
Lecture 3
Page 1

CS 111
Summer 2013

Process Creation

•  Processes get created (and destroyed) all the
time in a typical computer

•  Some by explicit user command
•  Some by invocation from other running

processes
•  Some at the behest of the operating system
•  How do we create a new process?

Lecture 3
Page 2

CS 111
Summer 2013

Creating a Process Descriptor

•  The process descriptor is the OS’ basic per-
process data structure

•  So a new process needs a new descriptor
•  What does the OS do with the descriptor?
•  Typically puts it into a process table
– The data structure the OS uses to organize all

currently active processes

Lecture 3
Page 3

CS 111
Summer 2013

What Else Does a
New Process Need?

•  A virtual address space
•  To hold all of the segments it will need
•  So the OS needs to create one
– And allocate memory for code, data and stack

•  OS then loads program code and data into new
segments

•  Initializes a stack segment
•  Sets up initial registers (PC, PS, SP)

Lecture 3
Page 4

CS 111
Summer 2013

Choices for Process Creation
1.  Start with a “blank” process
–  No initial state or resources
–  Have some way of filling in the vital stuff
•  Code
•  Program counter, etc.

–  This is the basic Windows approach
2.  Use the calling process as a template
–  Give new process the same stuff as the old one
–  Including code, PC, etc.
–  This is the basic Unix/Linux approach

Lecture 3
Page 5

CS 111
Summer 2013

Starting With a Blank Process

•  Basically, create a brand new process
•  The system call that creates it obviously needs

to provide some information
– Everything needed to set up the process properly
– At the minimum, what code is to be run
– Generally a lot more than that

•  Other than bootstrapping, the new process is
created by command of an existing process

Lecture 3
Page 6

CS 111
Summer 2013

Windows Process Creation

•  The CreateProcess() system call
•  A very flexible way to create a new process
– Many parameters with many possible values

•  Generally, the system call includes the name of
the program to run
–  In one of a couple of parameter locations

•  Different parameters fill out other critical
information for the new process
– Environment information, priorities, etc.

Lecture 3
Page 7

CS 111
Summer 2013

Process Forking

•  The way Unix/Linux creates processes
•  Essentially clones the existing process
•  On assumption that the new process is a lot

like the old one
– Most likely to be true for some kinds of parallel

programming
– Not so likely for more typical user computing

Lecture 3
Page 8

CS 111
Summer 2013

Why Did Unix Use Forking?
•  Avoids costs of copying a lot of code
–  If it’s the same code as the parents’ . . .

•  Historical reasons
– Parallel processing literature used a cloning fork
– Fork allowed parallelism before threads invented

•  Practical reasons
– Easy to manage shared resources
•  Like stdin, stdout, stderr

– Easy to set up process pipe-lines (e.g. ls | more)
– Share exclusive-access resources (e.g. tape drives)

Lecture 3
Page 9

CS 111
Summer 2013

What Happens After a Fork?
•  There are now two processes
– With different IDs
– But otherwise mostly exactly the same

•  How do I profitably use that?
•  Program executes a fork
•  Now there are two programs
– With the same code and program counter

•  Write code to figure out which is which
– Usually, parent goes “one way” and child goes

“the other”

Lecture 3
Page 10

CS 111
Summer 2013

Forking and the Data Segments

•  Forked child shares the parent’s code
•  But not its stack
–  It has its own stack, initialized to match the

parent’s
– Just as if a second process running the same

program had reached the same point in its run
•  Child should have its own data segment,

though
– Forked processes do not share their data segments

Lecture 3
Page 11

CS 111
Summer 2013

Forking and Copy on Write

•  If the parent had a big data area, setting up a
separate copy for the child is expensive
– And fork was supposed to be cheap

•  If neither parent nor child write the parent’s
data area, though, no copy necessary

•  So set it up as copy on write
•  If one of them writes it, then make a copy and

let the process write the copy
– The other process keeps the original

Lecture 3
Page 12

CS 111
Summer 2013

Sample Use of Fork
if (fork()) {

 /* I’m the parent! */

 execute parent code

} else {
 /* I’m the child! */

 execute the child code

}

•  Parent and child code could be very different
•  In fact, often you want the child to be a totally
different program
– And maybe not share the parent’s resources

Lecture 3
Page 13

CS 111
Summer 2013

But Fork Isn’t What
I Usually Want!

