
Lecture 5
Page 1

CS 111
Summer 2013

Parallelism and Concurrency
•  Running parallel threads of execution has many

benefits and is increasingly important
•  Making use of parallelism implies concurrency

–  Multiple actions happening at the same time
–  Or perhaps appearing to do so

•  That’s difficult, because if two execution streams are
not synchronized

–  Results depend on the order of instruction execution
–  Parallelism makes execution order non-deterministic
–  Understanding possible outcomes of the computation

becomes combinatorially intractable

Lecture 5
Page 2

CS 111
Summer 2013

Solving the Parallelism Problem

•  There are actually two interdependent
problems
– Critical section serialization
– Notification of asynchronous completion

•  They are often discussed as a single problem
– Many mechanisms simultaneously solve both
– Solution to either requires solution to the other

•  But they can be understood and solved
separately

Lecture 5
Page 3

CS 111
Summer 2013

The Critical Section Problem
•  A critical section is a resource that is shared by

multiple threads
– By multiple concurrent threads, processes or CPUs
– By interrupted code and interrupt handler

•  Use of the resource changes its state
– Contents, properties, relation to other resources

•  Correctness depends on execution order
– When scheduler runs/preempts which threads
– Relative timing of asynchronous/independent

events

Lecture 5
Page 4

CS 111
Summer 2013

The Asynchronous Completion
Problem

•  Parallel activities happen at different speeds
•  Sometimes one activity needs to wait for another to

complete
•  The asynchronous completion problem is how to

perform such waits without killing performance
–  Without wasteful spins/busy-waits

•  Examples of asynchronous completions
–  Waiting for a held lock to be released
–  Waiting for an I/O operation to complete
–  Waiting for a response to a network request
–  Delaying execution for a fixed period of time

Lecture 5
Page 5

CS 111
Summer 2013

Critical Sections

•  What is a critical section?
•  Functionality whose proper use in parallel

programs is critical to correct execution
•  If you do things in different orders, you get

different results
•  A possible location for undesirable non-

determinism

Lecture 5
Page 6

CS 111
Summer 2013

Basic Approach to Critical Sections
•  Serialize access

– Only allow one thread to use it at a time
– Using some method like locking

•  Won’t that limit parallelism?
– Yes, but . . .

•  If true interactions are rare, and critical
sections well defined, most code still parallel

•  If there are actual frequent interactions, there
isn’t any real parallelism possible
– Assuming you demand correct results

Lecture 5
Page 7

CS 111
Summer 2013

Critical Section Example 1:
Updating a File

Process 1 Process 2
remove(“database”);
fd = create(“database”);
write(fd,newdata,length);
close(fd);

fd = open(“database”,READ);
count = read(fd,buffer,length);

remove(“database”);
fd = create(“database”);

fd = open(“database”,READ);
count = read(fd,buffer,length);

write(fd,newdata,length);
close(fd);

−  This result could not occur with any sequential execution
•  Process 2 reads an empty database

Lecture 5
Page 8

CS 111
Summer 2013

Critical Section Example 2:
Multithreaded Banking Code

load r1, balance // = 100
load r2, amount1 // = 50
add r1, r2 // = 150
store r1, balance // = 150

Thread 1 Thread 2
load r1, balance // = 100
load r2, amount2 // = 25
sub r1, r2 // = 75
store r1, balance // = 75

load r1, balance // = 100
load r2, amount1 // = 50
add r1, r2 // = 150

100 balance

r1

r2

50 amount1 25 amount2

100 150

load r1, balance // = 100

100

load r2, amount2 // = 25

25
75

sub r1, r2 // = 75
store r1, balance // = 75

75

store r1, balance // = 150

50

CONTEXT SWITCH!!!

CONTEXT SWITCH!!!

150

The $25 debit was lost!!!

Lecture 5
Page 9

CS 111
Summer 2013

These Kinds of Interleavings
Seem Pretty Unlikely

•  To cause problems, things have to happen
exactly wrong

•  Indeed, that’s true
•  But modern machines execute a billion

instructions per second
•  So even very low probability events can

happen with frightening frequency
•  Often, one problem blows up everything that

follows

Lecture 5
Page 10

CS 111
Summer 2013

Can’t We Solve the Problem By
Disabling Interrupts?

