
Lecture 5
Page 1

CS 111
Summer 2013

Bounded Buffers
•  A higher level abstraction than shared domains

or simple messages
•  But not quite as high level as RPC
•  A buffer that allows writers to put messages in
•  And readers to pull messages out
•  FIFO
•  Unidirectional
– One process sends, one process receives

•  With a buffer of limited size

Lecture 5
Page 2

CS 111
Summer 2013

SEND and RECEIVE With
Bounded Buffers

•  For SEND(), if buffer is not full, put the
message into the end of the buffer and return
–  If full, block waiting for space in buffer
– Then add message and return

•  For RECEIVE(), if buffer has one or more
messages, return the first one put in
–  If there are no messages in buffer, block and wait

until one is put in

Lecture 5
Page 3

CS 111
Summer 2013

Practicalities of Bounded Buffers
•  Handles problem of not having infinite space
•  Ensures that fast sender doesn’t overwhelm

slow receiver
•  Provides well-defined, simple behavior for

receiver
•  But subject to some synchronization issues
– The producer/consumer problem
– A good abstraction for exploring those issues

Lecture 5
Page 4

CS 111
Summer 2013

The Bounded Buffer

Process	
 1	
 Process	
 2	

A fixed size buffer

Process 1 is the writer Process 2 is the reader

Process 1
SENDs a
message

through the
buffer

Process 2
RECEIVEs
a message
from the
buffer

More
messages
are sent

And
received

What could
possibly go

wrong?

Lecture 5
Page 5

CS 111
Summer 2013

One Potential Issue

Process	
 1	
 Process	
 2	

What if the buffer is full?

But the
sender wants

to send
another

message?

The sender will need
to wait for the

receiver to catch up
An issue of sequence

coordination

Another sequence
coordination

problem if receiver
tries to read from an

empty buffer

Lecture 5
Page 6

CS 111
Summer 2013

Handling Sequence Coordination
Issues

•  One party needs to wait
– For the other to do something

•  If the buffer is full, process 1’s SEND must
wait for process 2 to do a RECEIVE

•  If the buffer is empty, process 2’s RECEIVE
must wait for process 1 to SEND

•  Naively, done through busy loops
– Check condition, loop back if it’s not true
– Also called spin loops

Lecture 5
Page 7

CS 111
Summer 2013

Implementing the Loops

•  What exactly are the processes looping on?
•  They care about how many messages are in the

bounded buffer
•  That count is probably kept in a variable
–  Incremented on SEND
– Decremented on RECEIVE
– Never to go below zero or exceed buffer size

•  The actual system code would test the variable

Lecture 5
Page 8

CS 111
Summer 2013

A Potential Danger

Process	
 1	
 Process	
 2	

BUFFER_COUNT!

4	

Process 1 checks
BUFFER_COUNT!

4!

Process 2 checks
BUFFER_COUNT!

4!

Process 1 wants to
SEND!

Process 2 wants to
RECEIVE!

5	

5! 3!

3	

Concurrency’s a bitch

Lecture 5
Page 9

CS 111
Summer 2013

Why Didn’t You Just Say
BUFFER_COUNT=BUFFER_COUNT-1?

•  These are system operations
•  Occurring at a low level
•  Using variables not necessarily in the

processes’ own address space
– Perhaps even RAM memory locations

•  The question isn’t, can we do it right?
•  The question is, what must we do if we are to

do it right?

Lecture 5
Page 10

CS 111
Summer 2013

One Possible Solution
•  Use separate variables to hold the number of

messages put into the buffer
•  And the number of messages taken out
•  Only the sender updates the IN variable
•  Only the receiver updates the OUT variable
•  Calculate buffer fullness by subtracting OUT from
IN!

•  Won’t exhibit the previous problem
•  When working with concurrent processes, it’s safest

to only allow one process to write each variable

Lecture 5
Page 11

CS 111
Summer 2013

Multiple Writers and Races

•  What if there are multiple senders and
receivers sharing the buffer?

•  Other kinds of concurrency issues can arise
– Unfortunately, in non-deterministic fashion
– Depending on timings, they might or might not

occur
– Without synchronization between threads/

processes, we have no control of the timing
– Any action interleaving is possible

Lecture 5
Page 12

CS 111
Summer 2013

A Multiple Sender Problem
Process	
 1	

Process	
 2	

Process	
 3	

Processes 1 and 3 are senders

Process 2 is a receiver

The buffer starts empty

0!

IN!

Process 1
wants to
SEND

Process 3
wants to
SEND

There’s plenty of room in
the buffer for both

But . . .

