
Lecture 4
Page 1

CS 111
Summer 2013

Scheduling
CS 111

Operating Systems
Peter Reiher

Lecture 4
Page 2

CS 111
Summer 2013

Outline

•  What is scheduling?
– What are our scheduling goals?

•  What resources should we schedule?
•  Example scheduling algorithms and their

implications

Lecture 4
Page 3

CS 111
Summer 2013

What Is Scheduling?

•  An operating system often has choices about
what to do next

•  In particular:
– For a resource that can serve one client at a time
– When there are multiple potential clients
– Who gets to use the resource next?
– And for how long?

•  Making those decisions is scheduling

Lecture 4
Page 4

CS 111
Summer 2013

OS Scheduling Examples

•  What job to run next on an idle core?
– How long should we let it run?

•  In what order to handle a set of block requests
for a disk drive?

•  If multiple messages are to be sent over the
network, in what order should they be sent?

Lecture 4
Page 5

CS 111
Summer 2013

How Do We Decide
How To Schedule?

•  Generally, we choose goals we wish to achieve
•  And design a scheduling algorithm that is

likely to achieve those goals
•  Different scheduling algorithms try to optimize

different quantities
•  So changing our scheduling algorithm can

drastically change system behavior

Lecture 4
Page 6

CS 111
Summer 2013

The Process Queue
•  The OS typically keeps a queue of processes

that are ready to run
– Ordered by whichever one should run next
– Which depends on the scheduling algorithm used

•  When time comes to schedule a new process,
grab the first one on the process queue

•  Processes that are not ready to run either:
– Aren’t in that queue
– Or are at the end
– Or are ignored by scheduler

Lecture 4
Page 7

CS 111
Summer 2013

Potential Scheduling Goals
•  Maximize throughput
–  Get as much work done as possible

•  Minimize average waiting time
–  Try to avoid delaying too many for too long

•  Ensure some degree of fairness
–  E.g., minimize worst case waiting time

•  Meet explicit priority goals
–  Scheduled items tagged with a relative priority

•  Real time scheduling
–  Scheduled items tagged with a deadline to be met

Lecture 4
Page 8

CS 111
Summer 2013

Different Kinds of Systems,
Different Scheduling Goals

•  Time sharing
–  Fast response time to interactive programs
–  Each user gets an equal share of the CPU

•  Batch
–  Maximize total system throughput
–  Delays of individual processes are unimportant

•  Real-time
–  Critical operations must happen on time
–  Non-critical operations may not happen at all

Lecture 4
Page 9

CS 111
Summer 2013

Preemptive Vs.
Non-Preemptive Scheduling

•  When we schedule a piece of work, we could let it
use the resource until it finishes

•  Could use virtualization to interrupt part way through
–  Allowing other pieces of work to run instead

•  If scheduled work always runs to completion, the
scheduler is non-preemptive

•  If the scheduler temporarily halts running jobs to run
something else, it’s preemptive

•  Cooperative scheduling – when process blocks or
voluntarily releases, schedule someone else

Lecture 4
Page 10

CS 111
Summer 2013

Pros and Cons of
Non-Preemptive Scheduling

+ Low scheduling overhead
+ Tends to produce high throughput
+ Conceptually very simple
− Poor response time for processes
− Bugs can cause machine to freeze up
− If process contains infinite loop, e.g.

− Not good fairness (by most definitions)
− May make real time and priority scheduling

difficult

Lecture 4
Page 11

CS 111
Summer 2013

Pros and Cons of Pre-emptive
Scheduling

+ Can give good response time
+ Can produce very fair usage
+ Works well with real-time and priority

scheduling
− More complex
− Requires ability to cleanly halt process and

save its state
− May not get good throughput

Lecture 4
Page 12

CS 111
Summer 2013

Scheduling: Policy and Mechanism
•  The scheduler will move jobs into and out of a

processor (dispatching)
– Requiring various mechanics to do so

•  How dispatching is done should not depend on
the policy used to decide who to dispatch

•  Desirable to separate the choice of who runs
(policy) from the dispatching mechanism
– Also desirable that OS process queue structure not

be policy-dependent

Lecture 4
Page 13

CS 111
Summer 2013

Scheduling the CPU

ready queue dispatcher context
switcher CPU

yield (or preemption)

resource
manager resource request resource granted

new
process

Lecture 4
Page 14

CS 111
Summer 2013

Scheduling and Performance

•  How you schedule important system activities
has a major effect on performance

•  Performance has different aspects
– You may not be able to optimize for both

•  Scheduling performance has very different
characteristic under light vs. heavy load

•  Important to understand the performance
basics regarding scheduling

Lecture 4
Page 15

CS 111
Summer 2013

Typical Throughput vs. Load Curve

throughput

offered load

ideal

typical

Maximum possible capacity

Lecture 4
Page 16

CS 111
Summer 2013

Why Don’t We Achieve Ideal
Throughput?

•  Scheduling is not free
–  It takes time to dispatch a process (overhead)
– More dispatches means more overhead (lost time)
– Less time (per second) is available to run processes

•  How to minimize the performance gap
– Reduce the overhead per dispatch
– Minimize the number of dispatches (per second)

•  This phenomenon is seen in many areas
besides process scheduling

Lecture 4
Page 17

CS 111
Summer 2013

Typical Response Time
vs. Load Curve

Delay
(response time) ideal

typical

offered load

Lecture 4
Page 18

CS 111
Summer 2013

Why Does Response Time
Explode?

•  Real systems have finite limits
–  Such as queue size

•  When those limits are exceeded, requests are
typically dropped
–  Which is an infinite response time, for them
–  There may be automatic retries (e.g., TCP), but they could

be dropped, too

•  If load arrives a lot faster than it is serviced, lots of
stuff gets dropped

•  Unless careful, overheads during heavy load explode
•  Effects like receive livelock can also hurt

Lecture 4
Page 19

CS 111
Summer 2013

Graceful Degradation
•  When is a system “overloaded”?
– When it is no longer able to meet service goals

•  What can we do when overloaded?
– Continue service, but with degraded performance
– Maintain performance by rejecting work
– Resume normal service when load drops to normal

•  What should we not do when overloaded?
– Allow throughput to drop to zero (i.e., stop doing

work)
– Allow response time to grow without limit

