/ ' Bounded Buffers | \

* A higher level abstraction than shared domains
or simple messages

* But not quite as high level as RPC

* A buffer that allows writers to put messages in
* And readers to pull messages out

* FIFO

e Unidirectional

— One process sends, one process receives

\e With a buffer of limited size /

CS 111 Lecture 5
Summer 2013 Page 1




SEND and RECEIVE With \

Bounded Bufters

* For SEND(), if buffer 1s not full, put the
message 1nto the end of the buffer and return

— If full, block waiting for space in buffer
— Then add message and return

* For RECEIVE(), if buffer has one or more
messages, return the first one put 1n
— If there are no messages 1n buffer, block and wait

until one 1s put in

\ /

CS 111 Lecture 5
Summer 2013 Page 2




/Practicalities of Bounded Buffers\

* Handles problem of not having infinite space

 Ensures that fast sender doesn’t overwhelm
slow receiver

* Provides well-defined, simple behavior for
recerver

* But subject to some synchronization 1ssues

— The producer/consumer problem

— A good abstraction for exploring those issues

\ /

CS 111 Lecture 5
Summer 2013 Page 3




-

Process 1 1s the writer

Process 1  More
SENDs a messages
MESSage  are sent

\ through the
bufter

CS 111

The Bounded Bufter

~

Process 2 1s the reader
What could
possibly go
wrong?
A fixed size buffer
And Process 2
received RECEIVEs
a message
from the /
buffer ccwes

Summer 2013

Page 4



/ One Potential Issue \

What if the bufter 1s full?

But the The sender will need  Apother sequence
sender wants to wait for the coordination
to send receiver to catch up problem if receiver
\ another An issue of sequence tries to read from an /

message? nati
CS 111 g COOlenatlon empty bUffer Lecture 5
Summer 2013 Page 5




/Handling Sequence Coordination "\

Issues
* One party needs to wait

— For the other to do something

* If the buffer 1s full, process 1°s SEND must
wait for process 2 to do a RECEIVE

* If the buffer 1s empty, process 2’s RECEIVE
must wait for process 1 to SEND

* Naively, done through busy loops

— Check condition, loop back 1f it’s not true

., —Also called spin loops s

Summer 2013 Page 6




/ Implementing the Loops \

* What exactly are the processes looping on?

* They care about how many messages are in the
bounded buffer

* That count 1s probably kept 1n a variable
— Incremented on SEND
— Decremented on RECEIVE

— Never to go below zero or exceed buffer size

* The actual system code would test the variable

CS 111 Lecture 5
Summer 2013 Page 7




-

\

CS 111
Summer 2013

A Potential Danger

Process 1 wants to
SEND

Process 1 checks
BUFFER COUNT

5

Concurrency’s a bitch

3

BUFFER COUNT

Process 2 wants to
RECEIVE

Process 2 checks
BUFFER COUNT

3

~

/

Lecture 5
Page 8



-

BUFF.

Why Didn’t You Just Say \

e These

\

CS 111

“R COUNT=BUFF]

are system operations

* Occurring at a low level

%R COUNT-1?

* Using variables not necessarily in the
processes’ own address space

— Perhaps even RAM memory locations
* The question 1sn’t, can we do 1t right?

* The question 1s, what must we do 1f we are to
do 1t right?

Summer 2013



/ One Possible Solution \

* Use separate variables to hold the number of
messages put into the buffer

* And the number of messages taken out
* Only the sender updates the IN variable
* Only the receiver updates the OUT variable

* Calculate buffer fullness by subtracting OUT from
IN

* Won’t exhibit the previous problem

* When working with concurrent processes, it’s safest
\ to only allow one process to write each variable /

CS 111 Lecture 5
Summer 2013 Page 10




* What if there are multiple senders and
receivers sharing the buffer?

* Other kinds of concurrency 1ssues can arise
— Unfortunately, in non-deterministic fashion
— Depending on timings, they might or might not
occur

— Without synchronization between threads/
processes, we have no control of the timing

\ Any action interleaving 1s possible )

CS 111 Lecture 5
Summer 2013 Page 11




/ A Multiple Sender Problem \

Process 1 Processes 1 and 3 are senders

wants to

SEND .
There’s plenty of room 1n

the buffer for both
But. ..

