
Lecture 4
Page 1

CS 111
Summer 2013

Non-Preemptive Scheduling
•  Consider in the context of CPU scheduling
•  Scheduled process runs until it yields CPU
•  Works well for simple systems

– Small numbers of processes
– With natural producer consumer relationships

•  Good for maximizing throughput
•  Depends on each process to voluntarily yield

– A piggy process can starve others
– A buggy process can lock up the entire system

Lecture 4
Page 2

CS 111
Summer 2013

When Should a Process Yield?
•  When it knows it’s not going to make progress

– E.g., while waiting for I/O
– Better to let someone else make progress than sit

in a pointless wait loop
•  After it has had its “fair share” of time

– Which is hard to define
– Since it may depend on the state of everything else

in the system
•  Can’t expect application programmers to do

sophisticated things to decide

Lecture 4
Page 3

CS 111
Summer 2013

Non-Preemptive Scheduling
Algorithms

•  First come first served
•  Shortest job next
•  Real time schedulers

Lecture 4
Page 4

CS 111
Summer 2013

First Come First Served

•  The simplest of all scheduling algorithms
•  Run first process on ready queue

–  Until it completes or yields

•  Then run next process on queue
– Until it completes or yields

•  Highly variable delays
– Depends on process implementations

•  All processes will eventually be served

Lecture 4
Page 5

CS 111
Summer 2013

First Come First Served Example

Note: Average is worse than total/5 because four other processes had
to wait for the slow-poke who ran first.

Total 1275
595

Lecture 4
Page 6

CS 111
Summer 2013

When Would First Come First
Served Work Well?

•  FCFS scheduling is very simple
•  It may deliver very poor response time
•  Thus it makes the most sense:

1.  In batch systems, where response time is not
important

2.  In embedded (e.g. telephone or set-top box)
systems where computations are brief and/or exist
in natural producer/consumer relationships

Lecture 4
Page 7

CS 111
Summer 2013

Shortest Job First

•  Find the shortest task on ready queue
– Run it until it completes or yields

•  Find the next shortest task on ready queue
– Run it until it completes or yields

•  Yields minimum average queuing delay
– This can be very good for interactive response time
– But it penalizes longer jobs

Lecture 4
Page 8

CS 111
Summer 2013

Shortest Job First Example

Note: Even though total time remained unchanged, reordering
 the processes significantly reduced the average wait time.

305
Total 1275

Lecture 4
Page 9

CS 111
Summer 2013

Is Shortest Job First Practical?

•  How can we know how long a job is going to run?
–  Processes predict for themselves?
–  The system predicts for them?

•  How fair is SJF scheduling?
–  The smaller jobs will always be run first
–  New small jobs cut in line, ahead of older longer jobs
–  Will the long jobs ever run?

•  Only if short jobs stop arriving ... which could be never

•  This is called starvation
–  It is caused by discriminatory scheduling

Lecture 4
Page 10

CS 111
Summer 2013

What If the Prediction is Wrong?
•  Regardless of who made it
•  In non-preemptive system, we have little choice:

–  Continue running the process until it yields
•  If prediction is wrong, the purpose of Shortest-Job-

First scheduling is defeated
–  Response time suffers as a result

•  Few computer systems attempt to use Shortest-Job-
First scheduling
–  But grocery stores and banks do use it

•  10-item-or-less registers
•  Simple deposit & check cashing windows

Lecture 4
Page 11

CS 111
Summer 2013

Real Time Schedulers

•  For certain systems, some things must happen
at particular times
– E.g., industrial control systems
–  If you don’t rivet the widget before the conveyer

belt moves, you have a worthless widget
•  These systems must schedule on the basis of

real-time deadlines
•  Can be either hard or soft

Lecture 4
Page 12

CS 111
Summer 2013

Hard Real Time Schedulers
•  The system absolutely must meet its deadlines
•  By definition, system fails if a deadline is not

met
– E.g., controlling a nuclear power plant . . .

•  How can we ensure no missed deadlines?
•  Typically by very, very careful analysis

– Make sure no possible schedule causes a deadline
to be missed

– By working it out ahead of time
– Then scheduler rigorously follows deadlines

Lecture 4
Page 13

CS 111
Summer 2013

Ensuring Hard Deadlines
•  Must have deep understanding of the code

used in each job
– You know exactly how long it will take

•  Vital to avoid non-deterministic timings
– Even if the non-deterministic mechanism usually

speeds things up
– You’re screwed if it ever slows them down

•  Typically means you do things like turn off
interrupts

•  And scheduler is non-preemptive

Lecture 4
Page 14

CS 111
Summer 2013

How Does a Hard Real Time
System Schedule?

•  There is usually a very carefully pre-defined
schedule

•  No actual decisions made at run time
•  It’s all been worked out ahead of time
•  Not necessarily using any particular algorithm
•  The designers may have just tinkered around to

make everything “fit”

Lecture 4
Page 15

CS 111
Summer 2013

Soft Real Time Schedulers

•  Highly desirable to meet your deadlines
•  But some (or any) of them can occasionally be

missed
•  Goal of scheduler is to avoid missing deadlines

– With the understanding that you might
•  May have different classes of deadlines

– Some “harder” than others

•  Need not require quite as much analysis

Lecture 4
Page 16

CS 111
Summer 2013

What If You Don’t Meet a
Deadline?

•  Depends on the particular type of system
•  Might just drop the job whose deadline you

missed
•  Might allow system to fall behind
•  Might drop some other job in the future
•  At any rate, it will be well defined in each

particular system

Lecture 4
Page 17

CS 111
Summer 2013

What Algorithms Do You
Use For Soft Real Time?

•  Most common is Earliest Deadline First
•  Each job has a deadline associated with it

– Based on a common clock

•  Keep the job queue sorted by those deadlines
•  Whenever one job completes, pick the first one

off the queue
•  Perhaps prune the queue to remove jobs whose

deadlines were missed
•  Minimizes total lateness