•  Much of our difficulty is caused by a poorly timed
interrupt
–  Our code gets part way through, then gets interrupted
–  Someone else does something that interferes
–  When we start again, things are messed up

•  Why not temporarily disable interrupts to solve those
problems?
–  Can’t be done in user mode
–  Harmful to overall performance
–  Dangerous to correct system behavior

Lecture 5
Page 11

CS 111
Summer 2013

Another Approach
•  Avoid shared data whenever possible

–  No shared data, no critical section
–  Not always feasible

•  Eliminate critical sections with atomic instructions
–  Atomic (uninteruptable) read/modify/write operations
–  Can be applied to 1-8 contiguous bytes
–  Simple: increment/decrement, and/or/xor
–  Complex: test-and-set, exchange, compare-and-swap
–  What if we need to do more in a critical section?

•  Use atomic instructions to implement locks
–  Use the lock operations to protect critical sections

Lecture 5
Page 12

CS 111
Summer 2013

Atomic Instructions – Compare
and Swap

A C description of machine instructions
bool compare_and_swap(int *p, int old, int new) {
if (*p == old) { /* see if value has been changed */

p = new; / if not, set it to new value */
return(TRUE); /* tell caller he succeeded */

} else /* value has been changed */
 return(FALSE); /* tell caller he failed */

}

if (compare_and_swap(flag,UNUSED,IN_USE) {
 /* I got the critical section! */

} else {
 /* I didn’t get it. */

}

Lecture 5
Page 13

CS 111
Summer 2013

Solving Problem #2 With
Compare and Swap

Again, a C implementation
int current_balance;
writecheck(int amount) {
int oldbal, newbal;
do {

oldbal = current_balance;
newbal = oldbal - amount;
if (newbal < 0) return (ERROR);

} while (!compare_and_swap(¤t_balance, oldbal, newbal))
...
}

Lecture 5
Page 14

CS 111
Summer 2013

Why Does This Work?
•  Remember, compare_and_swap() is atomic
•  First time through, if no concurrency,

–  oldbal == current_balance
–  current_balance was changed to newbal by
compare_and_swap()

•  If not,
–  current_balance changed after you read it
– So compare_and_swap() didn’t change
current_balance and returned FALSE

– Loop, read the new value, and try again

Lecture 5
Page 15

CS 111
Summer 2013

Will This Really Solve
the Problem?

•  If compare & swap fails, loop back and re-try
–  If there is a conflicting thread isn’t it likely to

simply fail again?
•  Only if preempted during a four instruction

window
– By someone executing the same critical section

•  Extremely low probability event
– We will very seldom go through the loop even

twice

Lecture 5
Page 16

CS 111
Summer 2013

Limitation of Atomic Instructions

•  They only update a small number of contiguous bytes
–  Cannot be used to atomically change multiple locations

•  E.g., insertions in a doubly-linked list

•  They operate on a single memory bus
–  Cannot be used to update records on disk
–  Cannot be used across a network

•  They are not higher level locking operations
–  They cannot “wait” until a resource becomes available
–  You have to program that up yourself

•  Giving you extra opportunities to screw up

Lecture 5
Page 17

CS 111
Summer 2013

Implementing Locks
•  Create a synchronization object

–  Associated it with a critical section
–  Of a size that an atomic instruction can manage

•  Lock the object to seize the critical section
–  If critical section is free, lock operation succeeds
–  If critical section is already in use, lock operation fails

•  It may fail immediately
•  It may block until the critical section is free again

•  Unlock the object to release critical section
–  Subsequent lock attempts can now succeed
–  May unblock a sleeping waiter

Lecture 5
Page 18

CS 111
Summer 2013

Criteria for Correct Locking

•  How do we know if a locking mechanism is correct?
•  Four desirable criteria:

1.  Correct mutual exclusion
-  Only one thread at a time has access to critical section

2.  Progress
-  If resource is available, and someone wants it, they get it

3.  Bounded waiting time
-  No indefinite waits, guaranteed eventual service

4.  And (ideally) fairness
-  E.g. FIFO

