/ [Process Creation] \

* Processes get created (and destroyed) all the
time 1n a typical computer

* Some by explicit user command

* Some by invocation from other running
processes

* Some at the behest of the operating system

 How do we create a new process?

\ /

CS 111 Lecture 3
Summer 2013 Page 1

/ Creating a Process Descriptor \

* The process descriptor 1s the OS’ basic per-
process data structure

* So a new process needs a new descriptor

* What does the OS do with the descriptor?
* Typically puts it into a process table

— The data structure the OS uses to organize all
currently active processes

\ /

CS 111 Lecture 3
Summer 2013 Page 2

/ What Else Does a

New Process Need?
* A virtual address space

* To hold all of the segments 1t will need
 So the OS needs to create one

— And allocate memory for code, data and stack

segments
* Initializes a stack segment
* Sets up 1nitial registers (PC, PS, SP)

CS 111
Summer 2013

* OS then loads program code and data into new

/ Choices for Process Creation \

1. Start with a “blank™ process
— No 1nitial state or resources

— Have some way of filling in the vital stuff
* Code

* Program counter, etc.

— This 1s the basic Windows approach
2. Use the calling process as a template

— Give new process the same stuff as the old one
— Including code, PC, etc.

\ — This is the basic Unix/Linux approach /

CS 111 Lecture 3
Summer 2013 Page 4

/ Starting With a Blank Process \

* Basically, create a brand new process

* The system call that creates it obviously needs
to provide some information
— Everything needed to set up the process properly
— At the mimmimum, what code 1s to be run
— Generally a lot more than that

* Other than bootstrapping, the new process 1s
created by command of an existing process

\

CS 111 Lecture 3
Summer 2013 Page 5

/ Windows Process Creation \

* The CreateProcess () system call
* A very flexible way to create a new process

— Many parameters with many possible values

* Generally, the system call includes the name of
the program to run
— In one of a couple of parameter locations

* Different parameters fill out other critical
information for the new process

., — Environment information, priorities, etc.

Summer 2013 Page 6

-

\

CS 111
Summer 2013

Process Forking

* The way Unix/Linux creates processes
* Essentially clones the existing process

* On assumption that the new process 1s a lot
like the old one

— Most likely to be true for some kinds of parallel

programming

— Not so likely for more typical user computing

~

/ Why Did Unix Use Forking? \

* Avoids costs of copying a lot of code
— If 1t’s the same code as the parents’. . .
* Historical reasons
— Parallel processing literature used a cloning fork
— Fork allowed parallelism before threads invented
* Practical reasons

— Easy to manage shared resources
» [ike stdin, stdout, stderr

— Easy to set up process pipe-lines (e.g. Is | more)

\ — Share exclusive-access resources (e.g. tape drives)em/ 3

CS 111
Summer 2013 Page 8

/ What Happens After a Fork? \

* There are now two processes
— With different IDs

— But otherwise mostly exactly the same
* How do I profitably use that?
* Program executes a fork

* Now there are two programs
— With the same code and program counter

* Write code to figure out which 1s which

\ - Usually, parent goes “one way” and child goes)
CS 111 “the other” Lecture 3

Summer 2013 Page 9

/ Forking and the Data Segments\

* Forked child shares the parent’s code
* But not 1its stack

— It has 1ts own stack, initialized to match the
parent’s

— Just as 1f a second process running the same
program had reached the same point in 1ts run
* Child should have its own data segment,
though

\ — Forked processes do not share their data segments

CS 111 Lecture 3
Summer 2013 Page 10

/ Forking and Copy on Write \

* If the parent had a big data area, setting up a
separate copy for the child 1s expensive

— And fork was supposed to be cheap

* If neither parent nor child write the parent’s
data area, though, no copy necessary

* So set 1t up as copy on write

 If one of them writes 1t, then make a copy and
let the process write the copy

\ The other process keeps the original /

CS 111 Lecture 3
Summer 2013 Page 11

/ Sample Use of Fork \

if (fork()) {
/* I'm the parent! */
execute parent code

} else {
/* I'm the child! */

execute the child code

}
* Parent and child code could be very different

* In fact, often you want the child to be a totally

different program
\ —And maybe not share the parent’s resources)

Lecture 3

CS 111
Summer 2013 Page 12

/ But Fork Isn’t What \
I Usually Want!

