
Lecture 4
Page 1

CS 111
Summer 2013

Preemptive Scheduling
•  Again in the context of CPU scheduling
•  A thread or process is chosen to run
•  It runs until either it yields
•  Or the OS decides to interrupt it
•  At which point some other process/thread runs
•  Typically, the interrupted process/thread is

restarted later

Lecture 4
Page 2

CS 111
Summer 2013

Implications of Forcing Preemption
•  A process can be forced to yield at any time
–  If a higher priority process becomes ready

•  Perhaps as a result of an I/O completion interrupt

–  If running process's priority is lowered
•  Perhaps as a result of having run for too long

•  Interrupted process might not be in a “clean” state
–  Which could complicate saving and restoring its state

•  Enables enforced “fair share” scheduling
•  Introduces gratuitous context switches
–  Not required by the dynamics of processes

•  Creates potential resource sharing problems

Lecture 4
Page 3

CS 111
Summer 2013

Implementing Preemption
•  Need a way to get control away from process
– E.g., process makes a sys call, or clock interrupt

•  Consult scheduler before returning to process
– Has any ready process had its priority raised?
– Has any process been awakened?
– Has current process had its priority lowered?

•  Scheduler finds highest priority ready process
–  If current process, return as usual
–  If not, yield on behalf of current process and

switch to higher priority process

Lecture 4
Page 4

CS 111
Summer 2013

Clock Interrupts
•  Modern processors contain a clock
•  A peripheral device
– With limited powers

•  Can generate an interrupt at a fixed time
interval

•  Which temporarily halts any running process
•  Good way to ensure that runaway process

doesn’t keep control forever
•  Key technology for preemptive scheduling

Lecture 4
Page 5

CS 111
Summer 2013

Round Robin Scheduling
Algorithm

•  Goal - fair share scheduling
–  All processes offered equal shares of CPU and experience

similar queue delays

•  All processes are assigned a nominal time slice
–  Usually the same sized slice for all

•  Each process is scheduled in turn
–  Runs until it blocks, or its time slice expires
–  Then put at the end of the process queue

•  Then the next process is run
•  Eventually, each process reaches front of queue

Lecture 4
Page 6

CS 111
Summer 2013

Properties of Round Robin
Scheduling

•  All processes get relatively quick chance to do
some computation
– At the cost of not finishing any process as quickly
– A big win for interactive processes

•  Far more context switches
– Which can be expensive

•  Runaway processes do relatively little harm
– Only take 1/nth of the overall cycles

Lecture 4
Page 7

CS 111
Summer 2013

Round Robin and I/O Interrupts

•  Processes get halted by round robin scheduling
if their time slice expires

•  If they block for I/O (or anything else) on their
own, the scheduler doesn’t halt them

•  Thus, some percentage of the time round robin
acts no differently than FIFO
– When I/O occurs in a process and it blocks

Lecture 4
Page 8

CS 111
Summer 2013

Round Robin Example
Assume a 50 msec time slice (or quantum)

Dispatch Order: 0, 1, 2, 3, 4, 0, 1, 2, . . .

Process Length 1st 2nd 3d 4th 5th 6th 7th 8th Finish Switches

0 350 0 250 475 650 800 950 1050 1100 7

1 125 50 300 525 525 3

2 475 100 350 550 700 850 1000 1100 1150 1275 10 1200 1250

3 250 150 400 600 750 900 900 5

4 75 200 450 475 2 4

1

3

0

1275 27

2

Average waiting time: 100 msec

First process completed: 475 msec

Lecture 4
Page 9

CS 111
Summer 2013

Comparing Example to Non-
Preemptive Examples

•  Context switches: 27 vs. 5 (for both FIFO and SJF)
–  Clearly more expensive

•  First job completed: 475 msec vs.
–  75 (shortest job first)
–  350 (FIFO)
–  Clearly takes longer to complete some process

•  Average waiting time: 100 msec vs.
–  350 (shortest job first)
–  595 (FIFO)
–  For first opportunity to compute
–  Clearly more responsive

Lecture 4
Page 10

CS 111
Summer 2013

Choosing a Time Slice

•  Performance of a preemptive scheduler
depends heavily on how long time slice is

•  Long time slices avoid too many context
switches
– Which waste cycles
– So better throughput and utilization

•  Short time slices provide better response time
to processes

•  How to balance?

Lecture 4
Page 11

CS 111
Summer 2013

Costs of a Context Switch
•  Entering the OS
–  Taking interrupt, saving registers, calling scheduler

•  Cycles to choose who to run
–  The scheduler/dispatcher does work to choose

•  Moving OS context to the new process
–  Switch stack, non-resident process description

•  Switching process address spaces
–  Map-out old process, map-in new process

•  Losing instruction and data caches
–  Greatly slowing down the next hundred instructions

Lecture 4
Page 12

CS 111
Summer 2013

Multi-queue Scheduling
•  One time slice length may not fit all processes
•  Create multiple ready queues
– Short quantum (foreground) tasks that finish

quickly
•  Short but frequent time slices, optimize response time

– Long quantum (background) tasks that run longer
•  Longer but infrequent time slices, minimize overhead

– Different queues may get different shares of the
CPU

Lecture 4
Page 13

CS 111
Summer 2013

How Do I Know What Queue To
Put New Process Into?

•  Start all processes in short quantum queue
– Move downwards if too many time-slice ends
– Move back upwards if too few time slice ends
– Processes dynamically find the right queue

•  If you also have real time tasks, you know
what belongs there
– Start them in real time queue and don’t move them

Lecture 4
Page 14

CS 111
Summer 2013

Multiple Queue Scheduling

tsmax = ∞
real time queue

#tse = ∞ #yield = ∞

tsmax = 500us
short quantum queue

#tse = 10 #yield = ∞

tsmax = 2ms
medium quantum queue

#tse = 50 #yield = 10

tsmax = 5ms
long quantum queue

#tse = ∞ #yield = 20

share
scheduler

20%

50%

25%

05%

Lecture 4
Page 15

CS 111
Summer 2013

Priority Scheduling Algorithm

•  Sometimes processes aren’t all equally
important

•  We might want to preferentially run the more
important processes first

•  How would our scheduling algorithm work
then?

•  Assign each job a priority number
•  Run according to priority number

Lecture 4
Page 16

CS 111
Summer 2013

Priority and Preemption

•  If non-preemptive, priority scheduling is just
about ordering processes

•  Much like shortest job first, but ordered by
priority instead

•  But what if scheduling is preemptive?
•  In that case, when new process is created, it

might preempt running process
–  If its priority is higher

Lecture 4
Page 17

CS 111
Summer 2013

Priority Scheduling Example

Process Length

0 350

1 125

2 475

Priority

10

30

40

3 250 20

4 75 50

0 200

Process 3’s priority is lower than
running process

Process 4’s priority is higher than
running process

300

Process 4 completes

4

375

So we go back to process 2

550 Time

Lecture 4
Page 18

CS 111
Summer 2013

Problems With Priority Scheduling

•  Possible starvation
•  Can a low priority process ever run?
•  If not, is that really the effect we wanted?
•  May make more sense to adjust priorities
– Processes that have run for a long time have

priority temporarily lowered
– Processes that have not been able to run have

priority temporarily raised

Lecture 4
Page 19

CS 111
Summer 2013

Priority Scheduling in Linux

•  Each process in Linux has a priority
– Called a nice value
– A soft priority describing share of CPU that a

process should get
•  Commands can be run to change process

priorities
•  Anyone can request lower priority for his

processes
•  Only privileged user can request higher

