition

void sleep(eventp *e) {
while(e->posted == FALSE) {

add_to_queue(&e->queue,
myproc);
myproc->runstate |= BLOCKED;
yield();

}
}

void wakeup(eventp *e) {
 struct proce *p;

 e->posted = TRUE;
 p = get_from_queue(&e->
queue);
 if (p) {

 p->runstate &= ~BLOCKED;
 resched();

 } /* if !p, nobody’s
waiting */
}

Consider this sleep code: And this wakeup code:

What’s the problem with this?

Lecture 6
Page 9

CS 111
Summer 2013

A Sleep/Wakeup Race

•  Let’s say thread B is using a resource and
thread A needs to get it

•  So thread A will call sleep()
•  Meanwhile, thread B finishes using the

resource
– So thread B will call wakeup()

•  No other threads are waiting for the resource

Lecture 6
Page 10

CS 111
Summer 2013

The Race At Work
void sleep(eventp *e) {

while(e->posted == FALSE) {

void wakeup(eventp *e) {
struct proce *p;

e->posted = TRUE;
p = get_from_queue(&e-> queue);

if (p) {

 } /* if !p, nobody’s waiting */
}

Nope, nobody’s in the queue!

add_to_queue(&e->queue, myproc);

myproc->runsate |= BLOCKED;
yield();

 }
 }

Yep, somebody’s locked it!

Thread A Thread B

The effect?
Thread A is sleeping But there’s no one to

wake him up

CONTEXT SWITCH!

CONTEXT SWITCH!

Lecture 6
Page 11

CS 111
Summer 2013

Solving the Problem

•  There is clearly a critical section in sleep()
– Starting before we test the posted flag
– Ending after we put ourselves on the notify list

•  During this section, we need to prevent
– Wakeups of the event
– Other people waiting on the event

•  This is a mutual-exclusion problem
– Fortunately, we already know how to solve those

Lecture 6
Page 12

CS 111
Summer 2013

Lock Contention
•  The riddle of parallel multi-tasking:

–  If one task is blocked, CPU runs another
– But concurrent use of shared resources is difficult
– Critical sections serialize tasks, eliminating

parallelism
•  What if everyone needs to share one resource?

– One process gets the resource
– Other processes get in line behind him
– Parallelism is eliminated; B runs after A finishes
– That resource becomes a bottle-neck

Lecture 6
Page 13

CS 111
Summer 2013

What If It Isn’t That Bad?
•  Say each thread is only somewhat likely to need a

resource
•  Consider the following system

–  Ten processes, each runs once per second
–  One resource they all use 5% of time (5ms/sec)
–  Half of all time slices end with a preemption

•  Chances of preemption while in critical section
–  Per slice: 2.5%, per sec: 22%, over 10 sec: 92%

•  Chances a 2nd process will need resource
–  5% in next time slice, 37% in next second

•  But once this happens, a line forms

Lecture 6
Page 14

CS 111
Summer 2013

Resource Convoys
•  All processes regularly need the resource

– But now there is a waiting line
– Nobody can “just use the resource”, must get in

line
•  The delay becomes much longer

– We don’t just wait a few µ-sec until resource is
free

– We must wait until everyone in front of us finishes
– And while we wait, more people get into the line

•  Delays rise, throughput falls, parallelism
ceases

•  Not merely a theoretical transient response

Lecture 6
Page 15

CS 111
Summer 2013

Resource Convoy Performance

throughput

offered load

ideal

convoy

Lecture 6
Page 16

CS 111
Summer 2013

Avoiding Contention Problems
•  Eliminate the critical section entirely

– Eliminate shared resource, use atomic instructions
•  Eliminate preemption during critical section

– By disabling interrupts … not always an option
•  Reduce lingering time in critical section

– Minimize amount of code in critical section
– Reduce likelihood of blocking in critical section

•  Reduce frequency of critical section entry
– Reduce use of the serialized resource
– Spread requests out over more resources

Lecture 6
Page 17

CS 111
Summer 2013

Lock Granularity
•  How much should one lock cover?

–  One object or many
–  Important performance and usability implications

•  Coarse grained - one lock for many objects
–  Simpler, and more idiot-proof
–  Results in greater resource contention

•  Fine grained - one lock per object
–  Spreading activity over many locks reduces contention
–  Time/space overhead, more locks, more gets/releases
–  Error-prone: harder to decide what to lock when
–  Some operations may require locking multiple objects

(which creates a potential for deadlock)

Lecture 6
Page 18

CS 111
Summer 2013

Other Important
Synchronization Primitives

•  Semaphores
•  Mutexes
•  Monitors

Lecture 6
Page 19

CS 111
Summer 2013

Semaphores
•  Counters for sequence coord. and mutual exclusion
•  Can be binary counters or more general

–  E.g., if you have multiple copies of the resource
•  Call wait() on the semaphore to obtain exclusive

access to a critical section
–  For binary semaphores, you wait till whoever had it signals

they are done

•  Call signal() when you’re done
•  For sequence coordination, signal on a shared

semaphore when you finish first step
–  Wait before you do second step

Lecture 6
Page 20

CS 111
Summer 2013

Mutexes

•  A synchronization construct to serialize access
to a critical section

•  Typically implemented using semaphores
•  Mutexes are one per critical section

– Unlike semaphores, which protect multiple copies
of a resource

Lecture 6
Page 21

CS 111
Summer 2013

Monitors
•  An object oriented synchronization primitive

–  Sort of very OO mutexes
–  Exclusion requirements depend on object/methods
–  Implementation should be encapsulated in object
–  Clients shouldn't need to know the exclusion rules

•  A monitor is not merely a lock
–  It is an object class, with instances, state, and methods
–  All object methods protected by a semaphore

•  Monitors have some very nice properties
–  Easy to use for clients, hides unnecessary details
–  High confidence of adequate protection

