/ [ Process Creation] \

* Processes get created (and destroyed) all the
time 1n a typical computer

* Some by explicit user command

* Some by invocation from other running
processes

* Some at the behest of the operating system

 How do we create a new process?

\ /
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/ Creating a Process Descriptor \

* The process descriptor 1s the OS’ basic per-
process data structure

* So a new process needs a new descriptor

* What does the OS do with the descriptor?
* Typically puts it into a process table

— The data structure the OS uses to organize all
currently active processes

\ /
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/ What Else Does a

New Process Need?
* A virtual address space

* To hold all of the segments 1t will need
 So the OS needs to create one

— And allocate memory for code, data and stack

segments
* Initializes a stack segment
\* Sets up 1nitial registers (PC, PS, SP)

CS 111
Summer 2013

* OS then loads program code and data into new




/ Choices for Process Creation \

1. Start with a “blank™ process
— No 1nitial state or resources

— Have some way of filling in the vital stuff
* Code

* Program counter, etc.

— This 1s the basic Windows approach
2. Use the calling process as a template

— Give new process the same stuff as the old one
— Including code, PC, etc.

\ — This is the basic Unix/Linux approach /
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/ Starting With a Blank Process \

* Basically, create a brand new process

* The system call that creates it obviously needs
to provide some information
— Everything needed to set up the process properly
— At the mimmimum, what code 1s to be run
— Generally a lot more than that

* Other than bootstrapping, the new process 1s
created by command of an existing process

\

CS 111 Lecture 3
Summer 2013 Page 5




/ Windows Process Creation \

* The CreateProcess () system call
* A very flexible way to create a new process

— Many parameters with many possible values

* Generally, the system call includes the name of
the program to run
— In one of a couple of parameter locations

* Different parameters fill out other critical
information for the new process

., — Environment information, priorities, etc.
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Process Forking

* The way Unix/Linux creates processes
* Essentially clones the existing process

* On assumption that the new process 1s a lot
like the old one

— Most likely to be true for some kinds of parallel

programming

— Not so likely for more typical user computing

~




/ Why Did Unix Use Forking? \

* Avoids costs of copying a lot of code
— If 1t’s the same code as the parents’. . .
* Historical reasons
— Parallel processing literature used a cloning fork
— Fork allowed parallelism before threads invented
* Practical reasons

— Easy to manage shared resources
» [ike stdin, stdout, stderr

— Easy to set up process pipe-lines (e.g. Is | more)

\ — Share exclusive-access resources (e.g. tape drives)em/ 3
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/ What Happens After a Fork? \

* There are now two processes
— With different IDs

— But otherwise mostly exactly the same
* How do I profitably use that?
* Program executes a fork

* Now there are two programs
— With the same code and program counter

* Write code to figure out which 1s which

\ - Usually, parent goes “one way” and child goes )
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/ Forking and the Data Segments\

* Forked child shares the parent’s code
* But not 1its stack

— It has 1ts own stack, initialized to match the
parent’s

— Just as 1f a second process running the same
program had reached the same point in 1ts run
* Child should have its own data segment,
though

\ — Forked processes do not share their data segments
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/ Forking and Copy on Write \

* If the parent had a big data area, setting up a
separate copy for the child 1s expensive

— And fork was supposed to be cheap

* If neither parent nor child write the parent’s
data area, though, no copy necessary

* So set 1t up as copy on write

 If one of them writes 1t, then make a copy and
let the process write the copy

\ The other process keeps the original /
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/ Sample Use of Fork \

if (fork() ) {
/* I'm the parent! */
execute parent code

} else {
/* I'm the child! */

execute the child code

}
* Parent and child code could be very different

* In fact, often you want the child to be a totally

different program
\ —And maybe not share the parent’s resources )
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/ But Fork Isn’t What \
I Usually Want!

* Indeed, you usually don’t want another copy of
the same process

* You want a process to do something entirely
different

* Handled with exec
— A Unix system call to “remake” a process

— Changes the code associated with a process

— Resets much of the rest of its state, too
\ * Like open files /
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/ The exec Call \

* A Linux/Unix system call to handle the
common case

* Replaces a process’ existing program with a
different one

— New code

— Different set of other resources
— Different PC and stack

* Essentially, called after you do a fork

\ /
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/ Using exec \

if (fork() ) {

/* I'm the parent! */

continue with what I was doing before
} else {

/* I'm the child! */

exec (“new program”, <program arguments>;

}
* The parent goes on to whatever 1s next

* The child replaces 1ts code with “new
program”

\ /

CS 111 Lecture 3
Summer 2013 Page 15




/ How Does the OS Handle Exec?\

* Must get rid of the child’s old code
— And 1ts stack and data areas

— Latter 1s easy 1f you are using copy-on-write

e Must load a brand new set of code for that
pProcess

 Must 1initialize child’s stack, PC, and other
relevant control structure

— To start a fresh program run for the child process

\ /
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New Processes and Threads! |

________________________________________________

* All processes have at least one thread

— In some older OSes, never more than one

 In which case, the thread 1s not explicitly represented

— In newer OSes, processes typically start with one
thread

* As process executes, 1t can create new threads

* New thread stacks allocated as needed

\ /
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/A Thread Implementation Choice\

* Threads can be implemented in one of two
ways

1. The kernel implements them
2. User code implements them

e These alternatives have fundamental
differences

\ /
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/ User Threads \

\
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The kernel doesn’t know about multiple threads per
process

The process itself knows

So the process must schedule 1ts threads

Since the kernel doesn’t know the process has
multiple threads,

— The process can’t run threads on more than one core

Switching threads doesn’t require OS involvement,
though

— Which can be cheaper

/
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/ Typical Use of User Threads \

* A server process that expects to have multiple
simultaneous clients

* Server process can spawn a new user thread
for each client

* And can then use 1ts own scheduling methods
to determine which thread to run when

* OS need not get involved 1n running threads

— No context switch costs to change from one client
\ to another /
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/ Kernel Threads \

* The OS 1s aware that processes can contain
more than one thread

* Creating threads 1s an OS operation
* Scheduling of threads handled by OS

— Which can schedule several process threads on
different cores simultaneously

* Saves the program complexity of handling
threads

\e But somewhat more heavyweight /
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/ Typical Use of Kernel Threads \

thread

* If multip]

— But eac

* A program that can do significant parallel
processing on its data

* Each parallel operation 1s run as a kernel

— All sharing the same data space and code

h with 1ts own stack

e cores available, OS can achieve

true paral

\
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/ [Process Termination] \

* Most processes terminate
— All do, of course, when the machine goes down
— But most do some work and then exit before that
— Others are killed by the OS or another process

* When a process terminates, the OS needs to
clean 1t up

— Essentially, getting rid of all of its resources
— In a way that allows simple reclamation

\ /
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