
Lecture 5
Page 1

CS 111
Summer 2013

Process Communications,
Synchronization, and

Concurrency
CS 111

Operating Systems
Peter Reiher

Lecture 5
Page 2

CS 111
Summer 2013

Outline

•  Process communications issues
•  Synchronizing processes
•  Concurrency issues
– Critical section synchronization

Lecture 5
Page 3

CS 111
Summer 2013

Processes and Communications

•  Many processes are self-contained
•  But many others need to communicate
–  Often complex applications are built of multiple

communicating processes

•  Types of communications
–  Simple signaling

•  Just telling someone else that something has happened

–  Messages
–  Procedure calls or method invocation
–  Tight sharing of large amounts of data

•  E.g., shared memory, pipes

Lecture 5
Page 4

CS 111
Summer 2013

Some Common Characteristics
of IPC

•  Issues of proper synchronization
– Are the sender and receiver both ready?
–  Issues of potential deadlock

•  There are safety issues
– Bad behavior from one process should not trash

another process
•  There are performance issues
– Copying of large amounts of data is expensive

•  There are security issues, too

Lecture 5
Page 5

CS 111
Summer 2013

Desirable Characteristics of
Communications Mechanisms

•  Simplicity
–  Simple definition of what they do and how to do it
–  Good to resemble existing mechanism, like a procedure call
–  Best if they’re simple to implement in the OS

•  Robust
–  In the face of many using processes and invocations
–  When one party misbehaves

•  Flexibility
–  E.g., not limited to fixed size, nice if one-to-many possible, etc.

•  Free from synchronization problems
•  Good performance
•  Usable across machine boundaries

Lecture 5
Page 6

CS 111
Summer 2013

Blocking Vs. Non-Blocking
•  When sender uses the communications mechanism,

does it block waiting for the result?
–  Synchronous communications

•  Or does it go ahead without necessarily waiting?
–  Asynchronous communications

•  Blocking reduces parallelism possibilities
–  And may complicate handling errors

•  Not blocking can lead to more complex programming
–  Parallelism is often confusing and unpredicatable

•  Particular mechanisms tend to be one or the other

Lecture 5
Page 7

CS 111
Summer 2013

Communications Mechanisms

•  Signals
•  Sharing memory
•  Messages
•  RPC
•  More sophisticated abstractions
– The bounded buffer

Lecture 5
Page 8

CS 111
Summer 2013

Signals
•  A very simple (and limited) communications

mechanism
•  Essentially, send an interrupt to a process
– With some kind of tag indicating what sort of

interrupt it is
•  Depending on implementation, process may

actually be interrupted
•  Or may have some non-interrupting condition

code raised
– Which it would need to check for

Lecture 5
Page 9

CS 111
Summer 2013

Properties of Signals
•  Unidirectional
•  Low information content
– Generally just a type
– Thus not useful for moving data

•  Not always possible for user processes to
signal each other
– May only be used by OS to alert user processes
– Or possibly only through parent/child process

relationships

Lecture 5
Page 10

CS 111
Summer 2013

Implementing Signals

•  Typically through the trap/interrupt mechanism
•  OS (or another process) requests a signal for a

process
•  That process is delivered a trap or interrupt

implementing the signal
•  There’s no associated parameters or other data
– So no need to worry about where to put or find that

Lecture 5
Page 11

CS 111
Summer 2013

Shared Memory
•  Everyone uses the same pool of RAM anyway
•  Why not have communications done simply by

writing and reading parts of the RAM?
– Sender writes to a RAM location
– Receiver reads it
– Give both processes access to memory via their

domain registers
•  Conceptually simple
•  Basic idea cheap to implement
•  Usually non-blocking

Lecture 5
Page 12

CS 111
Summer 2013

Processor	
 	

Memory	
 	

Network	

Disk	

Sharing Memory With Domain
Registers

Process	
 1	
 Process	
 2	

With write
permission for

Process 1

And read
permission for

Process 2

Lecture 5
Page 13

CS 111
Summer 2013

Using the Shared Domain to
Communicate

Processor	
 	

Memory	
 	

Network	

Disk	

Process	
 1	
 Process	
 2	

Process 1 writes
some data

Process 2 then
reads it

Lecture 5
Page 14

CS 111
Summer 2013

Potential Problem #1 With
Shared Domain Communications

Processor	
 	

Memory	
 	

Network	

Disk	

Process	
 1	
 Process	
 2	

How did
Process 1 know

this was the
correct place to
write the data?