* Indeed, you usually don’t want another copy of
the same process

* You want a process to do something entirely
different

* Handled with exec
— A Unix system call to “remake” a process

— Changes the code associated with a process

— Resets much of the rest of its state, too
\ * Like open files /

CS 111 Lecture 3
Summer 2013 Page 13

/ The exec Call \

* A Linux/Unix system call to handle the
common case

* Replaces a process’ existing program with a
different one

— New code

— Different set of other resources
— Different PC and stack

* Essentially, called after you do a fork

\ /

CS 111 Lecture 3
Summer 2013 Page 14

/ Using exec \

if (fork()) {

/* I'm the parent! */

continue with what I was doing before
} else {

/* I'm the child! */

exec (“new program”, <program arguments>;

}
* The parent goes on to whatever 1s next

* The child replaces 1ts code with “new
program”

\ /

CS 111 Lecture 3
Summer 2013 Page 15

/ How Does the OS Handle Exec?\

* Must get rid of the child’s old code
— And 1ts stack and data areas

— Latter 1s easy 1f you are using copy-on-write

e Must load a brand new set of code for that
pProcess

 Must 1initialize child’s stack, PC, and other
relevant control structure

— To start a fresh program run for the child process

\ /

CS 111 Lecture 3
Summer 2013 Page 16

New Processes and Threads! |

__

* All processes have at least one thread

— In some older OSes, never more than one

 In which case, the thread 1s not explicitly represented

— In newer OSes, processes typically start with one
thread

* As process executes, 1t can create new threads

* New thread stacks allocated as needed

\ /

CS 111 Lecture 3
Summer 2013 Page 17

/A Thread Implementation Choice\

* Threads can be implemented in one of two
ways

1. The kernel implements them
2. User code implements them

e These alternatives have fundamental
differences

\ /

CS 111 Lecture 3
Summer 2013 Page 18

/ User Threads \

\

CS 111

Summer 2013

The kernel doesn’t know about multiple threads per
process

The process itself knows

So the process must schedule 1ts threads

Since the kernel doesn’t know the process has
multiple threads,

— The process can’t run threads on more than one core

Switching threads doesn’t require OS involvement,
though

— Which can be cheaper

/

Lecture 3
Page 19

/ Typical Use of User Threads \

* A server process that expects to have multiple
simultaneous clients

* Server process can spawn a new user thread
for each client

* And can then use 1ts own scheduling methods
to determine which thread to run when

* OS need not get involved 1n running threads

— No context switch costs to change from one client
\ to another /

CS 111 Lecture 3
Summer 2013 Page 20

/ Kernel Threads \

* The OS 1s aware that processes can contain
more than one thread

* Creating threads 1s an OS operation
* Scheduling of threads handled by OS

— Which can schedule several process threads on
different cores simultaneously

* Saves the program complexity of handling
threads

\e But somewhat more heavyweight /

CS 111 Lecture 3
Summer 2013 Page 21

/ Typical Use of Kernel Threads \

thread

* If multip]

— But eac

* A program that can do significant parallel
processing on its data

* Each parallel operation 1s run as a kernel

— All sharing the same data space and code

h with 1ts own stack

e cores available, OS can achieve

true paral

\

CS 111

lelism for the program

Summer 2013

Lecture 3
Page 22

/ [Process Termination] \

* Most processes terminate
— All do, of course, when the machine goes down
— But most do some work and then exit before that
— Others are killed by the OS or another process

* When a process terminates, the OS needs to
clean 1t up

— Essentially, getting rid of all of its resources
— In a way that allows simple reclamation

\ /

CS 111 Lecture 3
Summer 2013 Page 23