•  Indeed, you usually don’t want another copy of
the same process

•  You want a process to do something entirely
different

•  Handled with exec
– A Unix system call to “remake” a process
– Changes the code associated with a process
– Resets much of the rest of its state, too
•  Like open files

Lecture 3
Page 14

CS 111
Summer 2013

The exec Call

•  A Linux/Unix system call to handle the
common case

•  Replaces a process’ existing program with a
different one
– New code
– Different set of other resources
– Different PC and stack

•  Essentially, called after you do a fork

Lecture 3
Page 15

CS 111
Summer 2013

Using exec
if (fork()) {

 /* I’m the parent! */

 continue with what I was doing before

} else {
 /* I’m the child! */

 exec(“new program”, <program arguments>;

}

•  The parent goes on to whatever is next
•  The child replaces its code with “new

program”

Lecture 3
Page 16

CS 111
Summer 2013

How Does the OS Handle Exec?

•  Must get rid of the child’s old code
– And its stack and data areas
– Latter is easy if you are using copy-on-write

•  Must load a brand new set of code for that
process

•  Must initialize child’s stack, PC, and other
relevant control structure
– To start a fresh program run for the child process

Lecture 3
Page 17

CS 111
Summer 2013

New Processes and Threads

•  All processes have at least one thread
–  In some older OSes, never more than one
•  In which case, the thread is not explicitly represented

–  In newer OSes, processes typically start with one
thread

•  As process executes, it can create new threads
•  New thread stacks allocated as needed

Lecture 3
Page 18

CS 111
Summer 2013

A Thread Implementation Choice

•  Threads can be implemented in one of two
ways

1.  The kernel implements them
2.  User code implements them
•  These alternatives have fundamental

differences

Lecture 3
Page 19

CS 111
Summer 2013

User Threads

•  The kernel doesn’t know about multiple threads per
process

•  The process itself knows
•  So the process must schedule its threads
•  Since the kernel doesn’t know the process has

multiple threads,
–  The process can’t run threads on more than one core

•  Switching threads doesn’t require OS involvement,
though
–  Which can be cheaper

Lecture 3
Page 20

CS 111
Summer 2013

Typical Use of User Threads

•  A server process that expects to have multiple
simultaneous clients

•  Server process can spawn a new user thread
for each client

•  And can then use its own scheduling methods
to determine which thread to run when

•  OS need not get involved in running threads
– No context switch costs to change from one client

to another

Lecture 3
Page 21

CS 111
Summer 2013

Kernel Threads
•  The OS is aware that processes can contain

more than one thread
•  Creating threads is an OS operation
•  Scheduling of threads handled by OS
– Which can schedule several process threads on

different cores simultaneously
•  Saves the program complexity of handling

threads
•  But somewhat more heavyweight

Lecture 3
Page 22

CS 111
Summer 2013

Typical Use of Kernel Threads

•  A program that can do significant parallel
processing on its data

•  Each parallel operation is run as a kernel
thread
– All sharing the same data space and code
– But each with its own stack

•  If multiple cores available, OS can achieve
true parallelism for the program

Lecture 3
Page 23

CS 111
Summer 2013

Process Termination

•  Most processes terminate
– All do, of course, when the machine goes down
– But most do some work and then exit before that
– Others are killed by the OS or another process

•  When a process terminates, the OS needs to
clean it up
– Essentially, getting rid of all of its resources
–  In a way that allows simple reclamation