1!1!
We’re in trouble:

We overwrote
process 1’s message

Lecture 5
Page 13

CS 111
Summer 2013

The Source of the Problem
•  Concurrency again
•  Processes 1 and 3 executed concurrently
•  At some point they determined that buffer

slot 1 was empty
– And they each filled it
– Not realizing the other would do so

•  Worse, it’s timing dependent
– Depending on ordering of events

Lecture 5
Page 14

CS 111
Summer 2013

Process 1 Might Overwrite
Process 3 Instead

Process	
 1	

Process	
 3	

Process	
 2	

0!

IN!

1!0!0!

Lecture 5
Page 15

CS 111
Summer 2013

Or It Might Come Out Right
Process	
 1	

Process	
 3	

Process	
 2	

0!

IN!

1!0!1!2!

Lecture 5
Page 16

CS 111
Summer 2013

Race Conditions
•  Errors or problems occurring because of this

kind of concurrency
•  For some ordering of events, everything is fine
•  For others, there are serious problems
•  In true concurrent situations, either result is

possible
•  And it’s often hard to predict which you’ll get
•  Hard to find and fix
– A job for the OS, not application programmers

Lecture 5
Page 17

CS 111
Summer 2013

How Can The OS Help?

•  By providing abstractions not subject to race
conditions

•  One can program race-free concurrent code
–  It’s not easy

•  So having an expert do it once is better than
expecting all programmers to do it themselves

•  An example of the OS hiding unpleasant
complexities

Lecture 5
Page 18

CS 111
Summer 2013

Locks

•  A way to deal with concurrency issues
•  Many concurrency issues arise because

multiple steps aren’t done atomically
–  It’s possible for another process to take actions in

the middle
•  Locks prevent that from happening
•  They convert a multi-step process into

effectively a single step one

Lecture 5
Page 19

CS 111
Summer 2013

What Is a Lock?
•  A shared variable that coordinates use of a

shared resource
– Such as code or other shared variables

•  When a process wants to use the shared
resource, it must first ACQUIRE the lock
– Can’t use the resource till ACQUIRE succeeds

•  When it is done using the shared resource, it
will RELEASE the lock

•  ACQUIRE and RELEASE are the fundamental
lock operations

Lecture 5
Page 20

CS 111
Summer 2013

Using Locks in Our Multiple
Sender Problem

Process	
 1	

Process	
 3	

IN!

0!

To use the buffer properly, a process must:
1. Read the value of IN!
2. If IN < BUFFER_SIZE, store message!
3. Add 1 to IN!

WITHOUT
INTERRUPTION!

So associate a lock with those steps

Lecture 5
Page 21

CS 111
Summer 2013

The Lock in Action
Process	
 1	

Process	
 3	
 IN!

0!

Process 1 executes ACQUIRE on the lock
Let’s assume it succeeds
Now process 1 executes the code

associated with the lock

1. Read the value of IN!

IN = 0!

2. If IN < BUFFER_SIZE, store message!

0 < 5!✔	

3. Add 1 to IN!

1!

Process 1 now executes RELEASE on the lock

Lecture 5
Page 22

CS 111
Summer 2013

What If Process 3
Intervenes?

Process	
 1	

Process	
 3	
 IN!

0!

IN = 0!

Let’s say process 1 has the lock already
And has read IN!

Now, before process 1 can execute any
more code, process 3 tries to SEND!

Before process 3 can go ahead, it needs the lock

ACQUIRE()!

But that ACQUIRE fails, since process 1
already has the lock

So process 1 can safely complete the SEND!

1!

Lecture 5
Page 23

CS 111
Summer 2013

Locking and Atomicity

•  Locking is one way to provide the property of
atomicity for compound actions
– Actions that take more than one step

•  Atomicity has two aspects:
– Before-or-after atomicity
– All-or-nothing atomicity

•  Locking is most useful for providing before-
or-after atomicity

Lecture 5
Page 24

CS 111
Summer 2013

Before-Or-After Atomicity
•  As applied to a set of actions A
•  If they have before-or-after atomicity,
•  For all other actions, each such action either:
– Happened before the entire set of A
– Or happened after the entire set of A

•  In our bounded buffer example, either the
entire buffer update occurred first

•  Or the entire buffer update came later
•  Not partly before, partly after

Lecture 5
Page 25

CS 111
Summer 2013

Using Locks to Avoid Races

•  Software designer must find all places where a
race condition might occur
–  If he misses one, he may get errors there

•  He must then properly use locks for all
processes that could cause the race
–  If he doesn’t do it right, he might get races anyway

•  Since neither is trivial to get right, OS should
provide abstractions to handle proper locking