Process 2 1s a receiver

The buffer starts empty

We’re in trouble:

% Process 3

wants to
We overwrote
SEND ) IN
process 1’s message

CS 111 Lecture 5
Summer 2013 Page 12




/ The Source of the Problem \

* Concurrency again

* Processes 1 and 3 executed concurrently

* At some point they determined that buffer
slot 1 was empty

— And they each filled 1t
— Not realizing the other would do so

* Worse, 1t’s timing dependent

\ —Depending on ordering of events /

CS 111 Lecture 5
Summer 2013 Page 13




/ Process 1 Might Overwrite \

Process 3 Instead

CS 111

Summer 2013



/ Or It Might Come Out Right \

CS 111 Lecture 5
Summer 2013 Page 15




/ Race Conditions \

* Errors or problems occurring because of this
kind of concurrency

* For some ordering of events, everything is fine
* For others, there are serious problems

* In true concurrent situations, either result 1s
possible

* And 1t’s often hard to predict which you’ll get

* Hard to find and fix
\ — Ajob for the OS, not application programmers )

CS 111 Lecture 5
Summer 2013 Page 16




/ How Can The OS Help? \

* By providing abstractions not subject to race
conditions

* One can program race-free concurrent code

— It’s not easy

* So having an expert do 1t once 1s better than
expecting all programmers to do 1t themselves

* An example of the OS hiding unpleasant
complexities

\ /

CS 111 Lecture 5
Summer 2013 Page 17




a “Locks N\

——————————————

* A way to deal with concurrency issues

* Many concurrency 1ssues arise because
multiple steps aren’t done atomically

— It’s possible for another process to take actions in
the middle

* Locks prevent that from happening

* They convert a multi-step process into
effectively a single step one

\ /

CS 111 Lecture 5
Summer 2013 Page 18




/ What Is a Lock? \

A shared variable that coordinates use of a
shared resource

— Such as code or other shared variables

* When a process wants to use the shared
resource, 1t must first ACQUIRE the lock

— Can’t use the resource till ACQUIRE succeeds

* When 1t is done using the shared resource, 1t
will RELEASE the lock

 ACQUIRE and RELEASE are the fundamental
Cs\m lock operations L/ 5

Summer 2013 Page 19




/ Using Locks in Our Multiple \
Sender Problem

To use the buffer properly, a process must:
@ Qp 1. Read the value of IN

2. If IN < BUFFER_SIZE, store message
i . 3. Add 1 to IN

WITHOUT
INTERRUPTION!

So associate a lock with those steps

0

IN /

CS 111 Lecture 5
Summer 2013 Page 20




/IN "’ The Lock in Action \

0 <5 ¢V

Process 1 executes ACQUIRE on the lock
Let’s assume it succeeds

Now process 1 executes the code
associated with the lock

1

IN

1. Read the value of IN
2. If IN < BUFFER SIZE, store message

3. Add 1 to IN

Process 1 now executes RELEASE on the lock /

CS 111 Lecture 5
Summer 2013 Page 21




/IN - o What If Process 3 \

Intervenes?

Let’s say process 1 has the lock already

And has read IN
So process 1 can safely complete the SEND

1
A IRE
Il Now, before process 1 can execute any

more code, process 3 tries to SEND
Before process 3 can go ahead, it needs the lock

; But that ACQUIRE fails, since process 1
\ already has the lock /

CS 111 Lecture 5
Summer 2013 Page 22




/ Locking and Atomicity \

* Locking 1s one way to provide the property of
atomicity for compound actions

— Actions that take more than one step

* Atomicity has two aspects:
— Before-or-after atomicity
— All-or-nothing atomicity

* Locking 1s most useful for providing before-
or-after atomicity

\ /

CS 111 Lecture 5
Summer 2013 Page 23




/ Betore-Or-After Atomicity \

* As applied to a set of actions 4
* If they have before-or-after atomicity,

* For all other actions, each such action either:

— Happened before the entire set of A
— Or happened after the entire set of 4

* In our bounded buffer example, either the
entire buffer update occurred first

* Or the entire buffer update came later
\e Not partly before, partly after /

CS 111 Lecture 5
Summer 2013 Page 24




/ Using Locks to Avoid Races \

* Software designer must find all places where a
race condition might occur

— If he misses one, he may get errors there
* He must then properly use locks for all
processes that could cause the race
— If he doesn’t do it right, he might get races anyway

 Since neither 1s trivial to get right, OS should
provide abstractions to handle proper locking

\ /

CS 111 Lecture 5
Summer 2013 Page 25