How did
Process 2 know

this was the
correct place to
read the data?

Lecture 5
Page 15

CS 111
Summer 2013

Potential Problem #2 With
Shared Domain Communications

Processor	
 	

Memory	
 	

Network	

Disk	

Process	
 1	
 Process	
 2	

What if Process 2
tries to read the

data before process
1 writes it?

Timing Issues

Worse, what if
Process 2 reads the
data in the middle

of Process 1
writing it?

Lecture 5
Page 16

CS 111
Summer 2013

Messages

•  A conceptually simple communications
mechanism

•  The sender sends a message explicitly
•  The receiver explicitly asks to receive it
•  The message service is provided by the

operating system
– Which handles all the “little details”

•  Usually non-blocking

Lecture 5
Page 17

CS 111
Summer 2013

Opera6ng	

System	

Using Messages

Processor	
 	

Memory	
 	

Network	

Disk	

Process	
 1	
 Process	
 2	

SEND RECEIVE

Lecture 5
Page 18

CS 111
Summer 2013

Advantages of Messages
•  Processes need not agree on where to look for things
–  Other than, perhaps, a named message queue

•  Clear synchronization points
–  The message doesn’t exist until you SEND it
–  The message can’t be examined until you RECEIVE it
–  So no worries about incomplete communications

•  Helpful encapsulation features
–  You RECEIVE exactly what was sent, no more, no less

•  No worries about size of the communications
–  Well, no worries for the user; the OS has to worry

•  Easy to see how it scales to multiple processes

Lecture 5
Page 19

CS 111
Summer 2013

Implementing Messages
•  The OS is providing this communications abstraction
•  There’s no magic here
–  Lots of stuff needs to be done behind the scenes by OS

•  Issues to solve:
–  Where do you store the message before receipt?
–  How do you deal with large quantities of messages?
–  What happens when someone asks to receive before

anything is sent?
–  What happens to messages that are never received?
–  How do you handle naming issues?
–  What are the limits on message contents?

Lecture 5
Page 20

CS 111
Summer 2013

Message Storage Issues
•  Messages must be stored somewhere while

waiting delivery
– Typical choices are either in the sender’s domain
•  What if sender deletes/overwrites them?

– Or in a special OS domain
•  That implies extra copying, with performance costs

•  How long do messages hang around?
– Delivered ones are cleared
– What about those for which no RECEIVE is done?
•  One choice: delete them when the receiving process

exits

Lecture 5
Page 21

CS 111
Summer 2013

Remote Procedure Calls
•  A more object-oriented mechanism
•  Communicate by making procedure calls on

other processes
– “Remote” here really means “in another process”
– Not necessarily “on another machine”

•  They aren’t in your address space
– And don’t even use the same code

•  Some differences from a regular procedure call
•  Typically blocking

Lecture 5
Page 22

CS 111
Summer 2013

 RPC Characteristics
•  Procedure calls are primary unit of

computation in most languages
– Unit of information hiding and interface

specification
•  Natural boundary between client and server
– Turn procedure calls into message send/receives

•  Requires both sender and receiver to be
playing the same game
– Typically both use some particular RPC standard

Lecture 5
Page 23

CS 111
Summer 2013

RPC Mechanics
•  The process hosting the remote procedure

might be on same computer or a different one
•  Under the covers, use messages in either case
•  Resulting limitations:
– No implicit parameters/returns (e.g. global

variables)
– No call-by-reference parameters
– Much slower than procedure calls (TANSTAAFL)

•  Often used for client/server computing

Lecture 5
Page 24

CS 111
Summer 2013

RPC Operations
•  Client application links to local procedures
– Calls local procedures, gets results
– All RPC implementation is inside those procedures

•  Client application does not know about details
– Does not know about formats of messages
– Does not worry about sends, timeouts, resents
– Does not know about external data representation

•  All generated automatically by RPC tools
– The key to the tools is the interface specification

•  Failure in callee doesn’t crash caller

